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ABSTRACT. This paper investigates discrete boundary value problems (BVPSs) involving second-
order difference equations and two-point boundary conditions. General theorems guaranteeing
the existence and uniqueness of solutions to the discrete BVP are established. The methods in-
volve a sufficient growth condition to yield anpriori bound on solutions to a certain family

of discrete BVPs. Tha priori bounds on solutions to the discrete BVP do not depend on the
step-size and thus there are no “spurious” solutions. It is shown that solutions of the discrete
BVP will converge to solutions of ordinary differential equations.
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1. INTRODUCTION

The field of difference equations occupies a central and growing area in modern applicable
analysis. The interest in studying difference equations has been created, and is sustained, by
two main factors:

(1) due to the theory’s significant and diverse modelling applications to almost all areas of
science, engineering and technology where discrete phenomena abound,;

(2) from the advent and rise of computers, where differential equations are solved by em-
ploying their approximative difference-equation formulations.

Thus the need for, and interest in, scientific advancements in the area is naturally motivated.
This paper investigates the following discrete boundary value problem (BVP) involving second-
order difference equations and two-point boundary conditions:
AV A
(1.1) hzy"’ = F(te, yn, %), k=1,...,n—1,
(12) Yo = A7 Yn = B7
where: f is a continuous, scalar-valued function; the step siZze4s N/n with N a positive
constant ana > 2; the grid points aré, = kh for k = 0,...,n; andA, B are given constants
in R. The differences are given by:

_ Yer1 — Yp, TOrk=0,...,n—1,
Ayk_{ 0, fork‘:n;

_ yk+1_2yk+yk—17 fork:17"'7n_]~7
Avy’“_{o, fork=0o0rk =n.

This paper addresses three points of interest regarding the discret¢ BVH (1]1), (1.2):

e Under what conditions does the discrete BY/P](1[1),(1.2) have at least one solution?

e Under what conditions does the discrete BY/P](1[1),(1.2) have a unique solution?

e In what sense, if any, will the above solutions|to [1.[),]|(1.2) approximate solutions to
the continuous BVP

(1.3) y' = f(ty,y), te[0,N],
(1.4) y(0)=A4, y(N)=pB?

Particular significance in these points lie in the fact that when a BVP is discretized, strange
and interesting changes can occur in the solutions. For example, properties such as existence,
uniqueness and multiplicity of solutions may not be shared between the “continuous” differen-
tial equation and its related “discrete” difference equation [1, p.520].

A major problem in the numerical approximation of solutions to ordinary differential equa-
tions are the existence of “spurious solutions” generated by the approximative difference equa-
tion [3, p.417]. These types of solutions do not correspond to any of the solutions to the original
differential equation a8 — 0. It is desirable to eliminate such irrelevant solutions, if possible.

Sufficiently motivated, the paper is organised as follows.

In Section 2, a general theorem guaranteeing the existence of at least one solytioh to (1.1),
(1.2) is established. The method involves a sufficient growth conditidrf @nu, v)| in |u| and
|v| to yield ana priori bound on solutions to a certain family of discrete BVPs. Topological
ideas involving homotopy theory and the non-zero property of Brouwer degree are then applied
to yield the existence of at least one solution. Next, a theorem is presented that employs a
Lipschitz-type condition otf, ensuring thaf (1I]1)] (7].2) will have a unique solution.
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In Sectior B thea priori bound results from Sectigr) 2 are applied to show that solutions to
the discrete BVH (1]1)] (I.2) will converge to solutions of the continuous BVP ([.3), (1.4). The
a priori bounds on solutions to the discrete BVP do not depend on the step-size and thus there
are no spurious solutions. Some examples are presented to illustrate the theory.

For recent and classical results on difference equations and their comparison with differential
eqguations, including existence, unigueness and spurious solutions, the reader is referred to: [1]-
[8], [10]-[186].

A solution to problem[(1]3) is a twice continuously differentiable functior= y(¢) that
satisfies[(T.3) for alt € [0, V].

A solution to problem[(T]1) is a vector = (yo,...,y,) € R satisfying [T.1) fork =
,...,n—1.

2. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section some new existence and uniqueness results for solutidns|to[(1]1), (1.2) are
presented.
Our first result involves a sublinear growth condition|@i, u, v)

in |u| and|v|.

Theorem 2.1.Let f be continuous ofd, N| x R? and leta, 3 and K be non-negative constants.
If there exist, d € [0, 1) such that

(2.1) F(tu,0)| < alul + Blol* + K, ¥(t,u,v) € [0, N] x R?,
then the discrete BVEL.1), (I.2) has at least one solution.
Proof. The BVP [1.1),[(1.R) is equivalent to the summation equation

n—1
Ay;
(22) Y = _h;G(tkasz>f<SwylaTy) +¢<tk)7 k= 07"'7”7
whereG(t, s) is the Green’s function for the following discrete BVP
AVyy,
2 =0, k=1,....,n—1,

Yo = 07 Yn = Oa
and is given explicitly by

t(N —s), for0<t<s<N\,

1
(2.3) 0<G(ts) = N
(N —t)s, for0<s<t<N;

and¢ is the unique solution to the BVP

AVyy,
2 =0, k=1,...,n—1,
y0:A7 yn:B7

which is given explicitly by
A B
¢<tk) = N(N —tk) + Ntk, k= 0, .o, N
Consider the operatd@ : R**! — R"*! given by

n—1
Ay;
=1
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Thus we want to show that there exists at leastpreR"*! such that
Ty =y.
To do this, introduce the family of mappings
H,=1-\T, Xe€l0,1],
where! is the identity operator and consider
(2.4) H,(y)=0, Ael0,1].

We show thaH,, (y) # 0 for all X € [0, 1] and ally € 9Bg, for some suitable balB; € R™".
Let us choose & € [0, 1] and lety be a solution to the problerp (2.4) with this Consider the
equivalent summation formulation

n—1

Ay,
(25) Y = _hZG<tk752))\f(Sz7ylaTy> +)‘¢(tk‘)7 k= O,...,Tl, A€ [071]7
=1
whereG and¢ are given above. Then, fé&r=10,...,n — 1, we get
Ayy — Ay; Ad(ty)
| = | > [AG(te, 5:)Af (s, i, ) A
=1
n—1
< 1G] |ftsm 3]+ 25
=1
Ay Ag(tr)
2.6 < AG (ty, s; | o+ K M
26) < Y1400 5) [ary\w'h ri| 4|2
Put A
Yk
= _— P et
P ke{g.l..,n—l} h |’ ker{rﬂl,a)fn} |¢(tk)’
Thenmaxyego,... .y [Yx| < p+ P. Further
Ag(tr)|  |B—A| _
(2.7) ’ Y =~ fork=0,...,n,
and
n—1 h2 k n—1 N
(2.8) Z AG(t, 1) = 5 <Zz+ .Z (n—z)) <5, k=0...n-L
i=1 =1 i=k+1
Therefore if we take the maximum in (2.6), we obtain
N B—A
P [a(p+ P)* + Bp* + K] +g
and so N B4
p+P < [a(p+ P)°+B(p+ P)'+ K| + | J; | + P.
Hence
N KN B-—A
1< 2 [(alp+ PY 4 Blo+ P)" ] + ( 5+ | ~ | +P) p ' =glp).
Sincelim,_., g(p) = 0, there exists) > 0 such that
Ayy
2. —_— :
(2.9) ke&%,z.%fn} el < @, ke{o,..., }5—1} h <@
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Define the open bail ¢ R**! by

Ayk

Q:{yGR"H:]yk]<Q, k=0,...,n, .

< Q, k:O,...,n—l}.

The continuity of f implies thatT : Q@ — R™*! is a continuous map. According @.9) we
see that for an arbitrary € [0, 1| there are no solutions tp (2.4) (with thi¥ belonging tod).
Hence the following Brouwer degrees are defined and are independer @, 1] and thus a
homotopy principle is applicablel[9, Chap.3]. Sirce (2, we get

dp(H,,Q,0) = dg(I — AT, Q,0) = dg(H,,Q,0) = d(I,Q,0) = 1.

Therefore, by the non-zero property of Brouwer degree, there exists at least one splation
to (2.4) for each\ € [0, 1]. For A = 1 see that[(2]4) is equivalent to (IL.1]), (1.2) and thus the
result follows.n

The next theorem allow§f (¢, u, v)| to grow linearly in|u| and |v| and thus may apply to
certain problems where Theorém|2.1 may be inapplicable.

Theorem 2.2.Let f be continuous of), N| x R? and leta, 5 and K be non-negative constants.
If

(2.10) |f(t,u,v)| < alul +Blv| + K, VY(t,u,v) €[0,N] xR* and
N? N
(2.11) 0‘8 + % <1,

then the discrete BVL.1), (1.2) has at least one solution.

Proof. We argue as in the proof of Theor¢m|2.1 and defivg (2.5). Taking the absolute value in
(2.8) and using (2.10) we obtain

n—1
Ay,

(2.12) el <1 Gt 1) [a\yi|+@‘ h?/ +K] Flo(ts), k=0,....n

=1
and

Ay| Ay; Ao(t)

2.1 — 1< A , , K )
213 v < a6t sl el + 0| 5|+ ] 4|2
Further we have

n—1 t N2
2.14 AN Gty ) = =(N —t,) < —, k=0,.
( ) ; (k75> 2( k)_ 87 P y 1,
and
(2.15) 6(t)] < max{|A]|Bl}, k=0,....n.
Now, by (2.12),[(2.14) and (2.15),

2 Ay;

< )
el < 5 ool 40w S5 k| maxglaL D),
and by (2.1B),[(2]8) and (2.7),
IR« , K .
ker{rol,a..}fn} h |~ 2 {aie{lr,n..%r}f—l}wl’ +ﬁz’e{f,n..z.1,;f—1} h + } + N
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Denote

Then we get

N? N N? B—-A
p < 3 lap + o + K| + max{|A[, |B|}, Vi < Yy [ap + o + K| + g
Therefore
N aN? (N KN? 1B — Al
max{p,za} (1— ( S +T>) <3 + max{|A|, |B|} + T
which implies by [(2.111) thaf (21.9) holds with
Q- 1+ﬂ KN?/8 + max{|A|, |B|} + |B — A|/4
B 4 aN?/8 + 3N/2 '
Now, the rest of the proof follows that of Theorém|2a1.

Corollary 2.3. If f is continuous and bounded @i N] x R? then the BVRL.]), (1.2) has at
least one solution.

(2.16)

Proof. The result follows from Theorefn 2.1 for=d = 0. 1

The following theorem gives us conditions for the existence of a unique solution fo (1.1),
(I.2) and may be considered as a discrete versionl of [4, Chap. XIl, Theorem 4.1], where the
uniqueness of solutions to (1.3), ([L.4) were established.

Theorem 2.4.Let f be continuous of), N| x R? and leta, 3 be non-negative constants satis-
fying 213) If
(2.17) |f(t,u,v) — f(t,4,0)| < alu—a| + Blv — o], Vt € [0,N], u,@t,v,7 € R,
then the discrete BVEL.1), (1.2) has a unique solutioy satisfying(2.9), where@ is given by
(2.16)and K = maxyco,ny | f(£,0,0)].
Proof. See that{(2.17) implies that

|f(t,u,v)| < alul + Blv| + |f(t,0,0)|, Y(t,u,v) € [0, N] x R?

and thus[(2.70) holds. By virtue df (2]11) we have the existence of at least one solution by
Theoren 2.
Now consider two possible solutions fo (1.1), (1.2) giverylandy and letz = y — y. Now

z must satisfy the BVP

AVz A . Ay
(218) h2 k f(tk,yk, };Uk:) f(tk,yk, ;jk), /{ZIO,...,TL—L

(2.19) 20=0, 2z,=0.

Rearranging[(2.18)[ (2.19) into an equivalent summation equation, taking absolute values and
using [2.10) as in the proof of Theor¢m]2.2 we obtain

n—1
A
(2.20) |2k| < hZG(tk,si) [oz|zll+ﬂ‘ & } k=0,...,n,
i=1
and
A - A
(2.21) Zk Z|AG i, Si [a|zz|+ﬁ' o } k=0,...,n—1.
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Multiplying (2.21) by N/4 and using[(Z2.14) iff (2.20) and (2.8) [n (2} 21) we derive

(- () =
8 2 -

max{|zk], D

and since[(2.71) holds we must hgwg| = 0 for £ = 0, ..., n. Thus, the solution is uniqua.

Remark 2.1. Note that the conditions in Theorefns]4.1,/2.2 2.4 do not involve any restric-
tions on the step-sizé (apart from the assumption that< N/2 which is made so that the
problem is well-defined). Thus the conclusions of these theorems apply to those discrete BVPs
which do not arise as approximations to continuous BVPs, for example, thé ease

Remark 2.2. Note that the the conditions in Theoreins|2.1) 2.2 2.4 also guarantee the
existence and uniqueness of solutiong to](1[3)] (1.4).

3. CONVERGENCE OF SOLUTIONS

In this section the results of Sectiph 2 are applied to formulate some convergence theorems.
The following result is restated version of [7, Lemma 9.2] (see also [3, pp.414-415]).

Lemma 3.1. Letn, andC be positive constants. Assume that the discrete @V, (1.2) has

a solutiony™ = (yg, ...,y for n > ny and that the condition

(3.1) n|Ayp| < C, kE=0,...,n—1, n > ng

is satisfied. Then there is a subsequefig® } and a solutiony to (1.3), (I.4) such that
(3.2) lim max |yt —y(Nt/ni)| = 0.

In addition, if it is known tha{1.3), (I.4) has at most one solution, then the original sequence
{y™} will converge toy in the above sense.

Proof. Choose an arbitrary fixead > ny and put

A B
(33) zk:y,ff——(N—tk)——tk, k’:O,...,TL.

N N
Thenz, = z, = 0 and by [3.1)
n|Az| <C+|B—-Al=D, k=0,....n—1, n>ny.

Therefore

D k-1_ kD
o] < 1Az + | < 2+ "D ="2 fork=1,...,n— 1.
n n n

We see that
lyx| < C + |B — Al +max{|A|,|B|}, k=0,...,n, n>no.
Now, the assertion follows from[7, Lemma 9.3].

The following two theorems answer the third question from the Introduction concerning the
convergence of solutions for the discrete problem.

Theorem 3.2. Let the assumptions of Theorem|2.4 hold. Then the discrete prqbl@n(1.2)
has a unique solutiog™ for eachn > 2 and the relevant continuous problgfn3), (1.4)has a
unique solutiory that satisfies

(3.4) lim max |y; —y(Nt/n)| = 0.

n—oo 0<t<n
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Proof. Since the conditions of Theorgm P.4 hold, the unique solution t¢ (1.1}, (1.2) satisfies
(2.9) for eacm > 2, which means that the conditign (B.1) of Lemmd 3.1 is fulfilled. Moreover,
by [4, Chap. XIl, Theorem 4.1], the continuous problém|(1.8),](1.4) has a unique solution
becauser and 3 in (2.17) satisfy[(2.11). Therefore, by Lemina|3.1, the convergende ih (3.4)
holds. s

Theorem 3.3. Let the assumptions of Theorém]2.1 or Thedrem 2.2 hold. Then the discrete
problem(1.7), (I.2) has a solutiony™ for eachn > 2 and the relevant continuous problem

(1.3), (1.4) has a solutiory that satisfie{3.2).

Proof. Since the conditions of Theorem P.1 or Theofenj 2.2 hold, prollem (L.I), (1.2) has a
solutiony™ satisfying [2.9) for each > 2. So, the condition (3]1) of Lemnja 3.1 holds and the
result follows from therexn

Example 3.1. Consider the discrete BVP

AV
(3.5) hzy’“

(3.6) Yo=A, y, =D,

whereaq, b, g are continuous functions df, N] ande, d € [0, 1).
Then, by Theorein 2.1, problef@.3), (3.6) has at least one solutiop™ for eachn > 2. By
Theoreny 33 there is a solutignto the relevant continuous problem

y' = at)lylsigny +b(t)ly|" +g(t), te€[0,N],
y(0) =4, y(N)=B,
such that(3.2) holds for some sequengg™: } of solutions of(3.5), (3.6).

Example 3.2. Consider the discrete equation

d

A
Ikl o), k=0,...,n—1,

h

= a(ty)|yr| sign yr + b(tx)

AV A
(3.7) S = altye+ bt SR gt k=0, -1,
(38) Yo = A> Yn = B7

wherea, b, g are continuous functions dn, 1]. If

max |a(t)| + 4 max |b(t)] < 8,
te[0,1] te[0,1]

then by Theorein 2.4 problef®.7), (3.8) has a unique solutiog™ for eachn > 2. In addition
there is a unique solution to the relevant continuous problem

y" =alt)y+0o(t)y +9(t), y(0) =4, y(1)=B,
and by Theorern 3.2 the convergencg3drl) holds.
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