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ABSTRACT. In this paper two theorems on|A, pn; δ|k summability methods, which generalize
two theorems of Bor [2] on

∣∣N̄ , pn

∣∣
k

summability methods, have been proved.
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1. I NTRODUCTION

Let
∑

an be a given infinite series with the partial sums(sn), and letA = (anv) be a normal
matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-
to-sequence transformation, mapping the sequences = (sn) to As = (An(s)), where

An(s) =
n∑

v=0

anvsv, n = 0, 1, ....(1.1)

The series
∑

an is said to be summable|A|k , k ≥ 1, if (see [5])

∞∑
n=1

nk−1|∆An(s)|k < ∞(1.2)

where

∆An(s) = An(s)− An−1(s).

Let (pn) be a sequence of positive numbers such that

Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1).(1.3)

The sequence-to-sequence transformation

tn =
1

Pn

n∑
v=0

pvsv(1.4)

defines the sequence(tn) of the(N̄ , pn) mean of the sequence(sn), generated by the sequence
of coefficients(pn) (see [3]). The series

∑
an is said to be summable| N̄ , pn |k, k ≥ 1, if (see

[1])

(1.5)
∞∑

n=1

(
Pn

pn

)k−1

| tn − tn−1 |k< ∞,

and it is said to be summable|A, pn|k , k ≥ 1, if (see [4])

(1.6)
∞∑

n=1

(
Pn

pn

)k−1 ∣∣∆An(s)
∣∣k < ∞.

We say that the series
∑

an is summable|A, pn; δ|k , k ≥ 1 andδ ≥ 0, if

(1.7)
∞∑

n=1

(
Pn

pn

)δk+k−1
∣∣∆An(s)

∣∣k < ∞.

In the special case whenδ = 0, |A, pn; δ|k summability is the same as|A, pn|k summability.
Also if we takeδ = 0 andanv = pv

Pn
, then |A, pn; δ|k summability is the same as

∣∣N̄ , pn

∣∣
k

summability.
Let f(t) be a periodic function with period2π and integrable(L) over(−π, π). Without any

loss of generality we may assume that the constant term in the Fourier series off is zero, so
that ∫ π

−π

f(t)dt = 0
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and

f(t) ∼
∞∑

n=1

(an cos nt + bn sin nt) ≡
∞∑

n=1

An(t).

It is well known that the convergence of the Fourier series att = x is a local property off
(i.e., depends only on the behaviour off in an arbitrarily small neighbourhood ofx), and so the
summability of the Fourier series att = x by any regular linear summability method is also a
local property off .

Bor [2] has proved the following theorems for
∣∣N̄ , pn

∣∣
k

summability methods.

Theorem 1.1.Letk ≥ 1. If the sequence(sn) is bounded and(λn) is a sequence such that

(1.8)
m∑

n=1

pn

Pn

|λn|k = O (1) as m →∞

and

(1.9)
m∑

n=1

|∆λn| = O (1) as m →∞,

then the series
∑

anλn is summable
∣∣N, pn

∣∣
k
.

Theorem 1.2. Let k ≥ 1. The summability
∣∣N, pn

∣∣
k

of the series
∑

An(t)λn at a point is a
local property of the generating function if the conditions (1.8) and (1.9) are satisfied.

2. THE MAIN RESULTS .

The aim of this paper is to generalize above theorems for|A, pn; δ|k summability methods,
wherek ≥ 1 andδ ≥ 0. Before stating the main theorem we must first introduce some further
notation.

Given a normal matrixA = (anv), we associate two lower semimatricesA = (anv) and
Â = (ânv) as follows:

anv =
n∑

i=v

ani, n, v = 0, 1, ...(2.1)

and

â00 = a00 = a00, ânv = anv − an−1,v, n = 1, 2, ....(2.2)

It may be noted thatA andÂ are the well-known matrices of series-to-sequence and series-to-
series transformations, respectively. Then, we have

(2.3) An(s) =
n∑

v=0

anvsv =
n∑

v=0

anvav

and

(2.4) ∆An(s) =
n∑

v=0

ânvav.

Now, we shall prove the following theorems.
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Theorem 2.1. Let k ≥ 1 and0 ≤ δ < 1/k. Let (sn) be a bounded sequence and suppose that
A = (anv) is a positive normal matrix such that

(2.5) an−1,v ≥ anv, for n ≥ v + 1,

(2.6) ano = 1, n = 0, 1, ...,

(2.7) ann = O(
pn

Pn

),

(2.8)
∞∑

n=v+1

(
Pn

pn

)δk|∆v(ânv)| = O{(Pv

pv

)δk−1}

and

(2.9)
∞∑

n=v+1

(
Pn

pn

)δk|ân,v+1| = O{(Pv

pv

)δk}.

If a sequence(λn) holds the following conditions,

(2.10)
∞∑

n=1

(
Pn

pn

)δk−1|λn|k < ∞

and

(2.11)
∞∑

n=1

(
Pn

pn

)δk|∆λn| < ∞,

then the series
∑

anλn is summable|A, pn; δ|k.

Theorem 2.2.Letk ≥ 1 and0 ≤ δ < 1/k. The summability|A, pn; δ|k of the series
∑

An(t)λn

at a point is a local property of the generating function if the conditions (2.5)-(2.11) are satis-
fied.

It may be remarked that, if we takeδ = 0 andanv = pv

Pn
in Theorem 2.1 and Theorem 2.2,

then we get Theorem 1.1 and Theorem 1.2, respectively.

3. PROOF OF THEOREM 2.1

Let (Tn) denotes A-transform of the series
∑

anλn. Then we have, by (2.3) and (2.4),

∆Tn =
n∑

v=0

ânvavλv.

Applying Abel’s transformation to this sum, we get that

∆Tn =
n−1∑
v=0

∆v(ânv)λvsv +
n−1∑
v=0

ân,v+1∆λvsv + annλnsn

= Tn(1) + Tn(2) + Tn(3), say.

Since

|Tn(1) + Tn(2) + Tn(3)|k ≤ 3k(|Tn(1)|k + |Tn(2)|k + |Tn(3)|k),
to complete the proof of Theorem 2.1, it is sufficient to show that

∞∑
n=1

(
Pn

pn

)δk+k−1|Tn(r)|k < ∞ for r = 1, 2, 3.
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Since(sn) is bounded, whenk > 1, applying Hölder’s inequality with indicesk andk
′
,

where1
k

+ 1
k′ = 1, we have that

m+1∑
n=1

(
Pn

pn

)δk+k−1|Tn(1)|k ≤
m+1∑
n=1

(
Pn

pn

)δk+k−1{
n−1∑
v=0

|∆v(ânv)||λv||sv|}k

= O(1)
m+1∑
n=1

(
Pn

pn

)δk+k−1{
n−1∑
v=0

|∆v(ânv)||λv|k} × {
n−1∑
v=0

|∆v(ânv)|}k−1.

Since

∆v(ânv) = ânv − ân,v+1

= anv − an−1,v − an,v+1 + an−1,v+1

= anv − an−1,v,

by using (2.5) and (2.6)

n−1∑
v=0

|∆v(ânv)| =
n−1∑
v=0

(an−1,v − anv) = 1− 1 + ann = ann,

we get

m+1∑
n=1

(
Pn

pn

)δk+k−1|Tn(1)|k = O(1)
m∑

v=0

|λv|k
m+1∑

n=v+1

(
Pn

pn

)δk|∆v(ânv)|

= O(1)
m∑

v=0

(
Pv

pv

)δk−1|λv|k

= O(1) as m →∞,

by virtue of the hypothesis of Theorem 2.1.
Again using Hölder’s inequality,

m+1∑
n=1

(
Pn

pn

)δk+k−1|Tn(2)|k ≤
m+1∑
n=1

(
Pn

pn

)δk+k−1{
n−1∑
v=0

|ân,v+1||∆λv||sv|}k

= O(1)
m+1∑
n=1

(
Pn

pn

)δk+k−1{
n−1∑
v=0

|ân,v+1||∆λv|} × {
n−1∑
v=0

|ân,v+1||∆λv|}k−1.
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Taking account of (2.5) and (2.6) we have, for1 ≤ v ≤ n− 1,

ân,v+1 = an,v+1 − an−1,v+1

=
n∑

i=v+1

ani −
n−1∑

i=v+1

an−1,i

= 1−
v∑

i=0

ani − 1 +
v∑

i=0

an−1,i

=
v∑

i=0

(an−1,i − ani)

≤
n−1∑
i=0

(an−1,i − ani)

= 1− 1 + ann = ann,

where

v∑
i=0

(an−1,i − ani) ≥ 0.

Thus,

m+1∑
n=1

(
Pn

pn

)δk+k−1|Tn(2)|k = O(1)
m∑

v=0

|∆λv|
m+1∑

n=v+1

(
Pn

pn

)δk|ân,v+1|

= O(1)
m∑

v=0

(
Pv

pv

)δk|∆λv| = O(1) as m →∞,

by virtue of the hypothesis of Theorem 2.1.
Finally, we have that

m∑
n=1

(
Pn

pn

)δk+k−1|Tn(3)|k = O(1)
m∑

n=1

(
Pn

pn

)δk−1|λn|k = O(1) as m →∞,

by virtue of the hypothesis of Theorem 2.1.
Therefore, we get that

m∑
n=1

(
Pn

pn

)δk+k−1|Tn(r)|k = O(1) as m →∞, for r = 1, 2, 3.

This completes the proof of Theorem 2.1.

4. PROOF OF THEOREM 2.2

Since the behaviour of the Fourier series for a particular value ofx, as far as convergence is
concerned, depends on the behaviour of the function in the immediate neighbourhood of this
point only, Theorem 2.2 is a necessary consequence of Theorem 2.1.
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