
The Australian Journal of Mathematical
Analysis and Applications

AJMAA

Volume 5, Issue 2, Article 16, pp. 1-8, 2009

A METHOD FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS

JAVAD SHOKRI

Received 16 February, 2008; accepted 24 November, 2008; published 8 June, 2009.

DEPARTMENT OFMATHEMATICS, URMIA UNIVERSITY, P.O.BOX 165, URMIA , IRAN

j.shokri@urmia.ac.ir

ABSTRACT. In this paper, we suggest and analyze a new two-step iterative method for solving
nonlinear equation systems using the combination of midpoint quadrature rule and Trapezoidal
quadrature rule. We prove that this method has quadratic convergence. Several examples are
given to illustrate the efficiency of the proposed method.
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1. I NTRODUCTION

In this paper we consider the problem of finding a real zero of a functionF : Ω ⊆ <n → <n,
that is, a real solutionα ∈ <n, of the nonlinear equation systemF (x) = 0, of n equations
with n unknown variables. This solution can be obtained as a fixed point of some function
G : <n → <n by means of the fixed point iteration method

xk+1 = G(xk), k = 0, 1, . . . ,

wherex0 is the initial estimation. The best known fixed point method is the classical Newton’s
method, given by

xk+1 = xk − F ′(xk)
−1F (xk), k = 0, 1, 2, . . . ,

whereF ′(xk) is the Jaccobian Matrix of the functionF evaluated inxk.

Definition 1.1. Let {xk}k>0 be a sequence in<n convergent toα. If there existsM , 0 <
M < 1, p = 1, 2, 3, · · · andk0 such that

‖xk+1 − α‖ 6 ‖xk − α‖p, k > k0.

Then, convergence is called (a) linear, ifp = 1. (b) quadratic, ifp = 2. (c) cubic, ifp = 3, and
so on.

In practice, because ofα is unknown, we analyze for eachp the behavior of the quotients

Tp =
‖xk+1 − xk‖
‖xk − xk−1‖

, k = 1, 2, 3, · · · ,

wherep = 1, 2, 3, · · · , which are called convergence rate or convergence order.
If p = 1 and the convergence rate toCL, 0 < CL < 1, is said that the sequence{xk}k>0 has

linear convergence toα.
If p = 2 and there exists aCC , CC > 0, such that the convergence rate eventually tends to

CC , the sequence{xk}k>0 is said to be quadratically convergence toα. Similarly if p = 3,
convergence order is said cubic(CCu) and so on.

In suggested method, we have an adjustment on the classic Newton’s method in order to
accelerate the convergence or to reduce the number of operations and evaluations in each step
of the iterative process. This method is based on the method which introduced by Noor [1]
to solve nonlinear equationf(x) = 0. We suggest and analyze this iterative method which
is obtained by using the combination of midpoint quadrature rule and Trapezoidal quadrature
rule to solve systems of nonlinear equations. By using of numerical results, we show that the
proposed method usually has high convergence order with respect to classical Newton’s method.

This method is an implicit-type method. To implement this, we use Newton’s method as
predictor method and then use suggested method as corrector method. Several examples are
given to illustrate the efficiency and advantage of this two-steep method. In Section 2, we
describe the iterative method from [1] to solve systemF (x) = 0. In Section 3, the quadratic
convergence of this method has been proved. The proposed algorithm is illustrated by some
examples in Section 4, and conclusion is in Section 5.

2. DESCRIPTION OF ITERATIVE METHOD

Consider the nonlinear equationf(x) = 0, we assume thatf(x) has a simple rootα and is
sufficiently differentiable function. Then

(2.1) f(x) = f(xn) +

∫ x

xn

f ′(t)dt.
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SOLVING SYSTEMS OFNONLINEAR EQUATIONS 3

By using the combination of midpoint quadrature rule and Trapezoidal rule, we have

(2.2)
∫ x

xn

f ′(t)dt =
x− xn

4

[
f ′(x) + 2f ′

(xn + x

2

)
+ f ′(xn)

]
.

From (2.1) and (2.2), one can write

(2.3) f(x) = f(xn) +
x− xn

4

[
f ′(x) + 2f ′

(xn + x

2

)
+ f ′(xn)

]
.

Sincef(x) = 0, so from (2.3), we have

0 = f(xn) +
x− xn

4

[
f ′(x) + 2f ′

(xn + x

2

)
+ f ′(xn)

]
,

which produces the following iteration scheme

(2.4) xn+1 = xn −
4f(xn)

f ′(xn) + 2f ′(xn+yn

2
) + f ′(yn)

,

where

yn = xn −
f(xn)

f ′(xn)
.

In the next Section we extend this method to solve a system of nonlinear equations.
It’s known that Newton’s iterative method for the nonlinear systemF (x) = 0 whereF : Ω ⊆

<n → <n is considered as
xn+1 = xn − F ′(xn)−1F (xn),

whereF ′(xn) is the Jacobian matrix in pointxn.
Then we can rewrite Eq. (2.4) to solveF (x) = 0, as following iteration scheme:

(2.5) xn+1 = xn − 4
[
F ′(xn) + 2F ′

(xn + yn

2

)
+ F ′(yn)

]−1

F (xn),

whereyn = xn − F ′(xn)−1F (xn). This method is called Midpoint – Trapezoidal Newton’s
method (MTN).

Two following technical lemmas are needed to solve convergence theorem, whose proof can
be found in [2] or [4].

Lemma 2.1. LetF : <n → <n be a differentiable function such that

‖F ′(u)− F ′(v)‖ 6 ‖u− v‖
for anyu, v ∈ Ω convex set. Then there existsγ > 0 such that for anyx, y ∈ Ω,

‖F (y)− F (x)− F ′(x)(y − x)‖ 6
γ

2
‖x− y‖2.

Lemma 2.2. (Banach) LetA ∈ L(<n) be nonsingular. IfE ∈ L(<n) and‖A−1‖.‖E‖ 6 1,
thenA + E is nonsingular and

‖(A + E)−1‖ 6
‖A−1‖

1− ‖A−1‖.‖E‖
.

The Ostrowiski’s Theorem in the following, is needed to convergence theorem.

Theorem 2.1. Let G : <n → <n is differentiable function inα, that is a solution of the
systemx = G(x). Let{xk+1}k≥0 be the sequence of iterates obtained by means of fixed point
iteration, xk+1 = G(xk), k = 0, 1, . . . . If the spectral radius ofG′(α) is lower than1, then
{xk}k>0 converges toα.

Proof. See the proof in [3].
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3. CONVERGENCE ANALYSIS

At the first we prove the following lemma needed to convergence theorem.

Lemma 3.1. Let F : <n → <n be a differentiable function inα, whereα is a solution of
the system of nonsingular equationsF (x) = 0. Let us suppose thatF ′(x) is continuous and
F ′(α)is nonsingular. Then the functions

G(x) = x− C(x)−1F (x),

whereC(x) = 1
4
[F ′(x) + 2F ′(z) + F ′(y)], y = x− F ′(x)−1F (x) andz = x+y

2
, is well-defined

in a neighborhood ofα, is differentiable and

G′(α) = I − F ′(α)−1F ′(α) = 0.

Proof. Firstly, let us prove thatC(x) is nonsingular for anyx in a neighborhood ofα. Let β be
β = ‖F ′(α)−1‖ andε be such that0 < ε < (2β)−1 is satisfied. By continuity ofF ′ in α there
exists aδ > 0 such that‖F ′(x)− F ′(α)‖ 6 ε if ‖x− α‖ 6 δ.
Now by the convergence of classical Newton’s method in [2] or [4], it can be assured that
‖y − α‖ 6 δ and‖z − α‖ 6 δ, then‖F ′(y)− F ′(α)‖ 6 ε and‖F ′(z)− F ′(α)‖ 6 ε.
Then by using lemma (2.2), Banach’s lemma, it is proved thatC(x) is nonsingular and

‖C(x)−1‖ = ‖[1
4
(F ′(x) + 2F ′(z) + F ′(y))]−1‖

= 4‖[(F ′(x)− F ′(α)) + 2(F ′(z)− F ′(α)) + (F ′(y)− F ′(α)) + 4F ′(α)]−1‖

6
4× 1

4
‖F ′(α)−1‖

1− ‖(4F ′(α))−1‖.‖(F ′(x)− F ′(α)) + 2(F ′(z)− F ′(α)) + (F ′(y)− F ′(α))‖

6
β

1− 1
4
β4ε

=
β

1− εβ
6 2β,

for ‖x − α‖ 6 δ. So, the functionG(x) is well-defined in the neighborhood ofα, S = {x :
‖x− α‖ 6 δ}.
Now, by differentiability ofF in α, it can be assumed thatδ is small enough to

‖F (x)− F (α)− F ′(α)(x− α)‖ 6 ε‖x− α‖, ∀x ∈ S.

Then, for anyx ∈ S,

‖G(x)−G(α)− (I − C(α)−1F ′(α))(x− α)‖
= ‖C(α)−1F ′(α)(x− α)− C(x)−1F (x)‖
6 ‖C(x)−1(F (x)− F (α)− F ′(α)(x− α))‖

+‖(C(x)−1(C(x)− C(α))(C(α)−1F ′(α)(x− α)‖
6 ‖C(x)−1‖.‖F (x)− F (α)− F ′(α)(x− α)‖

+‖C(x)−1‖.‖C(x)− C(α)‖.‖x− α‖
6 (2βε + 2βε)‖x− α‖,

As ε is arbitrary andβ is constant, then it can be concluded from the previous inequalities that
G is differentiable inα, and also

G′(α) = I − C(α)−1F ′(α) = I − F ′(α)−1F ′(α) = 0.

To complete of discussion, in the following, we bring the proof of the quadratic convergence
of (MTN) method.
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Theorem 3.1. Let F : <n → <n be differentiable at each point of an open neighborhoodΩ
of α ∈ <, that is a solution of the systemF (x) = 0. Let us suppose thatF ′(x) is continuous
and nonsingular inα. Then the sequence{xk}k>0 obtained using the iterative expression(2.5)
converges toα and

lim
k→∞

‖xk+1 − α‖
‖xk − α‖

= 0.

Moreover, if there existsγ > 0 such that

‖F ′(x)− F ′(α)‖ 6 γ‖x− α‖,

for anyx in D, then there exists a constantM > 0 such that

‖xk+1 − α‖ 6 M‖xk − α‖2, ∀k > k0,

wherek0 depends on the initial estimationx0.

Proof. From Lemma 3.1 we can assure that

G(x) = x− C(x)−1F (x),

whereC(x)−1 = 4[F ′(x)+2F ′(z)+F ′(y)]−1, y = x−F ′(x)−1F (x), z = x+y
2

, is well-defined
in a neighborhood ofα, is differentiable inα andG′(α) = I−F ′(α)−1F ′(α) = 0, and also that
‖C(x)−1‖ < 2β, whereβ = ‖F ′(α)−1‖.

If the sequence{xk}k>0 is obtained by means of fixed point iteration onG, using Theorem
2.1 it can be concluded that{xk}k>0 converges toα. Moreover, asG is differentiable inα,

lim
k→∞

‖G(xk)−G(α)−G′(α)(xk − α)‖
‖xk − α‖

= 0,

butG′(α) = 0, so this limit is equivalent to:

lim
k→∞

‖G(xk)−G(α)‖
‖xk − α‖

= lim
k→∞

‖xk+1 − α‖
‖xk − α‖

= 0.

Now, if ‖F ′(x)−F ′(α)‖ 6 γ‖x−α‖ for anyx in a neighborhood ofα, an analogous reasoning
to the one made in the proof of Lemma 2.2 allows us to assure that, for anyx in the neighborhood
of α and fromC(x) = 1

4
[F ′(x) + 2F ′(z) + F ′(y)], C(α) = F ′(α) in Lemma 3.1,

‖F (x)−F (α)−C(α)(x−α)‖ = ‖F (x)−F (α)−F ′(α)(x−α)‖ 6
1

2
γ‖x−α‖2.

So, by the convergence of classical Newton’s method‖F ′(y)− F ′(α)‖ 6 γ‖x− α‖, ‖F ′(z)−
F ′(α)‖ 6 γ‖x− α‖ and‖F ′(x)− F ′(α)‖ 6 γ‖x− α‖ for anyx in the neighborhood ofα , so
is obtained that,

‖C(x)− C(α)‖ = ‖1
4
(F ′(x) + 2F ′(z) + F ′(y))− F ′(α)‖

= 1
4
‖F ′(x) + 2F ′(z) + F ′(y)− 4F ′(α)‖

= 1
4
‖(F ′(x)− F ′(α)) + 2(F ′(z)− F ′(α)) + (F ′(y)− F ′(α))‖

6 1
4
(γ + 2γ + γ)‖x− α‖ = γ‖x− α‖

then is concluded that

‖G(x)−G(α)‖ = ‖x− C(x)−1F (x)− α‖
= ‖C(x)−1[F (x)− F (α)− C(α)(x− α)]− C(x)−1[C(x)− C(α)](x− α)‖
6 ‖C(x)−1[F (x)− F (α)− C(α)(x− α)]‖+ ‖C(x)−1[C(x)− C(α)](x− α)‖
6 ‖C(x)−1‖.‖F (x)− F (α)− C(α)(x− α)‖+ ‖C(x)−1‖.‖C(x)− C(α)‖.‖x− α‖
6 γβ‖x− α‖2 + 2γβ‖x− α‖2 = 3γβ‖x− α‖2,
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in a neighborhood ofα. Thus,

‖xk+1 − α‖ 6 M‖xk − α‖2,

is satisfied withM = 3γβ only if, for any initial approximationx0, ak0 is chosen such thatxk

remains in the neighborhood ofα for anyk from k0 on.

4. NUMERICAL EXAMPLES

In this section we will check the effectiveness of iterative method (2.5). These example
show the high order convergence of proposed method(MTN) respect to classical Newton’s
method(CN), numerically. All computations were done usingmathematica, stopping cri-
teria‖xn+1 − xn‖+ ‖F (xn)‖ < ε was used for computer programs. We useε < 10−14.

In the following examples, we have iterates converge to a limit of a solution of the system
of nonlinear equations. For MTN and CN, we analyze the number of iterations needed to
converge to the solution (k), the error estimation in the last step (‖xk+1 − xk‖) and the order of
convergence is deduced from the convergence rate

Tp =
‖xk+1 − xk‖
‖xk − xk−1‖p

p = 1, 2, 3.

Example 4.1.Consider the following system of nonlinear equations:

ex1ex2 + x1 cos(x2) = 0,
x1 + x2 − 1 = 0.

The initial approximation of the solution isx0 = (1, 3)T . Table 1 shows the values of the
solution.

Example 4.2.Consider a second example as follows:

ln(x2
1)− 2 ln(cos(x2)) = 0,

x1 tan( x1√
2

+ x2) =
√

2.

The initial approximation of the solution isx0 = (0.2, 0.2)T . Table 2 shows the iterative
approximations of solutions.

Example 4.3.A third example is as follows:

x2
1 + x2

2 = 1,
x2

1 − x2
2 = 1

2
.

The initial approximation of the solution isx0 = (0.2, 0.2)T . Table 3 shows the iterative
approximations of solutions.

Example 4.4.Consider the following system

x2
1 + x2

2 + x2
3 = 9,

x1.x2.x3 − 1 = 0,
x1 + x2 − x2

3 = 0.

Its initial approximation isx0 = (−2.5, 1, 1)T . Table 4 showsxis approximations.
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Example 4.5.The last example is taken as:

x2x3 + x4(x2 + x3) = 0,
x1x3 + x4(x1 + x3) = 0,
x1x2 + x4(x1 + x2) = 0,
x1x2 + x1x3 + x2x3 = 1.

We solve this system by using initial approximationx0 = (0.5, 0.5, 0.5, 0.2)T . Table 5 shows
the values of the solution.

Table 1
Approximations ofx1 andx2 for example 4.1.

Method Approximated solution k Error O.C.
MTN (−4.3816197548, 5.3816197548) 6 0 CCu

CN (−129.39710395, 130.3971039543) 208 1.38× 10−16 −

Table 2
Approximations ofx1 andx2 for example 4.2.

Method Approximated solution k Error O.C.
MTN (0.9548041416, 0.3017961773) 6 0 CCu

CN no convergence − − −

Table 3
Approximations ofx1 andx2 for example 4.3.

Method Approximated solution k Error O.C.
MTN (0.5, 0.8660254240) 5 1.11× 10−16 CCu

CN (0.5, 0.8660254240) 8 1.11× 10−16 CL

Table 4
Approximations ofxis for example 4.4.

Method Approximated solution k Error O.C.
MTN (−2.09029464, 2.14025812,−0.22352512) 5 0 CCu

CN (−2.09029464, 2.14025812,−0.22352512) 8 1.02× 10−16 CL

Table 5
Approximations ofxis for example 4.5.

Method Approximated solution k Error O.C.
MTN (0.57735020, 0.57735020, 0.57735020,−0.28867513) 4 0 CCu

CN (0.57735020, 0.57735020, 0.57735020,−0.28867513) 5 1.66× 10−16 CC

5. CONCLUSION

In this paper, we suggested numerical solving method for nonlinear equation systems. This method
is an implicit-type method. To implement this, we use Newton’s method as predictor method and then
use this method as corrector method. The method is discussed in detail. Several examples are given to
illustrate the efficiency and advantage of this two-steep method.
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