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2 MOHEDDINE IMSATFIA

1. INTRODUCTION

Cartan’s method to state the equivalence problem devolopped by Elie Cartan in the years
1905-1910 and more recently in |12,/ 10], is a crucial tool. Hence, In their work, R. Bryant, D.
Grossman and P. Griffiths in the years 1997-1998 [13] clarified the strategy of Cartan. Locally,
the application of Cartan’s method to study the equivalence problem to classify Monge-Ampere
equations([14,11] in two variables leads to three non-zero orbits: a negative space, a null space
and a positive space, which correspond respectively to three types of Monge-Ampere equations:
hyperbolic, parabolic and elliptic equations. The general classification problems for symplectic
Monge-Ampére equations were studied by Lychagin, Roubisov [2, 7, 8], Kruglikov [6], A. G.
Kushner [3/ 5] and others: they showed that to any differential 2-form the manifold of
1-jets of functions on a 2-dimensional smooth maniféttj J' M, we can associate a Monge-
Ampére equatiort,, which is entirely determined by the sign of the Pfaffian functiofPft
each point ofD ¢ J'M. In [13], R. Bryant, D. Grossman and P. Griffiths applied the equiva-
lence method to classify Monge-Ampere equations of hyperbolic type: Given a 5-dimensional
contact manifold M, I'), they applied this method to some Monge-Ampére systelocally
algebraically generated as

e={0,d0, U},
for § € I'(I) whered is non zero contact form generatidigl’(/) being the module generated
by contact form/, and¥ is a 2-form inQ%(M).

Our aim is to apply the equivalence method to classify Monge-Ampére equations of elliptic
type. We determined the necessary and sufficient conditions for an elliptic Monge-Ampére sys-
tem to be locally equivalent to the Monge-Ampére system of the linear homogeneous Laplace
eqguations and the necessary and sufficient conditions when it is locally equivalent to an Euler-
Lagrange system. A work of A. Kushner - V. Lychagin and V. Roubtsov|inl[9, 4] contain results
on equivalence of Monge-Ampere equation to homogeneous Laplace equation. Those results
are formulated in terms of the number of coefficients in the Monge-Ampeére equation and can
be explicity verified with just finite number of usual algebraic operations and Partial Differenti-
ations.

2. MONGE-AMPERE EQUATIONS

Let M be a 2-dimensional smooth manifold and.Jét\ be the manifold of 1-jet of smooth

function on M given in [7] by
JIM:={(a,L) | a€e MxR,LeT,(MxR) dimL =2, Lisplang.
For all smooth functionu € C>*(U) with U C M, we associate the graph afby 3 =
J'u(U) C J' M with
jlu U — JM.
Denotea = (z!, 22, 2) andL = (p;, po) With 2!, 2% are the local coordinates olt. We have
zo (j'(u)) =uwandforl <a <2, p,o(j'(u) = 2%, then
Oou Ou

R _ 1 2
Y= {(x =(z,x ),u(x),@,ﬁ) , X € M},

is a smooth submanifold of' M which is endowed with a natural contact structure given by
the 1-form not closed

0 = dz — prda' — poda®.
If U is atwo form overJ! M, then

U =W, ,,dp; Adpy + V¥, 2dp; A dae® + VU, 2dpy A dz® + U, dpy A da'
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+ W01 dpy A dat + Wi edat A dz® mod(d).
A Monge-Ampére equations read
\IJ|Z = 07
0|§; =0 (:> d9|z = 0),
dat N dz?|s # 0,

Along of 33, we have

0?u  0%u Pu \? 0%u 0*u
U p — + V2o + Vol o os
(0x1)? (0x?)? 0xt0x? (Ox1)? (0x?2)?
0*u “ ou
+(\Ilp1x1 + \PPQIQ)W + \IJIIIQ (x 7u(3§'>7 81‘&) =0
Assuming¥,, .. = ¥, ., a classical Monge-Ampére equation has the following form
(21) Atgig + 2BAu 1,2 + Cuge,e + D(uxlxluxzxz — u$1x2) + FE = 0;

where A, B, C, D and E are a functions of independant variablgsand 22, an unknown
functionu = u(2!,2?) := 2 and its first partial derivatives,: := p andu,> := ¢. It's known
that the left-hand side of Monge-Ampére equation|(2.1) corresponds to the differential 2-form

Adx' A dx? + Bdp A do* + C(dx* A dp + dg A d2?) + Ddx* A dq + Edp A dg.

Definition 2.1. [13] For a contact manifold M, I) with LagrangianA € Q" (M), the unique
form Il := 6 A ¥ is calledPoincaré-Cartan fornof A, or equivalentlylI = 0 mod(I).

Definition 2.2. The Euler-Lagrange system of the Lagranghais the differential ideal gener-
ated algebraically as
exn =16,d0,¥} € Q" (M).

A Monge-Ampere system locally generated by = {0,d0, ¥}, the generato may be
uniquely chosen modul¢/} and modulo multiplication by functions. By the condition of
primitivity ! we assume

dd AN =0 mod®#).
Hence, locally, Monge-Ampere equations read
6 € QY(M) and¥ € Q*(M),
U A df =0mod#),
O NdONdO 0.

Theorem 2.3. A Monge-Ampére system= {6, df, I} on a2n + 1-dimensional contact man-
ifold (M, I') whereW is assumed to be primitive modulé} is locally equivalent to an Euler-
Lagrange system, if and only if it satisfies

dll :=d(ONTV) = p NI,
with dp = 0 mod{d, db}.
Proof. See|[13] page 16-1%

Remark 2.4. Along ¥, Euler-Lagrange equations of the actifinA, wheref|s. = 0, are given

by:
OL d (OL\ _ 0
0z dx* \Op,)

1This primitivity form is non-zero every where, locally,. ¢ {6, df},.. The explaination is if [13] page 18.

AJMAA Vol. 11, No. 1, Art. 12, pp. 1-13, 2014 AJMAA


http://ajmaa.org

4 MOHEDDINE IMSATFIA

Theorem 2.5. (Darboux) Let(£2;, M;) and (22, M5) be symplectic manifolds of the same
dimension. Then for any pointse M; andb € M, there are a neighborhood®; > a and
O, > b and a diffeomorphismp : O; — O, such thatp(a) = b andy*(Os) = O, in O;.

Corollary 2.6. [9]. Let (2, M) be a2n-dimensional symplectic manifold. Then for point
a € M there are local canonical coordinates, ..., ¢", pi, ..., p,) suth thaty’(a) = p,(a) = 0
for: = 1,...,n and() has the following canonical form:

n
Q=Y dq' Adp,.
1=1
3. EQUIVALENCE PROBLEM

In this section, We apply locally the equivalence problem to classify the Monge-Ampére
systeme = (M, 0, V) satisfying

ONdONdO #0,
U A df =0mod?),

by comparing it with another systetn= (M, 6, ¥), by looking at a local diffeomorphism
¢ : M — M such that
0 0 =9,
{ gp*\if = V.

3.1. Preliminaries. Letn® = af # 0, for some smooth function # 0. Denote by mo¢/)
up to a differential form contained in the differential ideal generated. iyocally, by Darboux
theorem, we can find 1-formg, n', n%, »*, n* such that

(3.1) dn” =n* An*+ 10 An* mod().
There exist functions,, such thatl = %bwnl A1, and sincel A dn® = 0 mod(#), then
b12 + b34 = 0.

We will study the conditions imposed by= (n°, n', n% 1% n*) such that[(3]1) be checked. So
there are three non-zero orbits which we call: negative space, null space and positive space.

(1) If ¥ A ¥ is a negative multiple ofn® A dn, then the local coframing may be chosen
so that in addition of (3]1),

U =n"An’ =5’ An' modd),

for a classical variational problem, this occurs when the Euler-Lagrange PDE is hyper-
bolic.
(2) If W AW = 0, thenn may be chosen so that

¥ =n' A’ mod@),

for a classical variational problem, this occurs when the Monge-Ampere PDE is para-
bolic.

(3) If ¥ A ¥ is a positive multiple ofin°® A dn®, then the local coframing may be chosen
so that in addition of (3]1),

U =n"An*—n*An® modd),

for a classical variational problem, this occurs when the Monge-Ampere PDE is elliptic.
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In the following we will study the elliptic case, we look at the following system

n' =af #0
(3.2) dn® =n' A? + 07 At mod®),
U =n'An* —n® An* mod?).

3.2. An algebra preliminary. Forw := (w!,w? w? w*) € (R*)*, assuming thav! Aw? A
w3 A w* # 0, we consider the symmetric non-degenerate function
() ARY x A2 (RY)* — R,
alf

(o 8) = o f):= W AW Awd Awt
The Lie algebra5L(4, R) acts onA?(R*)* ~ R through the actiolv g € SL(4,R)
6 ARY — AR
a — glla) =g,
q, 1s a quadratic form iy and we have
(g9(a), q4(B)) = (9", g"B) = (e, B).

We want to represerftL(4, R) =Sp(R*3) :=Sp(3,3)! onRC. LetG := SO(A*(R*)*,(.,.)) C
GL(6,R). Denote

®: SL(4,R) — G,
Abasis(a},a?, o, ah, a%, o) of A2(R*)* given by
(o} =w' Aw? + WP AW
a? =w NP+ wt Aw?
a3 =w ANwt +w? Awd,
a}%:wl/\wQ—w?’/\w‘l,
a%:wl/\w:”—w‘l/\wQ,

3 1 4 2 3
\ Op = w NW" —w’ Aw”,

we haveva, b € {1,2,3}
(oz‘z,ozb) = 20y, (aaR,ab) = —24; and(a“L,a%) =0.

The signature o is (3, 3) andSO(A2(R*)*, {.,.)) € SL(4,R) and we know that
dimSL(4,R) =dimSO(A%(R*)*, (.,.)) = 15, then

G = Spin(3, 3).
The first step of the equivalence method is to find a gr@ypeserveqd (3]2), we define
G - Gellip = {g € SL<47R)7 g*a}/ = O&n Q*OZ% = Oé%}
For all ¢ in the Lie algebrag..;, := g, we havel = (f;)lgwg € M(4,R) tr¢ = 0, and
moreover, forL, € G we haveL, = I + £ + o(&), then
§ € M(4,R), tr& =0,
(3:3) { Eab=0; €af =0,
which gives
E+E+E+HE=0,
Elwr AW + W AW+ EW AWt + EwP Awt =0,
E P AWt + W AW + W AW+ W AWt =0,

1“Spin” is a notation used by physicists. (Spin3) = SL(2,C)).
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then there exist, b, ¢, d, e, f € R and a basisg,, &,, &5, &, &5, & Of g such as
§=a&; + by +c§3+d§y + &5 + [&,

with
1 0 0 O 00 0O 010 O
e |0 -100 5—0010 5—0000
710 0 1 0 27100 00 371 00 0 —1
0 0 0 —1 1000 000 O
O 0 1 0 0O 0 0O 00 01
| 0 001, _f-1000]), _|0000
47 -1 0 00 57 0O 0 0O 610100 |
0O -1 0 0 0O 010 00 0O

Denote theR-linear map by

d: g — si(2,0),

X, Y — o([X,Y]) = [2(X), @(Y)].
A basis ofsi(2, C) is (ho, eo, fo, h1, €1, f1) is of the form

=5 %) a=(Y0) »=(o)
1 0 0 0 0 2

hl:(o —z) el:(i 0) fl:(o 0)

[ho, hi] = [eo, €1] = [fo, f1] = 0, [ha, €] = —2i""ey,

[hay fo] = =28 fo and(eq, fo] = —i*hy.
We have this correspondence

O =

such that

§1 < ho,
§y —— e,
§s — J1,
§4 < hu,
s — ex,
§6 < Jo,
then this showed the lemma
Lemma 3.1. TheR-linear mapd : g — si(2, C) is a homomorphism of Lie algebra.

Denote the real-linear isomorphism

T: R* — (2
1

2 23 +ixt
3 I’Q +ZSC4 )
4

T(€,X) = @(5,)T(X),
Then we can continious to work in the 2-dimensional complex.

X =

8 8 8 8

we can showthat 1 <: <6
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3.3. Back to the equivalence problem. In this part, we will apply directly the equivalence
problem for the Monge-Ampeére system of elliptic type on contact manifold of dimension 5.
We will give criteria in terms of the differential invariants thus obtained for a given system to
be locally equivlent to the system associated to the linear homogeneous Laplace equation or
to an Euler Lagrange system. On the contact manifeld one can locally find a coframing

w = g~'n wheren satisfied 3.2 ang € g the Lie Algebra defined ine the previous part. The
exterior derivative of this equation is

(3.4) dw =g 'dg Aw + g tdn.

Definition 3.2. Let G € Gi(n,C) be a subgroup an® = M x G. A G-structureB — M
is a principal subbundle of the coframe bundi¢M) — M, having structure groug’. A
pseudo-connection in th@-structure is g-valued 1-form onB whose restriction to the fiber
tangent spaces, C T, B equals the identificatiol, =~ g induced by the righéz-action onB.

Introducing any pseudo-connectigne Q'(B) ® g satisfies the fundamental formula for the
equivalence method given by
dw=—-pANw+T,
wherer € Q%(B) is the torsion of the pseudo-connectipn A consequence 0.4), for
0 <1,k <4we have
_ _ 1.,
¢ =—g 'dgandr = g tdn = §T]kw3 AWk
Denote byr the vector valued 1-forms such that—= Pr, whereP € M (5, C) for

70 = w0,
= w? +iwt,
72 = w? + iwt,
7l =wd —iw!,
T2 =w? - iw4,
then
(3.5) dr = =y A7+ P 'r,

wherey = P~'pP. ConsideN M, = (a!)1<,,<4 € g, we noteM € M(5,C) by
0
_(a O
M= ( 0 M, ) ’
if Mu = (&;)1§w§4 €g, then

@ 0 0 0 0

0 af +iay aj+iaj 0 0
P'MP=| 0 da2—id® a2—iad? 0 0

0 0 0 as +iad a3 +ia’

0 0 0 al —iaj a} —iaj

Proposition 3.3. Let (M?,¢) an elliptic Monge-Ampére system. An adapted coframe is the
sections of5—structure onM, where(G is the smallest subgroup generated by all matrices of
size (1,2,2) of the form

(3.6)

Q|Qogo
o O
o o

whereA esl(2,C) and detd = a # 0.
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Proof. The sections of7—structure adapted (3.2) are of the fofm [3.§).

The second step of equivalence problem is “Calculation of the structure equations”, we have
W = P~ 1pP, thus it is of the form

Yy 0 0 0 0
wé w; wg 0 0
(3.7) Y = gbg V1 Y3 00,
O
Yo 0 0 ¥ ¥
wherey! + 2 = ) + by = 0.
7_O
7_1
We assumé® 7 := | 72 |, where
77_1
7__2

1
0 i=dr + g ATl = 5(7‘r1 A7? =7t Ar?),
and for: = 1,2, 3, 4, we assume
7' =Tyt A + Tt A 4+ Tlamt A 72+ Tom® AT+ Togm? A 72 + Tip®t A 72
+T4 T At + Tom® A2 + Togm® A 71+ Tiam® A 72
This produces the structure equations
dr® = —g A0 + (7 AT — 7t A7),
dr! = —1/)(1)/\7r0—¢i/\7rl —1/15/\7T2—|—7'1,
(3.8) dr? = =i AT — I At —ap3 A2 472
At =~y A0 — Py AT — Py AT+ T,
d7? = — e A0 — T AT — 3 A T2+ 72,

Now we go to the next step which allows us to absorb the maximum of torsidn in (3.8)
respecting)! + ¢2 = ¢, + ¢> = ¢0. First, by change the formy, — «, — Tt 7* we can
consider.

T, =0.
By a change of}; andv?, we can write
Ty =Typ=Ty=ThH=Th=T,=0,
Respecting)! + ¢2 = 1 + ¢ = ¢, we can write
Tyt = Ty = Vi andTy; = Ty; = Vs,
thus [3.8) becomes
dn® = —g A0 + (7 AT — 7t An?),

drt = g A0 — i At — Py A2+ Vit AT+ Vorrt A2 4 Ul A T2,
(3.9) dr? = =g A0 — 3 ATt — 3 A2+ Vim2 AT+ Vor? A T2+ Ugit A 72,

dil = —gg A — Py AT — Py ARE+ ViEL AT+ Var! A2 + Uyt A 72,

d7? = —gp A — 92 AR — o ARE+ iEE AT + Vam2 A2 + Uamd A 72,

Le,x € {1,2,1,2}
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hereV, andU, are the new coefficients of torsion which are expressed in terms of
After calculatingd = d(dr=°), we have

Uy = —2V,, Uy =2V).
We calculatel(dr') = 0 andd(dr?) = 0, thus we have the relation mdd", 7!, 72}.

) 1 1 1
o o=a(1)+5(31)+ (4 9)-(8) (1)

Let G,-structureB; C B in which 7! = 72 = 0 andy}, 2 are semi-basic, we consider the
projector® : B — B; such that, forr € B we associate.g, is a submersion which respects
fibers. Thug7, is a sub-group acting oves; generated by matrices of the form

(3.11) g1 =

o O R

0
A
0

o o

Denote by
Yo = PSWO + P!1*, and@bf) = péﬂ'o + P'r*,
then the structure equations read
dr® = —yg A0 + (7 A R2 — 7 Am?),
(3.12) drt = —pi ATt — Py A2 — Pla* A 70,
dr? = —} ATt — 3 A+ P2t A,
the same way as previous, we absorb the torsion, respecting the conditiogs = 1y
dr® = —@/)8 A 70+ %(7?1 AT2 —ml Aw?),
(3.13) drt = —py At — Py A2 — Prt An® — Pt An® — Pla? And,
dr? = —pi Amt — 3 Am? — Pr? An® — P22 An® — Pir? A,
Respecting)! + ¢2 = ¢, + ¢ = ¥J, we can show
(3.14) P+P=0.
We have . .
0= —d¢8/\7r0+%z/18/\7‘r1/\7‘r2— %wgmmﬁ

+%dﬁ1 AT — %7?1 Adi? — %dwl Am?+ %wl A dr?,

thus
2idy) A0 = (2P AT — 2Pt AT — (P2 + PHnt AT+ (P — PHmt A 72

+(P} — PHm? A7t 4+ (Py — PH)m® A7) A,

thus
P-P=0,
for (3.14), then we have
P =0,
then [3.18) reads
dr® = —pg A0+ LA AR2 — 7l A7?),

(3.15) drl = =7 At — gy A2 — P!t A0 — P72 A7,

dr? = —wf Arl— w% AT — PfﬁQ A7l — PgﬁQ A 7Y,
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in particular

2idyy = —(P? + PO)mt AT+ (P! — PE)rt A 72
(3.16) + (P} = PHm* AT+ (Py — Py)m® A T2
We define a pair o2 x 2 matrix-valued functions oi; by

S, = Pil_l'l?iz ]?Ql"{'PQl S, = Pil_l?iz %I_Pil
YU\ PP pPl+pz )2\ P2+ P2 PP )

Theorem 3.4.An elliptic Monge-Ampeére systgov, ) satisfiesS; = Sy = 0ifand only if it is
locally equivalent to the Monge-Ampére system for the linear homogeneous Laplace equations.

Proof. If S, = 0, theny) is closed, from6)$2 = 0 if and only if for some 1-fornn we
have

d) = o A 7.
Butdd = 0, henced = —a A dn°, which gives
a =0 mo{r’}
Conversely, ifdyy = 0, thenS, = 0. In caseS; = S, = 0, thendyy = 0, thus we can locally
find a function\ > 0 such that
Yy = A"t
In caseS; = S, = 0 we can find
d(m' A% = —yirt AT
hence, we can write
dOw' Aw?) = dOw? Aw?) = dAw! Aw?) = dOw® Aw?) = 0.
Then locally by[(2.b) there exist a functionsy, p andg such that
—dp A dz = dw' A w?,
—dg A dy = I\ A w?,
—dp A dy = Mt Aw?,
—dg A dx = M\o® A WP,
Not that
dm") = d(Mw’) = %(7?1 ATE -t A7) = Mw!' Aw? + WP Awh) = —dp A dx — dg A dy.
By Poincaré lemma, locally there is exist a functigrsuch that
M = dz — pdx — qdy.
Then, in local coordinates, the elliptic Monge-Ampére system is
e ={w’ W' AW+ WP AWt W Awt — WP AW
= {dz — pdx — qdy, —dp N\ dx — dq N dy, —dp N\ dy + dq A dz}.
|
It's natural to ask about the situation in whigh = 0, but possiblyS; # 0.

Theorem 3.5. An elliptic Monge-Ampére systeM, ¢) satisfiesS, = 0 if and only if it is
locally equivalent to an Euler-Lagrange system.
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Proof. The condition for to contain a Poincaré-Cartan form
1
= §A7r0/\(7‘r1/\7‘r2+7r1/\7r2)

= MO A (W AWt — WP AWP).
We can assume thét to be closed for somg > 0 on B;. By differentiating then
0= (d\ =20 AW A (W' Aw? —wd AwW?).

Exterior algebra, for some functign say

d\ — 200 = pAw’.
In other words,

d(log \) — 21pp = puw”.

Hence

dipg = 0 mod {w°}.
But we know that

dw® = W' Aw? + WP AWl

Then [3.16), gives; = 0. 1
3.4. Remark in Cartan’s test.

Definition 3.6. If (7%, 7!, 7%) be a lifted coframe, then the associated Exterior Differential Sys-
tem, with equivalence condition” A 7t A 72 A 71 A 72 £ 0, it is involutive if and only if it
satisfies the test of Cartan.

To apply equivalence method to some problem there are several steps, one important is Car-
tan’s test. If the problem is involutive we can conclude, if this is not the case, it is necessary to
extend the system to continue. We begin, for example, to test the involution in the elliptic case.
To find this, it is a process to follow [12, 10], in (3]15), we have- 5 andn = 3; to find the
reduced characters of Cartan, replacS@[];Eby z;owo + z;lwl + 2;271'2, we can show

20, =0 7=0,..,2,

T 1 _ .2
2110 =0, 75111 = 21127 .
Zyo = 0, 219 = 291, 259,

2 _ 2
210 =0, 2i1,

(3.17)

The four parameters],, z1,, 23, 27, can be chosen arbitrarily, thus the degree of indetermi-
nancyr of a lifted coframe is the number of free variables in the solution to the associaled
linear absorption system

r) =4,
LetbeX = (2°,...,2?) € R? and the matrix\/ of size3 x 4 define by

2
M(X)=MX):=) Ata’, 1=0,...2, ()e@1i]).
7=0

where A}, are a coefficients define i (3]15). In other words

M(X) = (A5 (2°) + A (z) + A% (27)  o<i<e
(E@:1:5:7
Thus
—20 0 0 0
M(X) = 0 —z' —2% 0
—x? 2 0 —x!
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ForX = (—1,-1,0), thus

1 0 00
M=|0100
0 001
If we denote bys, ..., s5 the reduced characters Cartan then
!/
Sl — 3.

Now, for X = (2, ..., z%) andY = (¢, ..., %), we have

0 —at —2% 0

MX)\ | —2* 22 0 =2t
( M(Y) ) = = 0 0 o0
0 —y' —y* 0

vy 00—y
ForX = (—1,-1,0) andY = (0,0, —1), we haves| + s, = 4, thus
sq = 1.

Or we haves| + s5 + s5 = r = 4, then

thus we have
) +2sh +3sh =5>rM =4
Hence the systen (3.[L5) is not satisfies Cartan’s test, thus it's necessary to extend the system

to continue. Note that before the step of normalizing, the sydtern (3.9) satisfies Cartan'’s test, |
gave a proof of this in my thesis [11]. This leads to further investigations.
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