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ABSTRACT. In this paper, we suggest and analyze a new two-step iterative method for solving
nonlinear equation systems using the combination of midpoint quadrature rule and Trapezoidal
quadrature rule. We prove that this method has quadratic convergence. Several examples are
given to illustrate the efficiency of the proposed method.
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2 JAVAD SHOKRI

1. INTRODUCTION

In this paper we consider the problem of finding a real zero of a funétiofl C R — R",
that is, a real solutiom € R", of the nonlinear equation systef(xz) = 0, of n equations
with n unknown variables. This solution can be obtained as a fixed point of some function
G : ®" — R" by means of the fixed point iteration method

l‘k+1:G(£L'k), kZO,l,...,

wherez is the initial estimation. The best known fixed point method is the classical Newton’s
method, given by

Tppr = T — F'(vp) F(z1), k=0,1,2,...,
whereF”(x;) is the Jaccobian Matrix of the functidn evaluated incy.

Definition 1.1. Let {z4 },>0 be a sequence iiR" convergent tav. If there existsM/, 0 <
M<1,p=1,2,3,--- andkq such that

[zt — o < law —alf’, k= ko

Then, convergence is called (a) linearpit= 1. (b) quadratic, ifp = 2. (c) cubic, ifp = 3, and
So on.

In practice, because afis unknown, we analyze for eagithe behavior of the quotients

T, = Ik =2ell = 95
[k — 1]
wherep = 1,2, 3,--- , which are called convergence rate or convergence order.

If p = 1 and the convergence ratedg,, 0 < C, < 1, is said that the sequenée; },>, has
linear convergence ta.

If p = 2 and there exists &¢, Cc > 0, such that the convergence rate eventually tends to
Ce, the sequencéz; }r>o is said to be quadratically convergenceato Similarly if p = 3,
convergence order is said culii¢{,) and so on.

In suggested method, we have an adjustment on the classic Newton’s method in order to
accelerate the convergence or to reduce the number of operations and evaluations in each step
of the iterative process. This method is based on the method which introduced by Noor [1]
to solve nonlinear equatiofi(z) = 0. We suggest and analyze this iterative method which
is obtained by using the combination of midpoint quadrature rule and Trapezoidal quadrature
rule to solve systems of nonlinear equations. By using of numerical results, we show that the
proposed method usually has high convergence order with respect to classical Newton’s method.

This method is an implicit-type method. To implement this, we use Newton’s method as
predictor method and then use suggested method as corrector method. Several examples are
given to illustrate the efficiency and advantage of this two-steep method. In Seftion 2, we
describe the iterative method from [1] to solve systgir) = 0. In Sectior{ B, the quadratic
convergence of this method has been proved. The proposed algorithm is illustrated by some
examples in Sectidn 4, and conclusion is in Sedtion 5.

Y

2. DESCRIPTION OF ITERATIVE METHOD

Consider the nonlinear equatigiiz) = 0, we assume thaft(z) has a simple root: and is
sufficiently differentiable function. Then

(2.1) @)= 1)+ | "
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By using the combination of midpoint quadrature rule and Trapezoidal rule, we have

2.2 [ =t ) 2 () 4 )]
From (2.1) and[(2]2), one can write
(23) 1@) = ) + 2 [P+ 20 () o+ )
Sincef(z) = 0, so from [2.B), we have

0= foa) + =2 [P @) 20 (P20 + )]
which produces the following iteration scheme

4f(wn)

24 ntl = Tp — ,
@9 T I ) 2 () + )
where

N (25
" ! f'(zn)
In the next Section we extend this method to solve a system of nonlinear equations.
It's known that Newton'’s iterative method for the nonlinear systéfm) = 0 whereF : (2 C
R™ — R™ is considered as

Tp+1 = Tp — F,<xn)_1F($n)7
whereF’(x,,) is the Jacobian matrix in point, .
Then we can rewrite Eq| (3.4) to sol¥&z) = 0, as following iteration scheme:

(2.5) Tyl = Ty — 4[F'($n) + 2F'<%T+yn> + F'(yn)] 71F(wn),

wherey, = x, — F'(x,) ' F(z,). This method is called Midpoint — Trapezoidal Newton’s
method (MTN).
Two following technical lemmas are needed to solve convergence theorem, whose proof can
be found in[[2] or[4].
Lemma 2.1. Let F' : R — R" be a differentiable function such that
1F' (u) = F'(0)]] < [lu— v
for anyu, v € €2 convex set. Then there exists> 0 such that for any:, y € €,
v
1F(y) = F(z) = F'(2)(y — )| < 5llz =yl
Lemma 2.2. (Banach) Letd € L(R") be nonsingular. Iff € L(®") and ||[A7|.]|E| < 1,
thenA + FE is nonsingular and
A
1— AL ]l
The Ostrowiski’'s Theorem in the following, is needed to convergence theorem.

I(A+E)71 <

Theorem 2.1.Let G : R* — R" is differentiable function iny, that is a solution of the
systemz = G(z). Let{zx41}r>0 be the sequence of iterates obtained by means of fixed point
iteration, x.1 = G(xx),k = 0,1,.... If the spectral radius ofy’(«) is lower than1, then
{zx }x>0 CcOnverges ta.

Proof. See the proof in[3]s
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3. CONVERGENCE ANALYSIS
At the first we prove the following lemma needed to convergence theorem.

Lemma 3.1. Let /' : " — R" be a differentiable function i, where« is a solution of
the system of nonsingular equatiofA$x) = 0. Let us suppose thdt’(x) is continuous and
F’(a)is nonsingular. Then the functions

G(z) =2 — C(x) 'F(x),

whereC(z) = 2[F'(z) + 2F'(z) + F'(y)], y =  — F'(z) ' F(z) andz = =}¥, is well-defined
in a neighborhood ofy, is differentiable and

G'(a)=1-F'(a)'F'(a) =0.

Proof. Firstly, let us prove thaf’(x) is nonsingular for any in a neighborhood of. Let 5 be

B = ||F'(a)~!]] ande be such thab < e < (23)~! is satisfied. By continuity of” in « there
exists & > 0 such that| F'(z) — F'(«o)| < eif ||z — «of < 0.

Now by the convergence of classical Newton’s method_in [2]_6r [4], it can be assured that
ly — ol < dand|z - of| <4, then|[F'(y) — F'(a)|| < e and|| F'(z) — F'(a)| < .

Then by using lemma (2.2), Banach’s lemma, it is proved @Hat) is nonsingular and

IC@) 7 = II&(F’(SC)+2F’(Z)+F’(y))]‘1||
= A[(F'(z) = F'()) + 2(F'(2) = F'(a)) + (F'(y) = F'(a)) + 4F"(a)] |
< 4 % 3| F" (o)~
T L= l(AF (@) HLNE (@) = () +2(F/(2) = F/(@) + (F'(y) — F'())]
g g

~

- < 28,
1—1p4e  1-¢p b

for ||z — af| < §. So, the functiorG(z) is well-defined in the neighborhood of S = {x :
o — all < 6}, o
Now, by differentiability of £ in «, it can be assumed thais small enough to

|F(z) — F(a) — F'(a)(x —a)|| < €|z —al|, Vzes.
Then, for anyz € S,

1G(2) = G(a) — (I = Cla) " F'())(z — o)
= [|C(e) ™ F' (@) (x — a) = C(a) " F(z)]]
< ||C((:c)1(1~;(a;) — F(a) — F(a)(z — a))|]
I

< HC(m)‘lHl- F(z) = Fa) — F'(a)(z — o
+[|C(2) |- IC(z) = Cla)] [l —
< (28 + 20€) ||z — o,
As ¢ is arbitrary and3 is constant, then it can be concluded from the previous inequalities that
G is differentiable in, and also
G'(a)=1—-Ca)'F'(a)=1—-F'(a)'F'(a) =0.

|
To complete of discussion, in the following, we bring the proof of the quadratic convergence

of (MTN) method.
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Theorem 3.1.Let F : ™ — R" be differentiable at each point of an open neighborhéod
of o € R, that is a solution of the system(z) = 0. Let us suppose that’(z) is continuous
and nonsingular inv. Then the sequende: } >, obtained using the iterative expressigih?))
converges tev and

i N2 = o]
m ——-——

=0.

Moreover, if there exists > 0 such that
1F(z) = F'(a)l| < vz = all,
for anyx in D, then there exists a constaht > 0 such that
lzker — all < Mz = al®, Yk > ko,
wherek, depends on the initial estimatiaf.

Proof. From Lemma 31 we can assure that
G(z) =2 —C(z) ' F(x),

whereC'(z)™t = 4[F'(z) +2F'(2)+ F'(y)] ", y =2 — F'(x) "' F(2), 2 = % is well-defined
in a neighborhood aof;, is differentiable im andG’(«) = I — F'(a) ' F'(a) = 0, and also that
|C ()71 < 28, wheres = || F'(a)~"]|.

If the sequencéz; },>o is obtained by means of fixed point iteration 6 using Theorem
it can be concluded thét; } >, converges tav. Moreover, as+ is differentiable inx,

|G () — Gle) = G'(a)(zx — )|

hm - 07
oo ]

butG’(a)) = 0, so this limit is equivalent to:
po 160 — Gl _ e —al _

Now, if ||F'(z) — F'(«)|| < 7|z — «f| for anyz in a neighborhood aof, an analogous reasoning
to the one made in the proof of Lemina]2.2 allows us to assure that fariarige neighborhood
of a and fromC (z) = [F'(z) 4+ 2F'(z) + F'(y)], C(a) = )in Lemma._

1F ()= F(a)=C(a)(z—a)|| = | F(z)=F(a)=F(a)(z—a)| < 1’7H$—04”2-

So, by the convergence of classical Newton’s methbtly) — F" ()| < v[lz — af|, [ F'(z )
F(a)]| <~z —alland[|F'(z) — F'(a)|| <
is obtained that,

1C(z) = Cl)] =

(F'(z) +2F"(2) + F'(y)) — F'(a) ||
Fl(z) +2F'(2) + F'(y) — 4F' (o) ||
(F'(x) — F'(a)) + 2(F'(2) — F'(@)) + (F'(y) — F'(a))]]
(v + 27y + Wz —al =7z — o
then is concluded that
1G(x) — G(a)|| = |lz — C(z) "' F(x) — o
= |C(z)"'[F(2) — F(a) = Cla)(z — )] = C(z)'[C(x) — C(a)](z — o)
< C(x) 7 [F(x) — F(a) — Cla)(z — Q)| + [|C(x)HC(z) — Cla)|(z — o)
<NC () IF(z) = F(a) = Cla)(z — a)|| + [C(z) M |C(z) — C(a)|.[|lz — o
<Bllx — all? + 298]z — af® = 3yB|lz — al?,

£
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in a neighborhood ofi. Thus,
ki1 — ol < Mz — o],

is satisfied with\/ = 3~ only if, for any initial approximation,, ak, is chosen such that,
remains in the neighborhood affor any k& from &y on. g

4. NUMERICAL EXAMPLES

In this section we will check the effectiveness of iterative metfiod (2.5). These example
show the high order convergence of proposed method(MTN) respect to classical Newton’s
method(CN), numerically. All computations were done usingthematica, stopping cri-
terial|z, 1 — z,|| + ||F(2,)|| < e was used for computer programs. We gse 10714,

In the following examples, we have iterates converge to a limit of a solution of the system
of nonlinear equations. For MTN and CN, we analyze the number of iterations needed to
converge to the solution (k), the error estimation in the last step,( — z||) and the order of
convergence is deduced from the convergence rate

[rr1 — x|

7, = M T g o3
P ek =zl

Example 4.1. Consider the following system of nonlinear equations:

e"1e™ + xq cos(xg) = 0,
T1+ Tog — 1=0.

The initial approximation of the solution is, = (1,3)”. Table 1 shows the values of the
solution.

Example 4.2. Consider a second example as follows:

In(z%) — 21n(cos(zz)) = 0,
1 taun(\”/—l§ + 1) = V2.

The initial approximation of the solution is, = (0.2,0.2)7. Table 2 shows the iterative
approximations of solutions.

Example 4.3. A third example is as follows:

2 2 _
x1+$2_117
2 2 _

The initial approximation of the solution is, = (0.2,0.2)". Table 3 shows the iterative
approximations of solutions.

Example 4.4. Consider the following system

24+ 13422 =09,
T1.09.X3 — 1= 0,
T+ X2 —[E% =0.

Its initial approximation iscy = (—2.5,1,1). Table 4 shows;s approximations.
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Example 4.5. The last example is taken as:

Tolsy + 1'4(1'2 + 1'3) = O,
r1T3 + 564(171 + xg) = O,
T1To + JI4(ZL’1 + 132) = 0,
T1To + T1X3 + Tokz = 1.

We solve this system by using initial approximatian= (0.5,0.5,0.5,0.2)7. Table 5 shows
the values of the solution.

Table 1
Approximations ofz; andz, for example 4.1.
Method Approzximated solution k Error 0.C.
MTN (—4.3816197548,5.3816197548) 6 0 Ccu
CN (—129.39710395, 130.3971039543) 208 1.38 x 10716
Table 2
Approximations ofr; andx, for example 4.2.
Method Approximated solution k Error 0.C.
MTN (0.9548041416,0.3017961773) 6 0 Cou
CN no convergence — — —

Table 3
Approximations ofz; andz, for example 4.3.
Method Approzimated solution k Error 0.C.
MTN (0.5,0.8660254240) 5 111x1071° (g,
CN (0.5,0.8660254240) 8 1.11x10716 CL
Table 4
Approximations ofr;s for example 4.4.
Method Approximated solution k Error 0.C.
MTN (—2.09029464, 2.14025812, —0.22352512) 5 0 Cou
CN (—2.09029464, 2.14025812, —0.22352512) 8 1.02 x 10716 Cr
Table 5
Approximations ofz;s for example 4.5.
Method Approximated solution k Error 0.C.
MTN (0.57735020, 0.57735020, 0.57735020, —0.28867513) 4 0 Cou
CN (0.57735020, 0.57735020, 0.57735020, —0.28367513) 5 1.66 x 10716 Co

5. CONCLUSION
In this paper, we suggested numerical solving method for nonlinear equation systems. This method
is an implicit-type method. To implement this, we use Newton’s method as predictor method and then
use this method as corrector method. The method is discussed in detail. Several examples are given to
illustrate the efficiency and advantage of this two-steep method.
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