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2 MOHEDDINE IMSATFIA

1. I NTRODUCTION

Cartan’s method to state the equivalence problem devolopped by Elie Cartan in the years
1905-1910 and more recently in [12, 10], is a crucial tool. Hence, In their work, R. Bryant, D.
Grossman and P. Griffiths in the years 1997-1998 [13] clarified the strategy of Cartan. Locally,
the application of Cartan’s method to study the equivalence problem to classify Monge-Ampère
equations [14, 1] in two variables leads to three non-zero orbits: a negative space, a null space
and a positive space, which correspond respectively to three types of Monge-Ampère equations:
hyperbolic, parabolic and elliptic equations. The general classification problems for symplectic
Monge-Ampère equations were studied by Lychagin, Roubtsov [2, 7, 8], Kruglikov [6], A. G.
Kushner [3, 5] and others: they showed that to any differential 2-formω in the manifold of
1-jets of functions on a 2-dimensional smooth manifoldM, J1M, we can associate a Monge-
Ampère equationEω which is entirely determined by the sign of the Pfaffian function Pf(ω) at
each point ofD ⊂ J1M. In [13], R. Bryant, D. Grossman and P. Griffiths applied the equiva-
lence method to classify Monge-Ampère equations of hyperbolic type: Given a 5-dimensional
contact manifold(M, I), they applied this method to some Monge-Ampère systemε, locally
algebraically generated as

ε = {θ, dθ,Ψ},
for θ ∈ Γ(I) whereθ is non zero contact form generatingI, Γ(I) being the module generated
by contact formI, andΨ is a 2-form inΩ2(M).

Our aim is to apply the equivalence method to classify Monge-Ampère equations of elliptic
type. We determined the necessary and sufficient conditions for an elliptic Monge-Ampère sys-
tem to be locally equivalent to the Monge-Ampère system of the linear homogeneous Laplace
equations and the necessary and sufficient conditions when it is locally equivalent to an Euler-
Lagrange system. A work of A. Kushner - V. Lychagin and V. Roubtsov in [9, 4] contain results
on equivalence of Monge-Ampère equation to homogeneous Laplace equation. Those results
are formulated in terms of the number of coefficients in the Monge-Ampère equation and can
be explicity verified with just finite number of usual algebraic operations and Partial Differenti-
ations.

2. M ONGE-AMPÈRE EQUATIONS

LetM be a 2-dimensional smooth manifold and letJ1M be the manifold of 1-jet of smooth
function onM given in [7] by

J1M := {(a, L) | a ∈M× R, L ∈ Ta(M× R) dimL = 2, L is plane}.
For all smooth functionu ∈ C∞(U) with U ⊂ M, we associate the graph ofu by Σ :=
j1u(U) ⊂ J1M with

j1u : U → J1M.

Denotea = (x1, x2, z) andL = (p1, p2) with x1, x2 are the local coordinates onM. We have
z ◦ (j1(u)) = u and for1 ≤ a ≤ 2, pa ◦ (j1(u)) = ∂u

∂xa , then

Σ :=

{(
x = (x1, x2), u(x),

∂u

∂x1
,
∂u

∂x2

)
, x ∈M

}
,

is a smooth submanifold ofJ1M which is endowed with a natural contact structure given by
the 1-form not closedθ

θ = dz − p1dx
1 − p2dx

2.

If Ψ is a two form overJ1M, then

Ψ = Ψp1p2dp1 ∧ dp2 + Ψp1x2dp1 ∧ dx2 + Ψp2x2dp2 ∧ dx2 + Ψp1x1dp1 ∧ dx1
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+Ψp2x1dp2 ∧ dx1 + Ψx1x2dx1 ∧ dx2 mod(θ).

A Monge-Ampère equations read Ψ|Σ = 0,
θ|Σ = 0 (⇒ dθ|Σ = 0),
dx1 ∧ dx2|Σ 6= 0,

Along of Σ, we have

Ψp1p2

[
∂2u

(∂x1)2

∂2u

(∂x2)2
−

(
∂2u

∂x1∂x2

)2
]

+ Ψp1x2

∂2u

(∂x1)2
+ Ψp2x1

∂2u

(∂x2)2

+(Ψp1x1 + Ψp2x2)
∂2u

∂x1∂x2
+ Ψx1x2

(
xa, u(x),

∂u

∂xa

)
= 0.

AssumingΨp1x1 = Ψp2x2, a classical Monge-Ampère equation has the following form

(2.1) Aux1x1 + 2BAux1x2 + Cux2x2 +D(ux1x1ux2x2 − ux1x2) + E = 0;

whereA, B, C, D andE are a functions of independant variablesx1 andx2, an unknown
functionu = u(x1, x2) := z and its first partial derivativesux1 := p andux2 := q. It’s known
that the left-hand side of Monge-Ampère equation (2.1) corresponds to the differential 2-form

Adx1 ∧ dx2 +Bdp ∧ dx2 + C(dx1 ∧ dp+ dq ∧ dx2) +Ddx1 ∧ dq + Edp ∧ dq.

Definition 2.1. [13] For a contact manifold(M, I) with LagrangianΛ ∈ Ωn(M), the unique
form Π := θ ∧Ψ is calledPoincaré-Cartan formof Λ, or equivalently,Π ≡ 0 mod(I).

Definition 2.2. The Euler-Lagrange system of the LagrangianΛ is the differential ideal gener-
ated algebraically as

εΛ = {θ, dθ,Ψ} ∈ Ω∗(M).

A Monge-Ampère system locally generated by, ε = {θ, dθ,Ψ}, the generatorΨ may be
uniquely chosen modulo{I} and modulo multiplication by functions. By the condition of
primitivity 1 we assume

dθ ∧Ψ = 0 mod(θ).

Hence, locally, Monge-Ampère equations read θ ∈ Ω1(M) andΨ ∈ Ω2(M),
Ψ ∧ dθ = 0 mod(θ),
θ ∧ dθ ∧ dθ 6= 0.

Theorem 2.3.A Monge-Ampère systemε = {θ, dθ,Ψ} on a2n+ 1-dimensional contact man-
ifold (M, I) whereΨ is assumed to be primitive modulo{I} is locally equivalent to an Euler-
Lagrange systemεΛ if and only if it satisfies

dΠ := d(θ ∧Ψ) = ϕ ∧ Π,

with dϕ ≡ 0 mod{θ, dθ}.

Proof. See [13] page 16-19.

Remark 2.4. Along Σ, Euler-Lagrange equations of the action
∫

Σ
Λ, whereθ|Σ = 0, are given

by:
∂L

∂z
− d

dxı

(
∂L

∂pı

)
= 0.

1This primitivity form is non-zero every where, locallyΨx /∈ {θ, dθ}x. The explaination is in [13] page 18.
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4 MOHEDDINE IMSATFIA

Theorem 2.5. (Darboux) Let(Ω1,M1) and (Ω2,M2) be symplectic manifolds of the same
dimension. Then for any pointsa ∈ M1 andb ∈ M2 there are a neighborhoodsO1 3 a and
O2 3 b and a diffeomorphismϕ : O1 → O2 such thatϕ(a) = b andϕ∗(O2) = O1 in O1.

Corollary 2.6. [9]. Let (Ω,M) be a2n-dimensional symplectic manifold. Then for point
a ∈ M there are local canonical coordinates(q1, ..., qn, p1, ..., pn) suth thatqı(a) = pı(a) = 0
for ı = 1, ..., n andΩ has the following canonical form:

Ω =
n∑

ı=1

dqı ∧ dpı.

3. EQUIVALENCE PROBLEM

In this section, We apply locally the equivalence problem to classify the Monge-Ampère
systemε = (M, θ,Ψ) satisfying{

θ ∧ dθ ∧ dθ 6= 0,
Ψ ∧ dθ = 0 mod(θ),

by comparing it with another system̃ε = (M̃, θ̃, Ψ̃), by looking at a local diffeomorphism
ϕ :M→ M̃ such that {

ϕ∗θ̃ = θ,

ϕ∗Ψ̃ = Ψ.

3.1. Preliminaries. Let η0 = αθ 6= 0, for some smooth functionα 6= 0. Denote by mod(I)
up to a differential form contained in the differential ideal generated byI. Locally, by Darboux
theorem, we can find 1-formsη0, η1, η2, η3, η4 such that

(3.1) dη0 = η1 ∧ η2 + η3 ∧ η4 mod(I).

There exist functionsbı such thatΨ = 1
2
bıη

ı ∧ η, and sinceΨ ∧ dη0 = 0 mod(θ), then

b12 + b34 = 0.

We will study the conditions imposed byη = (η0, η1, η2, η3, η4) such that (3.1) be checked. So
there are three non-zero orbits which we call: negative space, null space and positive space.

(1) If Ψ ∧Ψ is a negative multiple ofdη0 ∧ dη0, then the local coframingη may be chosen
so that in addition of (3.1),

Ψ = η1 ∧ η2 − η3 ∧ η4 mod(θ),

for a classical variational problem, this occurs when the Euler-Lagrange PDE is hyper-
bolic.

(2) If Ψ ∧Ψ = 0, thenη may be chosen so that

Ψ = η1 ∧ η3 mod(θ),

for a classical variational problem, this occurs when the Monge-Ampère PDE is para-
bolic.

(3) If Ψ ∧ Ψ is a positive multiple ofdη0 ∧ dη0, then the local coframingη may be chosen
so that in addition of (3.1),

Ψ = η1 ∧ η4 − η3 ∧ η2 mod(θ),

for a classical variational problem, this occurs when the Monge-Ampère PDE is elliptic.
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In the following we will study the elliptic case, we look at the following system

(3.2)

 η0 = αθ 6= 0
dη0 = η1 ∧ η2 + η3 ∧ η4 mod(θ),
Ψ = η1 ∧ η4 − η3 ∧ η2 mod(θ).

3.2. An algebra preliminary. Forω := (ω1, ω2, ω3, ω4) ∈ (R4)∗, assuming thatω1∧ω2∧
ω3 ∧ ω4 6= 0, we consider the symmetric non-degenerate function

〈., .〉 : Λ2(R4)∗ × Λ2(R4)∗ −→ R,

( α , β ) 7−→ 〈α, β〉 :=
α ∧ β

ω1 ∧ ω2 ∧ ω3 ∧ ω4
.

The Lie algebraSL(4,R) acts onΛ2(R4)∗ ' R6 through the action∀ g ∈ SL(4,R)

qg : Λ2(R4)∗ −→ Λ2(R4)∗,

α 7−→ qg(α) := g∗α,

qg is a quadratic form ing and we have

〈qg(α), qg(β)〉 = 〈g∗α, g∗β〉 = 〈α, β〉.
We want to representSL(4,R) =Sp(R3,3) :=Sp(3, 3)1 onR6. LetG := SO(Λ2(R4)∗, 〈., .〉) ⊂
GL(6,R). Denote

Φ : SL(4,R) −→ G,

g 7−→ qg.

A basis(α1
L, α

2
L, α

3
L, α

1
R, α

2
R, α

3
R) of Λ2(R4)∗ given by

α1
L = ω1 ∧ ω2 + ω3 ∧ ω4,
α2

L = ω1 ∧ ω3 + ω4 ∧ ω2,
α3

L = ω1 ∧ ω4 + ω2 ∧ ω3,
α1

R = ω1 ∧ ω2 − ω3 ∧ ω4,
α2

R = ω1 ∧ ω3 − ω4 ∧ ω2,
α3

R = ω1 ∧ ω4 − ω2 ∧ ω3,

we have∀a, b ∈ {1, 2, 3}
〈αa

L, α
b
L〉 = 2δa

b , 〈αa
R, α

b
R〉 = −2δa

b and〈αa
L, α

b
R〉 = 0.

The signature ofΦ is (3, 3) andSO(Λ2(R4)∗, 〈., .〉) ⊂ SL(4,R) and we know that
dimSL(4,R) =dimSO(Λ2(R4)∗, 〈., .〉) = 15, then

G = Spin(3, 3).

The first step of the equivalence method is to find a groupG preserves (3.2), we define

G = Gellip = {g ∈ SL(4,R), g∗α1
L = α1

L; g∗α3
L = α3

L}.
For all ξ in the Lie algebragellip := g, we haveξ = (ξı

)1≤ı,≤4 ∈ M(4,R) trξ = 0, and
moreover, forLξ ∈ G we haveLξ = I + ξ + ◦(ξ), then

(3.3)

{
ξ ∈M(4,R), trξ = 0,
ξ∗α1

L = 0; ξ∗α3
L = 0,

which gives  ξ1
1 + ξ2

2 + ξ3
3 + ξ4

4 = 0,
ξ1

aω
a ∧ ω2 + ξ2

aω
1 ∧ ωa + ξ3

aω
a ∧ ω4 + ξ4

aω
3 ∧ ωa = 0,

ξ1
aω

a ∧ ω4 + ξ4
aω

1 ∧ ωa + ξ2
aω

a ∧ ω3 + ξ3
aω

2 ∧ ωa = 0,

1“Spin” is a notation used by physicists. (Spin(1, 3) = SL(2, C)).

AJMAA, Vol. 11, No. 1, Art. 12, pp. 1-13, 2014 AJMAA

http://ajmaa.org


6 MOHEDDINE IMSATFIA

then there exista, b, c, d, e, f ∈ R and a basisξ1, ξ2, ξ3, ξ4, ξ5, ξ6 of g such as

ξ = aξ1 + bξ2 + cξ3 + dξ4 + eξ5 + fξ6,

with

ξ1 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ξ2 =


0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0

 ξ3 =


0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0



ξ4 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 ξ5 =


0 0 0 0
−1 0 0 0
0 0 0 0
0 0 1 0

 ξ6 =


0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0

 ,

Denote theR-linear map by

Φ : g −→ sl(2,C),

X, Y 7−→ Φ([X, Y ]) = [Φ(X),Φ(Y )].

A basis ofsl(2,C) is (h0, e0, f0, h1, e1, f1) is of the form

h0 =

(
1 0
0 −1

)
e0 =

(
0 0
1 0

)
f0 =

(
0 1
0 0

)
h1 =

(
i 0
0 −i

)
e1 =

(
0 0
i 0

)
f1 =

(
0 i
0 0

)
such that

[h0, h1] = [e0, e1] = [f0, f1] = 0, [ha, eb] = −2ia+be0,

[ha, fb] = −2ia+bf0 and[ea, fb] = −ia+bh0.

We have this correspondence
ξ1 ←→ h0,

ξ2 ←→ e0,

ξ3 ←→ f1,

ξ4 ←→ h1,

ξ5 ←→ e1,

ξ6 ←→ f0,

then this showed the lemma

Lemma 3.1. TheR-linear mapΦ : g −→ sl(2,C) is a homomorphism of Lie algebra.

Denote the real-linear isomorphism

T : R4 −→ C2

X =


x1

x2

x3

x4

 7−→ (
x3 + ix1

x2 + ix4

)
,

we can show that∀ 1 ≤ ı ≤ 6
T (ξıX) = Φ(ξı)T (X),

Then we can continious to work in the 2-dimensional complex.
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3.3. Back to the equivalence problem. In this part, we will apply directly the equivalence
problem for the Monge-Ampère system of elliptic type on contact manifold of dimension 5.
We will give criteria in terms of the differential invariants thus obtained for a given system to
be locally equivlent to the system associated to the linear homogeneous Laplace equation or
to an Euler Lagrange system. On the contact manifoldM, one can locally find a coframing
ω = g−1η whereη satisfied 3.2 andg ∈ g the Lie Algebra defined ine the previous part. The
exterior derivative of this equation is

(3.4) dω = g−1dg ∧ ω + g−1dη.

Definition 3.2. Let G ∈ Gl(n,C) be a subgroup andB ∼= M× G. A G-structureB → M
is a principal subbundle of the coframe bundleF(M) → M, having structure groupG. A
pseudo-connection in theG-structure is ag-valued 1-form onB whose restriction to the fiber
tangent spacesVb ⊂ TbB equals the identificationVb

∼= g induced by the rightG-action onB.

Introducing any pseudo-connectionϕ ∈ Ω1(B)⊗ g satisfies the fundamental formula for the
equivalence method given by

dω = −ϕ ∧ ω + τ ,

whereτ ∈ Ω2(B) is the torsion of the pseudo-connectionϕ. A consequence of (3.4), for
0 ≤ ı, , k ≤ 4 we have

ϕ = −g−1dg andτ = g−1dη =
1

2
T ı

kω
 ∧ ωk.

Denote byπ the vector valued 1-forms such that,ω = Pπ, whereP ∈M(5,C) for
π0 = ω0,
π1 = ω3 + iω1,
π2 = ω2 + iω4,
π̄1 = ω3 − iω1,
π̄2 = ω2 − iω4,

then

(3.5) dπ = −ψ ∧ π + P−1τ ,

whereψ = P−1ϕP . Consider∀M\ = (aı
)1≤ı,≤4 ∈ g, we noteM ∈M(5,C) by

M =

(
a0

0 0
0 M\

)
,

if M\ = (aı
)1≤ı,≤4 ∈ g, then

P−1MP =


a0

0 0 0 0 0
0 a1

1 + ia1
3 a1

4 + ia1
2 0 0

0 a2
3 − ia2

1 a2
2 − ia2

4 0 0
0 0 0 a3

3 + ia3
1 a3

2 + ia3
4

0 0 0 a4
1 − ia4

3 a4
4 − ia4

2

 .

Proposition 3.3. Let (M5, ε) an elliptic Monge-Ampère system. An adapted coframe is the
sections ofG−structure onM, whereG is the smallest subgroup generated by all matrices of
size (1,2,2) of the form

(3.6)

 a0
0 0 0
C A 0
C̄ 0 Ā

 ,

whereA ∈sl(2,C) and detA = a0
0 6= 0.
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8 MOHEDDINE IMSATFIA

Proof. The sections ofG−structure adapted (3.2) are of the form (3.6).

The second step of equivalence problem is “Calculation of the structure equations”, we have
ψ = P−1ϕP , thus it is of the form

(3.7) ψ =


ψ0

0 0 0 0 0
ψ1

0 ψ1
1 ψ1

2 0 0
ψ2

0 ψ2
1 ψ2

2 0 0

ψ̄
1
0 0 0 ψ̄

1
1 ψ̄

1
2

ψ̄
2
0 0 0 ψ̄

2
1 ψ̄

2
2

 ,

whereψ1
1 + ψ2

2 = ψ̄
1
1 + ψ̄

2
2 = ψ0

0 .

We assumeP−1τ :=


τ 0

τ 1

τ 2

τ̄ 1

τ̄ 2

, where

τ 0 := dπ0 + ψ0
0 ∧ π0 =

i

2
(π̄1 ∧ π̄2 − π1 ∧ π2),

and forı = 1, 2, 3, 4, we assume

τ ı = T ı
12π

1 ∧ π2 + T ı
11̄π

1 ∧ π̄1 + T ı
12̄π

1 ∧ π̄2 + T ı
21̄π

2 ∧ π̄1 + T ı
22̄π

2 ∧ π̄2 + T ı
1̄2̄π̄

1 ∧ π̄2

+T ı
01π

0 ∧ π1 + T ı
02π

0 ∧ π2 + T ı
01̄π

0 ∧ π̄1 + T ı
02̄π

0 ∧ π̄2.

This produces the structure equations

(3.8)


dπ0 = −ψ0

0 ∧ π0 + i
2
(π̄1 ∧ π̄2 − π1 ∧ π2),

dπ1 = −ψ1
0 ∧ π0 − ψ1

1 ∧ π1 − ψ1
2 ∧ π2 + τ 1,

dπ2 = −ψ2
0 ∧ π0 − ψ2

1 ∧ π1 − ψ2
2 ∧ π2 + τ 2,

dπ̄1 = −ψ̄1
0 ∧ π0 − ψ̄1

1 ∧ π̄1 − ψ̄1
2 ∧ π̄2 + τ̄ 1,

dπ̄2 = −ψ̄2
0 ∧ π0 − ψ̄2

1 ∧ π̄1 − ψ̄2
2 ∧ π̄2 + τ̄ 2,

Now we go to the next step which allows us to absorb the maximum of torsion in (3.8)
respectingψ1

1 + ψ2
2 = ψ̄

1
1 + ψ̄

2
2 = ψ0

0. First, by change the formψı
0 ← ψı

0 − T ı
0∗π

∗ we can
consider1.

T ı
0∗ = 0.

By a change ofψ1
2 andψ2

1, we can write

T 1
21̄ = T 1

22̄ = T 1
12 = T 2

11̄ = T 2
12̄ = T 2

12 = 0,

Respectingψ1
1 + ψ2

2 = ψ̄
1
1 + ψ̄

2
2 = ψ0

0, we can write

T 1
11̄ = T 2

21̄ = V1 andT 2
22̄ = T 1

12̄ = V2,

thus (3.8) becomes

(3.9)


dπ0 = −ψ0

0 ∧ π0 + i
2
(π̄1 ∧ π̄2 − π1 ∧ π2),

dπ1 = −ψ1
0 ∧ π0 − ψ1

1 ∧ π1 − ψ1
2 ∧ π2 + V1π

1 ∧ π̄1 + V2π
1 ∧ π̄2 + U1π̄

1 ∧ π̄2,
dπ2 = −ψ2

0 ∧ π0 − ψ2
1 ∧ π1 − ψ2

2 ∧ π2 + V1π
2 ∧ π̄1 + V2π

2 ∧ π̄2 + U2π̄
1 ∧ π̄2,

dπ̄1 = −ψ̄1
0 ∧ π0 − ψ̄1

1 ∧ π̄1 − ψ̄1
2 ∧ π̄2 + V̄1π̄

1 ∧ π1 + V̄2π̄
1 ∧ π2 + Ū1π

1 ∧ π2,

dπ̄2 = −ψ̄2
0 ∧ π0 − ψ̄2

1 ∧ π̄1 − ψ̄2
2 ∧ π̄2 + V̄1π̄

2 ∧ π1 + V̄2π̄
2 ∧ π2 + Ū2π

1 ∧ π2,

1∗, ? ∈ {1, 2, 1̄, 2̄}
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hereVı andUı are the new coefficients of torsion which are expressed in terms ofT ı
∗?.

After calculating0 ≡ d(dπ0), we have

U1 = −2V̄2, U2 = 2V̄1.

We calculated(dπ1) ≡ 0 andd(dπ2) ≡ 0, thus we have the relation mod{π0, π1, π2}.

(3.10) 0 ≡ d

(
U1

U2

)
+
i

2

(
ψ1

0

ψ2
0

)
+

(
ψ1

1 ψ1
2

ψ2
1 ψ2

2

)
.

(
U1

U2

)
− ψ0

0

(
U1

U2

)
.

Let G1-structureB1 ⊂ B in which τ 1 = τ 2 = 0 andϕ1
0, ϕ

2
0 are semi-basic, we consider the

projectorΦ : B → B1 such that, forx ∈ B we associatex.g0 is a submersion which respects
fibers. ThusG1 is a sub-group acting overB1 generated by matrices of the form

(3.11) g1 =

 a 0 0
0 A 0
0 0 Ā

 .

Denote by
ψı

0 = P ı
0π

0 + P ı
∗π
∗, andψ̄

ı
0 = P̄ ı

0π
0 + P̄ ı

∗π
∗,

then the structure equations read

(3.12)

 dπ0 = −ψ0
0 ∧ π0 + i

2
(π̄1 ∧ π̄2 − π1 ∧ π2),

dπ1 = −ψ1
1 ∧ π1 − ψ1

2 ∧ π2 − P 1
∗ π

∗ ∧ π0,
dπ2 = −ψ2

1 ∧ π1 − ψ2
2 ∧ π2 + P 2

∗ π
∗ ∧ π0,

the same way as previous, we absorb the torsion, respecting the conditionψ1
1 + ψ2

2 = ψ0
0

(3.13)

 dπ0 = −ψ0
0 ∧ π0 + i

2
(π̄1 ∧ π̄2 − π1 ∧ π2),

dπ1 = −ψ1
1 ∧ π1 − ψ1

2 ∧ π2 − Pπ1 ∧ π0 − P 1
1̄ π̄

1 ∧ π0 − P 1
2̄ π̄

2 ∧ π0,
dπ2 = −ψ2

1 ∧ π1 − ψ2
2 ∧ π2 − Pπ2 ∧ π0 − P 2

1̄ π̄
2 ∧ π0 − P 2

2̄ π̄
2 ∧ π0,

Respectingψ1
1 + ψ2

2 = ψ̄
1
1 + ψ̄

2
2 = ψ0

0, we can show

(3.14) P + P̄ = 0.

We have

0 = −dψ0
0 ∧ π0 +

i

2
ψ0

0 ∧ π̄1 ∧ π̄2 − i

2
ψ0

0 ∧ π1 ∧ π2

+
i

2
dπ̄1 ∧ π̄2 − i

2
π̄1 ∧ dπ̄2 − i

2
dπ1 ∧ π2 +

i

2
π1 ∧ dπ2,

thus

2idψ0
0 ∧ π0 = (2P̄ π̄1 ∧ π̄2 − 2Pπ1 ∧ π2 − (P 2

1̄ + P̄ 2
1̄ )π1 ∧ π̄1 + (P̄ 1

1 − P 2
2̄ )π1 ∧ π̄2

+(P 1
1̄ − P̄

2
2̄ )π2 ∧ π̄1 + (P̄ 1

2̄ − P
1
2̄ )π2 ∧ π̄2) ∧ π0,

thus
P − P̄ = 0,

for (3.14), then we have
P = 0,

then (3.13) reads

(3.15)

 dπ0 = −ψ0
0 ∧ π0 + i

2
(π̄1 ∧ π̄2 − π1 ∧ π2),

dπ1 = −ψ1
1 ∧ π1 − ψ1

2 ∧ π2 − P 1
1̄ π̄

1 ∧ π0 − P 1
2̄ π̄

2 ∧ π0,
dπ2 = −ψ2

1 ∧ π1 − ψ2
2 ∧ π2 − P 2

1̄ π̄
2 ∧ π0 − P 2

2̄ π̄
2 ∧ π0,
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in particular
2idψ0

0 = −(P 2
1̄ + P̄ 2

1̄ )π1 ∧ π̄1 + (P̄ 1
1 − P 2

2̄ )π1 ∧ π̄2

(3.16) + (P 1
1̄ − P̄

2
2̄ )π2 ∧ π̄1 + (P̄ 1

2̄ − P
1
2̄ )π2 ∧ π̄2.

We define a pair of2× 2 matrix-valued functions onB1 by

S1 =

(
P 1

1̄ + P̄ 2
2̄ P̄ 1

2̄ + P 1
2̄

P 2
1̄ − P̄

2
1̄ P̄ 1

1 + P 2
2̄

)
, S2 =

(
P 1

1̄ − P̄
2
2̄ P̄ 1

2̄ − P
1
2̄

P 2
1̄ + P̄ 2

1̄ P̄ 1
1 − P 2

2̄

)
.

Theorem 3.4.An elliptic Monge-Ampère system(M, ε) satisfiesS1 = S2 = 0 if and only if it is
locally equivalent to the Monge-Ampère system for the linear homogeneous Laplace equations.

Proof. If S2 = 0, thenψ0
0 is closed, from (3.16),S2 = 0 if and only if for some 1-formα we

have
dψ0

0 = α ∧ π0.

But dd = 0, hence0 ≡ −α ∧ dπ0, which gives

α ≡ 0 mo{π0}

Conversely, ifdψ0
0 = 0, thenS2 = 0. In caseS1 = S2 = 0, thendψ0

0 = 0, thus we can locally
find a functionλ > 0 such that

ψ0
0 = λ−1dλ.

In caseS1 = S2 = 0 we can find

d(π1 ∧ π2) = −ψ0
0π

1 ∧ π2,

hence, we can write

d(λω1 ∧ ω4) = d(λω3 ∧ ω2) = d(λω1 ∧ ω2) = d(λω3 ∧ ω4) = 0.

Then locally by (2.5) there exist a functionsx, y, p andq such that

−dp ∧ dx = λω1 ∧ ω2,

−dq ∧ dy = λω3 ∧ ω4,

−dp ∧ dy = λω1 ∧ ω4,

−dq ∧ dx = λω3 ∧ ω2,

Not that

d(λπ0) = d(λω0) =
i

2
(π̄1 ∧ π̄2 − π1 ∧ π2) = λ(ω1 ∧ ω2 + ω3 ∧ ω4) = −dp ∧ dx− dq ∧ dy.

By Poincaré lemma, locally there is exist a functionz, such that

λω0 = dz − pdx− qdy.
Then, in local coordinates, the elliptic Monge-Ampère system is

ε = {ω0, ω1 ∧ ω2 + ω3 ∧ ω4, ω1 ∧ ω4 − ω3 ∧ ω2}

= {dz − pdx− qdy,−dp ∧ dx− dq ∧ dy,−dp ∧ dy + dq ∧ dx}.

It’s natural to ask about the situation in whichS2 = 0, but possiblyS1 6= 0.

Theorem 3.5. An elliptic Monge-Ampère system(M, ε) satisfiesS2 = 0 if and only if it is
locally equivalent to an Euler-Lagrange system.
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Proof. The condition forε to contain a Poincaré-Cartan form

Π =
1

2
λπ0 ∧ (π̄1 ∧ π̄2 + π1 ∧ π2)

= λω0 ∧ (ω1 ∧ ω4 − ω3 ∧ ω2).

We can assume thatΠ to be closed for someλ > 0 onB1. By differentiating then

0 = (dλ− 2λψ0
0) ∧ ω0 ∧ (ω1 ∧ ω4 − ω3 ∧ ω2).

Exterior algebra, for some functionµ, say

dλ− 2λψ0
0 = µλω0.

In other words,
d(log λ)− 2ψ0

0 = µω0.

Hence
dψ0

0 ≡ 0 mod{ω0}.
But we know that

dω0 = ω1 ∧ ω2 + ω3 ∧ ω4.

Then (3.16), givesS2 = 0.

3.4. Remark in Cartan’s test.

Definition 3.6. If (π0, π1, π2) be a lifted coframe, then the associated Exterior Differential Sys-
tem, with equivalence conditionπ0 ∧ π1 ∧ π2 ∧ π̄1 ∧ π̄2 6= 0, it is involutive if and only if it
satisfies the test of Cartan.

To apply equivalence method to some problem there are several steps, one important is Car-
tan’s test. If the problem is involutive we can conclude, if this is not the case, it is necessary to
extend the system to continue. We begin, for example, to test the involution in the elliptic case.
To find this, it is a process to follow [12, 10], in (3.15), we haver = 5 andn = 3; to find the
reduced characters of Cartan, replace in (3.15)ψı

 by zı
0π

0 + zı
1π

1 + zı
2π

2, we can show

(3.17)


z0
0 = 0  = 0, ..., 2,
z1
10 = 0, z1

11 = z2
12,

z1
20 = 0, z1

12 = z1
21, z

1
22,

z2
10 = 0, z2

11,

The four parametersz1
11, z

1
12, z

1
22, z

2
11 can be chosen arbitrarily, thus the degree of indetermi-

nancyr(1) of a lifted coframe is the number of free variables in the solution to the associaled
linear absorption system

r(1) = 4.

Let beX = (x0, ..., x2) ∈ R3 and the matrixM of size3× 4 define by

M(X) := M ıl
k (X) :=

2∑
=0

Aıl
kx

, ı = 0, ..., 2, (l
k) ∈ (0

0,
1
1 ,

1
2 ,

2
1 ),

whereAıl
k are a coefficients define in (3.15). In other words

M(X) =
(
Aıl

0k(x
0) + Aıl

1k(x
1) + Aıl

2k(x
2)

)
0≤ı≤2

(l
k)∈(00,11,12,21)

.

Thus

M(X) =

 −x0 0 0 0
0 −x1 −x2 0
−x2 x2 0 −x1

 .
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ForX = (−1,−1, 0), thus

M =

 1 0 0 0
0 1 0 0
0 0 0 1

 .

If we denote bys′1, ..., s
′
3 the reduced characters Cartan then

s′1 = 3.

Now, forX = (x0, ..., x2) andY = (y0, ..., y2), we have

(
M(X)
M(Y )

)
=


−x0 0 0 0
0 −x1 −x2 0
−x2 x2 0 −x1

−y0 0 0 0
0 −y1 −y2 0
−y2 y2 0 −y1

 .

ForX = (−1,−1, 0) andY = (0, 0,−1), we haves′1 + s′2 = 4, thus

s′2 = 1.

Or we haves′1 + s′2 + s′3 = r = 4, then

s′3 = 0,

thus we have
s′1 + 2s′2 + 3s′3 = 5 > r(1) = 4.

Hence the system (3.15) is not satisfies Cartan’s test, thus it’s necessary to extend the system
to continue. Note that before the step of normalizing, the system (3.9) satisfies Cartan’s test, I
gave a proof of this in my thesis [11]. This leads to further investigations.
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