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2 IRENA RACHŮNKOVÁ AND CHRISTOPHERC. TISDELL

1. I NTRODUCTION

The field of difference equations occupies a central and growing area in modern applicable
analysis. The interest in studying difference equations has been created, and is sustained, by
two main factors:

(1) due to the theory’s significant and diverse modelling applications to almost all areas of
science, engineering and technology where discrete phenomena abound;

(2) from the advent and rise of computers, where differential equations are solved by em-
ploying their approximative difference-equation formulations.

Thus the need for, and interest in, scientific advancements in the area is naturally motivated.
This paper investigates the following discrete boundary value problem (BVP) involving second-

order difference equations and two-point boundary conditions:

∆∇yk

h2
= f(tk, yk,

∆yk

h
), k = 1, . . . , n− 1,(1.1)

y0 = A, yn = B,(1.2)

where:f is a continuous, scalar-valued function; the step size ish = N/n with N a positive
constant andn ≥ 2; the grid points aretk = kh for k = 0, . . . , n; andA, B are given constants
in R. The differences are given by:

∆yk =

{
yk+1 − yk, for k = 0, . . . , n− 1,
0, for k = n;

∆∇yk =

{
yk+1 − 2yk + yk−1, for k = 1, . . . , n− 1,
0, for k = 0 or k = n.

This paper addresses three points of interest regarding the discrete BVP (1.1), (1.2):

• Under what conditions does the discrete BVP (1.1), (1.2) have at least one solution?
• Under what conditions does the discrete BVP (1.1), (1.2) have a unique solution?
• In what sense, if any, will the above solutions to (1.1), (1.2) approximate solutions to

the continuous BVP

y′′ = f(t, y, y′), t ∈ [0, N ],(1.3)

y(0) = A, y(N) = B?(1.4)

Particular significance in these points lie in the fact that when a BVP is discretized, strange
and interesting changes can occur in the solutions. For example, properties such as existence,
uniqueness and multiplicity of solutions may not be shared between the “continuous” differen-
tial equation and its related “discrete” difference equation [1, p.520].

A major problem in the numerical approximation of solutions to ordinary differential equa-
tions are the existence of “spurious solutions” generated by the approximative difference equa-
tion [3, p.417]. These types of solutions do not correspond to any of the solutions to the original
differential equation ash → 0. It is desirable to eliminate such irrelevant solutions, if possible.

Sufficiently motivated, the paper is organised as follows.
In Section 2, a general theorem guaranteeing the existence of at least one solution to (1.1),

(1.2) is established. The method involves a sufficient growth condition on|f(t, u, v)| in |u| and
|v| to yield ana priori bound on solutions to a certain family of discrete BVPs. Topological
ideas involving homotopy theory and the non-zero property of Brouwer degree are then applied
to yield the existence of at least one solution. Next, a theorem is presented that employs a
Lipschitz-type condition onf , ensuring that (1.1), (1.2) will have a unique solution.
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EXISTENCE OF NON-SPURIOUS SOLUTIONS 3

In Section 3 thea priori bound results from Section 2 are applied to show that solutions to
the discrete BVP (1.1), (1.2) will converge to solutions of the continuous BVP (1.3), (1.4). The
a priori bounds on solutions to the discrete BVP do not depend on the step-size and thus there
are no spurious solutions. Some examples are presented to illustrate the theory.

For recent and classical results on difference equations and their comparison with differential
equations, including existence, uniqueness and spurious solutions, the reader is referred to: [1]-
[8], [10]-[16].

A solution to problem (1.3) is a twice continuously differentiable functiony = y(t) that
satisfies (1.3) for allt ∈ [0, N ].

A solution to problem (1.1) is a vectory = (y0, . . . , yn) ∈ Rn+1 satisfying (1.1) fork =
1, . . . , n− 1.

2. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section some new existence and uniqueness results for solutions to (1.1), (1.2) are
presented.

Our first result involves a sublinear growth condition on|f(t, u, v)| in |u| and|v|.

Theorem 2.1.Letf be continuous on[0, N ]×R2 and letα, β andK be non-negative constants.
If there existc, d ∈ [0, 1) such that

(2.1) |f(t, u, v)| ≤ α|u|c + β|v|d + K, ∀(t, u, v) ∈ [0, N ]× R2,

then the discrete BVP(1.1), (1.2)has at least one solution.

Proof. The BVP (1.1), (1.2) is equivalent to the summation equation

(2.2) yk = −h
n−1∑
i=1

G(tk, si)f(si, yi,
∆yi

h
) + φ(tk), k = 0, . . . , n,

whereG(t, s) is the Green’s function for the following discrete BVP

∆∇yk

h2
= 0, k = 1, . . . , n− 1,

y0 = 0, yn = 0,

and is given explicitly by

0 ≤ G(t, s) =
1

N

 t(N − s), for 0 ≤ t ≤ s ≤ N,

(N − t)s, for 0 ≤ s ≤ t ≤ N ;
(2.3)

andφ is the unique solution to the BVP

∆∇yk

h2
= 0, k = 1, . . . , n− 1,

y0 = A, yn = B,

which is given explicitly by

φ(tk) =
A

N
(N − tk) +

B

N
tk, k = 0, . . . , n.

Consider the operatorT : Rn+1 → Rn+1 given by

Tk(y) = −h

n−1∑
i=1

G(tk, si)f(si, yi,
∆yi

h
) + φ(tk), k = 0, . . . , n.
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4 IRENA RACHŮNKOVÁ AND CHRISTOPHERC. TISDELL

Thus we want to show that there exists at least oney ∈ Rn+1 such that

Ty = y.

To do this, introduce the family of mappings

Hλ = I − λT, λ ∈ [0, 1],

whereI is the identity operator and consider

(2.4) Hλ(y) = 0, λ ∈ [0, 1].

We show thatHλ(y) 6= 0 for all λ ∈ [0, 1] and ally ∈ ∂BR, for some suitable ballBR ∈ Rn+1.
Let us choose aλ ∈ [0, 1] and lety be a solution to the problem (2.4) with thisλ. Consider the
equivalent summation formulation

(2.5) yk = −h
n−1∑
i=1

G(tk, si)λf(si, yi,
∆yi

h
) + λφ(tk), k = 0, . . . , n, λ ∈ [0, 1],

whereG andφ are given above. Then, fork = 0, . . . , n− 1, we get∣∣∣∣∆yk

h

∣∣∣∣ =

∣∣∣∣∣−
n−1∑
i=1

[∆G(tk, si)]λf(si, yi,
∆yi

h
) + λ

∆φ(tk)

h

∣∣∣∣∣
≤

n−1∑
i=1

|∆G(tk, si)|
∣∣∣∣f(si, yi,

∆yi

h
)

∣∣∣∣+ ∣∣∣∣∆φ(tk)

h

∣∣∣∣
≤

n−1∑
i=1

|∆G(tk, si)|

[
α|yi|c + β

∣∣∣∣∆yi

h

∣∣∣∣d + K

]
+

∣∣∣∣∆φ(tk)

h

∣∣∣∣ .(2.6)

Put

ρ = max
k∈{0,...,n−1}

∣∣∣∣∆yk

h

∣∣∣∣ , P = max
k∈{0,...,n}

|φ(tk)|.

Thenmaxk∈{0,...,n} |yk| ≤ ρ + P . Further

(2.7)

∣∣∣∣∆φ(tk)

h

∣∣∣∣ =
|B − A|

N
, for k = 0, . . . , n,

and

(2.8)
n−1∑
i=1

|∆G(tk, si)| =
h2

N

(
k∑

i=1

i +
n−1∑

i=k+1

(n− i)

)
≤ N

2
, k = 0, . . . , n− 1.

Therefore if we take the maximum in (2.6), we obtain

ρ ≤ N

2

[
α(ρ + P )c + βρd + K

]
+
|B − A|

N
and so

ρ + P ≤ N

2

[
α(ρ + P )c + β(ρ + P )d + K

]
+
|B − A|

N
+ P.

Hence

1 ≤ N

2

[
(α(ρ + P )c−1 + β(ρ + P )d−1

]
+

(
KN

2
+
|B − A|

N
+ P

)
ρ−1 = g(ρ).

Sincelimρ→∞ g(ρ) = 0, there existsQ > 0 such that

(2.9) max
k∈{0,...,n}

|yk| < Q, max
k∈{0,...,n−1}

∣∣∣∣∆yk

h

∣∣∣∣ < Q.
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Define the open ballΩ ⊂ Rn+1 by

Ω =

{
y ∈ Rn+1 : |yk| < Q, k = 0, . . . , n,

∣∣∣∣∆yk

h

∣∣∣∣ < Q, k = 0, . . . , n− 1

}
.

The continuity off implies thatT : Ω → Rn+1 is a continuous map. According to (2.9) we
see that for an arbitraryλ ∈ [0, 1] there are no solutions to (2.4) (with thisλ) belonging to∂Ω.
Hence the following Brouwer degrees are defined and are independent ofλ ∈ [0, 1] and thus a
homotopy principle is applicable [9, Chap.3]. Since0 ∈ Ω, we get

dB(Hλ, Ω,0) = dB(I − λT, Ω,0) = dB(H0, Ω,0) = d(I, Ω,0) = 1.

Therefore, by the non-zero property of Brouwer degree, there exists at least one solutiony ∈ Ω
to (2.4) for eachλ ∈ [0, 1]. For λ = 1 see that (2.4) is equivalent to (1.1), (1.2) and thus the
result follows.

The next theorem allows|f(t, u, v)| to grow linearly in|u| and |v| and thus may apply to
certain problems where Theorem 2.1 may be inapplicable.

Theorem 2.2.Letf be continuous on[0, N ]×R2 and letα, β andK be non-negative constants.
If

(2.10) |f(t, u, v)| ≤ α|u|+ β|v|+ K, ∀(t, u, v) ∈ [0, N ]× R2, and

(2.11)
αN2

8
+

βN

2
< 1,

then the discrete BVP(1.1), (1.2)has at least one solution.

Proof. We argue as in the proof of Theorem 2.1 and derive (2.5). Taking the absolute value in
(2.5) and using (2.10) we obtain

(2.12) |yk| ≤ h
n−1∑
i=1

G(tk, si)

[
α|yi|+ β

∣∣∣∣∆yi

h

∣∣∣∣+ K

]
+ |φ(tk)|, k = 0, . . . , n

and

(2.13)

∣∣∣∣∆yk

h

∣∣∣∣ ≤ n−1∑
i=1

|∆G(tk, si)|
[
α|yi|+ β

∣∣∣∣∆yi

h

∣∣∣∣+ K

]
+

∣∣∣∣∆φ(tk)

h

∣∣∣∣ .
Further we have

(2.14) h

n−1∑
i=1

G(tk, si) =
tk
2

(N − tk) ≤
N2

8
, k = 0, . . . , n,

and

(2.15) |φ(tk)| ≤ max{|A|, |B|}, k = 0, . . . , n.

Now, by (2.12), (2.14) and (2.15),

max
k∈{0,...,n}

|yk| ≤
N2

8

[
α max

i∈{1,...,n−1}
|yi|+ β max

i∈{1,...,n−1}

∣∣∣∣∆yi

h

∣∣∣∣+ K

]
+ max{|A|, |B|},

and by (2.13), (2.8) and (2.7),

max
k∈{0,...,n}

∣∣∣∣∆yk

h

∣∣∣∣ ≤ N

2

[
α max

i∈{1,...,n−1}
|yi|+ β max

i∈{1,...,n−1}

∣∣∣∣∆yi

h

∣∣∣∣+ K

]
+
|B − A|

N
.
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6 IRENA RACHŮNKOVÁ AND CHRISTOPHERC. TISDELL

Denote

max
k∈{0,...,n}

|yk| = ρ, max
k∈{0,...,n−1}

∣∣∣∣∆yk

h

∣∣∣∣ = σ.

Then we get

ρ ≤ N2

8
[αρ + βσ + K] + max{|A|, |B|}, N

4
σ ≤ N2

8
[αρ + βσ + K] +

|B − A|
4

.

Therefore

max{ρ,
N

4
σ}
(

1−
(

αN2

8
+

βN

2

))
<

KN2

8
+ max{|A|, |B|}+

|B − A|
4

,

which implies by (2.11) that (2.9) holds with

(2.16) Q =

(
1 +

N

4

)
KN2/8 + max{|A|, |B|}+ |B − A|/4

αN2/8 + βN/2
.

Now, the rest of the proof follows that of Theorem 2.1.

Corollary 2.3. If f is continuous and bounded on[0, N ]× R2 then the BVP(1.1), (1.2)has at
least one solution.

Proof. The result follows from Theorem 2.1 forc = d = 0.

The following theorem gives us conditions for the existence of a unique solution to (1.1),
(1.2) and may be considered as a discrete version of [4, Chap. XII, Theorem 4.1], where the
uniqueness of solutions to (1.3), (1.4) were established.

Theorem 2.4.Letf be continuous on[0, N ]×R2 and letα, β be non-negative constants satis-
fying (2.11). If

(2.17) |f(t, u, v)− f(t, ũ, ṽ)| ≤ α|u− ũ|+ β|v − ṽ|, ∀t ∈ [0, N ], u, ũ, v, ṽ ∈ R,

then the discrete BVP(1.1), (1.2)has a unique solutiony satisfying(2.9), whereQ is given by
(2.16)andK = maxt∈[0,N ] |f(t, 0, 0)|.

Proof. See that (2.17) implies that

|f(t, u, v)| ≤ α|u|+ β|v|+ |f(t, 0, 0)|, ∀(t, u, v) ∈ [0, N ]× R2

and thus (2.10) holds. By virtue of (2.11) we have the existence of at least one solution by
Theorem 2.2.

Now consider two possible solutions to (1.1), (1.2) given byy andỹ and letz = y− ỹ. Now
z must satisfy the BVP

∆∇zk

h2
= f(tk, yk,

∆yk

h
)− f(tk, ỹk,

∆ỹk

h
), k = 0, . . . , n− 1,(2.18)

z0 = 0, zn = 0.(2.19)

Rearranging (2.18), (2.19) into an equivalent summation equation, taking absolute values and
using (2.10) as in the proof of Theorem 2.2 we obtain

(2.20) |zk| ≤ h
n−1∑
i=1

G(tk, si)

[
α|zi|+ β

∣∣∣∣∆zi

h

∣∣∣∣] , k = 0, . . . , n,

and

(2.21)

∣∣∣∣∆zk

h

∣∣∣∣ ≤ n−1∑
i=1

|∆G(tk, si)|
[
α|zi|+ β

∣∣∣∣∆zi

h

∣∣∣∣] , k = 0, . . . , n− 1.
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Multiplying (2.21) byN/4 and using (2.14) in (2.20) and (2.8) in (2.21) we derive

max

{
|zk|,

N

4

∣∣∣∣∆zk

h

∣∣∣∣}(1−
(

αN2

8
+

βN

2

))
≤ 0

and since (2.11) holds we must have|zk| = 0 for k = 0, . . . , n. Thus, the solution is unique.

Remark 2.1. Note that the conditions in Theorems 2.1, 2.2 and 2.4 do not involve any restric-
tions on the step-sizeh (apart from the assumption thath ≤ N/2 which is made so that the
problem is well-defined). Thus the conclusions of these theorems apply to those discrete BVPs
which do not arise as approximations to continuous BVPs, for example, the caseh = 1.

Remark 2.2. Note that the the conditions in Theorems 2.1, 2.2 and 2.4 also guarantee the
existence and uniqueness of solutions to (1.3), (1.4).

3. CONVERGENCE OF SOLUTIONS

In this section the results of Section 2 are applied to formulate some convergence theorems.
The following result is restated version of [7, Lemma 9.2] (see also [3, pp.414–415]).

Lemma 3.1. Letn0 andC be positive constants. Assume that the discrete BVP(1.1), (1.2)has
a solutionyn = (yn

0 , . . . , yn
n) for n ≥ n0 and that the condition

(3.1) n|∆yn
k | ≤ C, k = 0, . . . , n− 1, n ≥ n0

is satisfied. Then there is a subsequence{yni} and a solutiony to (1.3), (1.4)such that

(3.2) lim
i→∞

max
0≤t≤ni

|yni
k − y(Nt/ni)| = 0.

In addition, if it is known that(1.3), (1.4)has at most one solution, then the original sequence
{yn} will converge toy in the above sense.

Proof. Choose an arbitrary fixedn ≥ n0 and put

(3.3) zk = yn
k −

A

N
(N − tk)−

B

N
tk, k = 0, . . . , n.

Thenz0 = zn = 0 and by (3.1)

n|∆zk| ≤ C + |B − A| = D, k = 0, . . . , n− 1, n ≥ n0.

Therefore

|zk| ≤ |∆zk−1|+ |zk−1| ≤
D

n
+

k − 1

n
D =

kD

n
, for k = 1, . . . , n− 1.

We see that

|yk| ≤ C + |B − A|+ max{|A|, |B|}, k = 0, . . . , n, n ≥ n0.

Now, the assertion follows from [7, Lemma 9.2].

The following two theorems answer the third question from the Introduction concerning the
convergence of solutions for the discrete problem.

Theorem 3.2. Let the assumptions of Theorem 2.4 hold. Then the discrete problem(1.1), (1.2)
has a unique solutionyn for eachn ≥ 2 and the relevant continuous problem(1.3), (1.4)has a
unique solutiony that satisfies

(3.4) lim
n→∞

max
0≤t≤n

|yn
k − y(Nt/n)| = 0.
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8 IRENA RACHŮNKOVÁ AND CHRISTOPHERC. TISDELL

Proof. Since the conditions of Theorem 2.4 hold, the unique solution to (1.1), (1.2) satisfies
(2.9) for eachn ≥ 2, which means that the condition (3.1) of Lemma 3.1 is fulfilled. Moreover,
by [4, Chap. XII, Theorem 4.1], the continuous problem (1.3), (1.4) has a unique solution
becauseα andβ in (2.17) satisfy (2.11). Therefore, by Lemma 3.1, the convergence in (3.4)
holds.

Theorem 3.3. Let the assumptions of Theorem 2.1 or Theorem 2.2 hold. Then the discrete
problem(1.1), (1.2) has a solutionyn for eachn ≥ 2 and the relevant continuous problem
(1.3), (1.4)has a solutiony that satisfies(3.2).

Proof. Since the conditions of Theorem 2.1 or Theorem 2.2 hold, problem (1.1), (1.2) has a
solutionyn satisfying (2.9) for eachn ≥ 2. So, the condition (3.1) of Lemma 3.1 holds and the
result follows from there.

Example 3.1.Consider the discrete BVP

∆∇yk

h2
= a(tk)|yk|csign yk + b(tk)

∣∣∣∣∆yk

h

∣∣∣∣d + g(tk), k = 0, . . . , n− 1,(3.5)

y0 = A, yn = B,(3.6)

wherea, b, g are continuous functions on[0, N ] andc, d ∈ [0, 1).
Then, by Theorem 2.1, problem(3.5), (3.6) has at least one solutionyn for eachn ≥ 2. By

Theorem 3.3 there is a solutiony to the relevant continuous problem

y′′ = a(t)|y|csign y + b(t)|y′|d + g(t), t ∈ [0, N ],

y(0) = A, y(N) = B,

such that(3.2)holds for some sequence{yni} of solutions of(3.5), (3.6).

Example 3.2.Consider the discrete equation

∆∇yk

h2
= a(tk)yk + b(tk)

∆yk

h
+ g(tk), k = 0, . . . , n− 1,(3.7)

y0 = A, yn = B,(3.8)

wherea, b, g are continuous functions on[0, 1]. If

max
t∈[0,1]

|a(t)|+ 4 max
t∈[0,1]

|b(t)| < 8,

then by Theorem 2.4 problem(3.7), (3.8)has a unique solutionyn for eachn ≥ 2. In addition
there is a unique solutiony to the relevant continuous problem

y′′ = a(t)y + b(t)y′ + g(t), y(0) = A, y(1) = B,

and by Theorem 3.2 the convergence in(3.4)holds.
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