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2 N. THAPA

1. I NTRODUCTION

Let Ω be an open bounded subset ofRn with C1 boundary. Let us consider the following
sine-Gordon equation with variable coefficientβ(x) with Neumann boundary data.

utt(x, t) + αut(x, t)−∇(β(x)∇u(x, t)) + δ sinu(x, t) = f(x, t); (t, x) ∈ Q
∂u

∂n
(t, x)|x∈Γ = 0, t ∈ (0, T )

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω(1.1)

whereT > 0, Q = (0, T ) × Ω, f ∈ L2(Q), u0 ∈ V = H1(Ω) andu1 ∈ H = L2(Ω). The
diffusion coefficientβ(x) ∈ B = {β ∈ L∞(Ω) : 0 < m ≤ β(x) ≤ M a.e. in Ω}. Throughout
this work we assume thatB is equipped withL1(Ω) topology.

For equation(1.1) with constant parameters and Dirischlet boundary conditions, Ha and Gut-
man estimated the parameters. For details, see [6]. Similarly for constant parameters with Neu-
mann boundary data, Thapa estimated parameters. For details, see [9]. In this paper we consider
β(x) ∈ L∞(Ω) along with Neumann boundary data and establish the optimality conditions such
that equation(1.1) exhibits the desired behavior listed below.

Let

(1.2) Pad = {q = (α, β, δ) ∈ [αmin, αmax]× B × [δmin, δmax]},

Define the cost functionalJ(q) by

(1.3) J(q) = k1|u(q;T )− z1
d|2 + k2‖u(q; t)− z2

d‖2
L2(0,T ;H)

wherez1
d ∈ H, z2

d ∈ L2(0, T ;H) andki ≥ 0 for i = 1, 2 with k1+k2 > 0. The dataz1
d andz2

d can
be thought of as the targeted behavior of (1.1). We claim that there existq∗ = (α∗, β∗, δ∗) ∈ Pad

such that

(1.4) J(q∗) = inf
q∈Pad

J(q)

Let q → u(q) from Pad → C([0, T ];H) be the solution map. The existence and uniqueness
of solution map is established in Section 2. In Section 3 we establish the continuity of solution
map with respect to parameters so that the equation(1.4) has a solution if the minimization is
restricted to a compact subset ofPad.

2. EXISTENCE AND UNIQUENESS OF WEAK SOLUTION

In this section, we use the standard argument outlined in [6, 7, 9] for the existence and unique-
ness of weak solution of(1.1). LetH = L2(Ω) be a Hilbert space with following inner product
and norm

(φ, ψ) =

∫
Ω

φ(x)ψ(x)dx, |φ| = (φ, φ)
1
2(2.1)

for all φ , ψ ∈ L2(Ω). Let V = H1(Ω) be a Hilbert space with following inner product and
norm

((φ, ψ)) = (φ, ψ) + (∇φ,∇ψ), ‖φ‖ = ((φ, φ))
1
2(2.2)
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IDENTIFICATION PROBLEM 3

for all φ , ψ ∈ H1(Ω). The dualH ′ is identified withH leading toV ⊂ H ⊂ V ′ with
compact, continuous, and dense injections. For details, see [1] Hence there exists a constant
K1 = K1(Ω) such that

(2.3) |w| ≤ K1‖w‖ for any w ∈ V.

Givenβ ∈ B, we define the following bilinear, continuous, and coercive form.

(2.4) aβ(u, v) =

∫
Ω

uvdx+

∫
Ω

β(x)∇u(x)∇v(x)dx

Let < u, v >V,V ′ denotes the duality pairing betweenV andV ′ and the assoicated linear
operator formV to V ′ defined by< aβu, v > = aβ(u, v) is an isomorphim fromV ontoV ′.
Let {λk}∞k=1 and{wk}∞k=1 are nonzero eigenvalues and eigenfunctions for the operator−∆ + I
defined inV such that{wk}∞k=1 forms an orthonormal basis inH. Then the functions{ wk√

λk
}∞k=1

form an orthonormal basis inV . For details, see [2]. From now on, the dependency onx is
supressed and we use′ and′′ for the time derivatives.
Let

(2.5) W (0, T ) = {u : u ∈ L2(0, T ;V ), u′ ∈ L2(0, T ;H), u′′ ∈ L2(0, T ;V ′)}.

u′ andu′′ are the derivatives in the distributional sense. That is,u′ ∈ L2(0, T ;H) is derivative
of u ∈ L2(0, T ;V ) in the distributional sense if for anyφ ∈ C∞0 (0, T ) andv ∈ V

(2.6)
∫ T

0

(u′(t), v)φ(t)dt = −
∫ T

0

(u(t), v)φ′(t)dt

similarly, u′′ ∈ L2(0, T ;V ′) is second derivative ofu ∈ L2(0, T ;V ) in the distributional sense
if for any φ ∈ C∞0 (0, T ) andv ∈ V

(2.7)
∫ T

0

(u′′(t), v)φ(t)dt =

∫ T

0

(u(t), v)φ′′(t)dt.

Let {cj}∞j=1 be the eigenfunctions of the operatorAβ. The weak solution of (1.1) is a function
u ∈ W (0, T ) satisfying

〈u′′, cj〉+ α(u′, cj) + aβ(u, cj) + δ(sin(u), cj) = (f, cj) + (u, cj), ∀j ∈ N,
u(0) = u0 ∈ V, u′(0) = u1 ∈ H,(2.8)

Thus

(2.9) u′′ + αu′ + Aβu+ δ sinu = f + u, u(0) = u0 ∈ V, u′(0) = u1 ∈ H

which is understood in the sense of distributions on(0, T ) with the values inV ′. For details
see [3]. Two establish uniqueness of weak solution of(2.9), the following results are of critical
importance.

Theorem 2.1. Letw ∈ L2(0, T ;V ), w′ ∈ L2(0, T ;H) andw′′ + Aβw ∈ L2(0, T ;H). Then,
after a modification on the set of measure zero,w ∈ C([0, T ];V ), w′ ∈ C([0, T ];H) and, in
the sense of distributions on(0, T ) one has

(2.10) (w′′ + Aβw,w
′) =

1

2

d

dt
{|w′|2 + aβ(w,w)}

For proof see [4].
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4 N. THAPA

Theorem 2.2. (Gronwall’s Lemma) Letξ(t) be a nonnegative, summable function on [0,T]
which satisfies the integral inequality

(2.11) ξ(t) ≤ C1

∫ t

0

ξ(s)ds+ C2 for constants C1 , C2 ≥ 0

almost everywhere t∈ [0,T]. Then

(2.12) ξ(t) ≤ C2(1 + C1te
C1t) a.e. on 0 ≤ t ≤ T.

In particular, if

(2.13) ξ(t) ≤ C1

∫ t

0

ξ(s)ds a.e. on 0 ≤ t ≤ T, then ξ(t) = 0 a.e. on [0, T ]

For proof see [2].

Theorem 2.3.The solution of(2.9) is unique.

For proof see [9].

Theorem 2.4.Let q = (α, β(x), δ) ∈ Pad, u0 ∈ V, u1 ∈ H andf ∈ L2(0, T ;H). Then
(i). There exists a unique weak solutionu(t; q) of (1.1). This solution satisfiesu ∈ C([0, T ];V )∩

W (0, T ), u′ ∈ C([0, T ];H), and

(2.14) max
0≤t≤T

(‖u(t)‖2 + |u′(t)|2) + ‖u′′(t)‖2
L2(0,T ;V ′) ≤ C

[
‖u0‖2 + |u1|2 + ‖f‖2

L2(0,T ;H)

]
,

whereC is a constant independent ofq ∈ Pad. The approximate solutionsum(t; q) also satisfy
the energy estimate (2.14) with the same constantC.

(ii). The solutionu(t; q) and its approximationsum(t; q) satisfy the following convergence
estimate

|u′(t)− u′m(t)|2 + ‖u(t)− um(t)‖2 ≤ C2(|u1 − Pmu1|2 + ‖u0 − Pmu0‖2

+‖f − Pmf‖2
L2(0,T ;H) +

∫ t

0

| sinu(s; q)− Pm sinu(s; q)|2ds)(2.15)

whereC2 is a constant independent ofq ∈ P.
(iii). Furthermore,um → u in C([0, T ];V ) andu′m → u′ in C([0, T ];H) asm→∞.

Proof. Proof of this theorem is an analog of the one we developed in [9]. However, special
attention will be given for the variable diffusion coefficientβ(x) ∈ L∞(Ω) throughout the
proof. From the priori estimate outlined in [9] we have,

(2.16) max
0≤t≤T

(‖um(t)‖2 + |u′m(t)|2) + ‖u′′m(t)‖2
L2(0,T ;V ′) ≤ C

[
‖u0‖2 + |u1|2 + ‖f‖2

L2(0,T ;H)

]
,

whereC is a constant independent ofq ∈ P = {q = (α, β(x), δ) ∈ [αmin, αmax] × B ×
[δmin, δmax]}.

Existence and convergence:

Estimate (2.16) shows that for anyq ∈ Pad andm ∈ N the approximate solutionsum(q) belong
to same bounded convex ball‖w‖W ≤ C of W (0, T ) for the sameC > 0. Fix a q ∈ Pad.
SinceW (0, T ) is a reflexive space, there exists a subsequenceumk

of um that converges weakly
to a functionz ∈ W (0, T ). According to the energy estimate (2.16) we see that the sequence
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{um}∞m=1 is bounded inL2(0, T ;V ), {u′
m}∞m=1 is bounded inL2(0, T ;H), and{u′′

m}∞m=1 is
bounded inL2(0, T ;V

′
), whereV

′
is the dual space ofV . SinceL2(0, T ;V ), L2(0, T ;H),

andL2(0, T ;V
′
) are reflexive spaces, there exist a subsequence{umk

}∞k=1 ⊂ {um}∞k=1 and
z ∈ L2(0, T ;V ), d1 ∈ L2(0, T ;H), d2 ∈ L2(0, T ;V

′
) such that

umk
⇀ z, in L2(0, T ;V ),

u
′

mk
⇀ d1, in L2(0, T ;H),

u
′′

mk
⇀ d2, in L2(0, T ;V

′
),(2.17)

where⇀ indicates the weak convergence. Since the convergence inW (0, T ) is the distribu-
tional convergence, we have

u
′

mk
⇀ z

′
, in L2(0, T ;H),

u
′′

mk
⇀ z

′′
in L2(0, T ;V

′
) as k →∞.(2.18)

But the weak limit is unique when it exists. Sod1 = z
′

andd2 = z
′′
. Energy estimate

(2.16) also implies that{um}∞m=1 is bounded inL∞(0, T ;V ) and the sequence{u′
m}∞m=1 is

bounded inL∞(0, T ;H). By the Alaoglu Theorem [10], we can find subsequences{umk
}∞m=1

and{u′
mk
}∞m=1 of {um}∞m=1 and{u′

m}∞m=1 respectively such that

umk
⇀ z weak star in L∞(0, T ;V ),

u
′

mk
⇀ z

′
weak star in L∞(0, T ;H).(2.19)

Now we show thatz is a weak solution. SinceV is compactly imbedded inH, then by the
classical compactness theorem [4]umk

→ z in L2(0, T ;H). Using Cauchy Schwartz inequality,
|(sin(umk

)−sin(z), wk)L2(0,T ;H)| ≤ ‖ sin(umk
)−sin(z)‖L2(0,T ;H) ‖wk‖L2(0,T ;H). Since{wk}∞k=1

is orthonormal inH the sequence{wk}∞k=1 is bounded inL2(0, T ;H).
Thus|(sin(umk

)− sin(z), wk)L2(0,T ;H)| ≤ ‖ sin(umk
)− sin(z)‖L2(0,T ;H) → 0 ask →∞. Hence

sin(umk
) → sin(z) in L2(0, T ;H). Thus we have,

〈u′′

m, wj〉+ α(u
′

m, wj) + aβ(um, wj) + δ(Pm sin(um), wj)
= (Pmf, wj) + (um, wj),
um(0) = Pmu0, u′m(0) = Pmu1 for j = 1, 2, ...,m.(2.20)

We pass to the limit in(2.20) to obtain

〈z′′
, wj〉+ α(z

′
, wj) + aβ(z, wj) + δ(sin(z), wj) = (f, wj) + (z, wj)

z(0) = u0, z′(0) = u1 for j = 1, 2, ...,m.(2.21)

Thusz is a weak solution of(1.1). It satisfies the energy estimate

max
0≤t≤T

[‖z(t)‖2 + |z(t)′|2] + ‖z(t)′′‖2
L2(0,T ;V

′
)
≤ C1[‖u0‖2 + |u1|2 + ‖f‖L2(0,T ;H)],

whereC1 is a constant independent ofq ∈ Pad = {q = (α, β, δ) ∈ [αmin, αmax] ×
[βmin, βmax] × [δmin, δmax]. By Lemma(2.3) the solutionz is unique. Thereforeum → z
asm→∞ in L2(0, T ;H) for the entire sequence. Hence(2.9) can be rewritten asz

′′
+Aβz =

f + z − αz
′ − δ sin z. Hencez

′′
+Aβz ∈ L2(0, T ;H). Similarly approximate solution can be

rewritten asu
′′
m+Aβum = Pmf+um−αu

′
m−δPm sin um. Thereforeu

′′
m+Aβum ∈ L2(0, T ;H).

Subtract(2.20) from (2.21) to get

(z − um)
′′

+ Aβ(z − um) = f − Pmf − α(z − um)
′

(2.22)

−δ(sin(z)− Pm sin(um)) + (z − um) ∈ L2(0, T ;H).
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6 N. THAPA

Therefore by Lemma(2.1) we have

1

2

d

dt
{|z′ − u′m|2 + aβ(z − um, z − um)} = ((z − um)′′ + Aβ(z − um), z′ − u′m))

= (f − Pmf − α(z′ − u′m)− δ(sin(z)− Pm sin(um)) + z − um, z
′ − u′m)

= (f − Pmf, z
′ − u′m)− α|z′ − u′m|2 − δ(sin(z)− Pm sin(um), z′ − u′m)

+(z − um, z
′ − u′m).

Integrating both sides over[0, t] we get

|z′(t)− u′m(t)|2 + aβ(z(t)− um(t), z(t)− um(t)) ≤ |u1 − Pmu1|2

+(u0 − Pmu0, u0 − Pmu0) + 2

∫ t

0

|(f − Pmf)(z′ − u′m)|ds

+2|α|
∫ t

0

|(z′ − u′m)|2 ds+ 2|δ|
∫ t

0

|(sin(z)− Pm sin(um))(z′ − z′m)|ds

+

∫ t

0

|(z − um)(z′ − u′m)|ds.

Use|ab| ≤ a2+b2

2
to get

|z′(t)− u′m(t)|2 + ‖z(t)− um(t)‖2 ≤ |u1 − Pmu1|2 + ‖u0 − Pmu0‖2

+‖f − Pmf‖2
L2(0,T ;H) + (2 + |α|+ |δ|)

∫ t

0

|z′ − u′m|2(s)ds

+

∫ t

0

|z − um|2(s)ds+

∫ t

0

| sin(z)− Pm sin(um)|2(s)ds.(2.23)

SinceV is compactly embedded inH, (2.23) can be rewritten as

|z′(t)− u′m(t)|2 + ‖z(t)− um(t)‖2 ≤ C[|u1 − Pmu1|2 + ‖u0 − Pmu0‖2

+‖f − Pmf‖2
L2(0,T ;H) +

∫ t

0

| sin(z)− Pm sin(um)|2(s)ds

+

∫ t

0

|z′ − u′m|2(s)ds+

∫ t

0

‖z − um‖2(s)ds](2.24)

whereC = max{1, (2 + |α|+ |δ|), 4K2
1}.

Using Gronwall’s Lemma we get

|z′(t)− u′m(t)|2 + ‖z(t)− um(t)‖2 ≤ C[|u1 − Pmu1|2 + ‖u0 − Pmu0‖2

+‖f − Pmf‖2
L2(0,T ;H) +

∫ t

0

| sin(z)− Pm sin(um)|2(s)ds].(2.25)

Therefore|z′(t) − u′m(t)|2 + ‖z(t) − um(t)‖2 → 0 asm → ∞. This impliesum → z in
L∞(0, T ;V ) andu′m → z′ in L∞(0, T ;H). But um, u′m ∈ C([0, T ];V ), being the solutions of
the systems of ODEs. This impliesz ∈ C([0, T ];V ) andz′ ∈ C([0, T ];H) after a modification
on a set of measure zero on[0, T ].

3. EXISTENCE OF OPTIMAL PARAMETERS

In this section we establish the continuity of the functional defined in(1.3) on compact subset
of B defined in(1.2).

Lemma 3.1. Letv ∈ V . Then the mappingβ → Aβv fromB into V ′ is continuous.
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Proof. Suppose thatβn → β in B asn → ∞. We denoteA = Aβ andAn = Aβn
. We claim

that‖(An − A)v‖V ′ → 0 asn→∞. Letw ∈ V with ‖w‖ ≤ 1. Then

|〈(An − A)v, w〉|2 ≤
(∫

Ω

|βn(x)− β(x)||∇v(x)||∇w(x)|dx
)2

≤ |βn(x)− β(x)|2
∫

Ω

|∇v(x)|2dx.

For any positive constantC, let ΩC = {x ∈ Ω : |∇(x)|2 > C}. Since|∇(x)|2 ∈ L1(Ω) there
existsC > 0 andε > 0 such that

∫
ΩC
|∇(x)|2dx < ε. But we have,∫

Ω

|βn(x)− β(x)|2
∫

Ω

|∇v(x)|2dx

=

∫
ΩM

|βn(x)− β(x)|2
∫

Ω

|∇v(x)|2dx+

∫
Ω\ΩM

|βn(x)− β(x)|2
∫

Ω

|∇v(x)|2dx

≤ 4M2ε+ 2MC‖βn − β‖L1(Ω) → 0 as n→∞.

Lemma 3.2. Suppose thatβn → β in B, andvn ⇀ v weakly inV , asn → ∞. ThenAnvn ⇀
Av weakly inV ′.

Proof. Letw ∈ V , then

|〈Anvn, w〉 − 〈Av,w〉| = |〈Anw, vn〉 − 〈Aw, v〉|
≤ |〈(An − A)w, vn〉|+ |〈Aw, vn − v〉|.(3.1)

Since a weakly convergent sequence is bounded, we have

|〈(An − A)w, vn〉| ≤ ‖Anw − Aw‖V ′‖vn‖ ≤ c‖Anw − Aw‖V ′ → 0

asn→∞ by Lemma 3.1. The second term|〈Aw, vn − v〉| → 0 sincevn ⇀ v.

The weak solution of(1.1) u(q) depends onq ∈ Pad. Next we show the solution map from
Pad intoC[0, T ];H) is continuous.

Lemma 3.3. Let q ∈ Pad. Then the solution mapq → u(q) from Pad into C([0, T ];H) is
continuous.

Proof. Let qn → q inPad asn→∞. Sinceu(t; q) is the weak solution of(1.1) for anyq ∈ Pad,
we have the following estimate

max
0≤t≤T

(‖u(t; qn)‖2 + |u′(t; qn)|2) + ‖u′′(t; qn)‖2
L2(0,T ;V ′)

≤ C
[
‖u0‖2 + |u1|2 + ‖f‖2

L2(0,T ;H)

]
,(3.2)

whereC is a constant independent ofq ∈ Pad. Estimate (3.2) shows thatu(t; qn) is bounded in
W (0, T ). SinceW (0, T ) is reflexive, we can choose a subsequenceu(t; qnk

) weakly convergent
to a functionz in W (0, T ). The fact thatu(t; qn) is bounded inW (0, T ) implies thatu(t; qn) is
bounded inL2(0, T ;V ), sou(t; qnk

) weakly converges to a functionz in L2(0, T ;V ). SinceV
is compactly imbedded inH, then by the classical compactness theorem in [8]u(t; qn) →
z in L2(0, T ;H). Using Cauchy Schwartz inequality,|(sin(umk

) − sin(z), wk)L2(0,T ;H)| ≤
‖ sin(umk

)− sin(z)‖L2(0,T ;H) → 0 ask →∞.

By (3.2) the derivativesu′(t; qnk
) andz′ are uniformly bounded inL∞(0, T ;H). Therefore

functions{u(t; qnk
), z}∞k=1 are equicontinuous inC([0, T ];H). Thusu(t; qnk

)z in C([0, T ];H).

AJMAA, Vol. 15, No. 2, Art. 5, pp. 1-9, 2018 AJMAA

http://ajmaa.org


8 N. THAPA

In particular,u(t; qnk
)z(t) inH andu(t; qnk

) ⇀ z(t) weakly inV for anyt ∈ [0, T ]. By Lemma
3.2, Ank

u(t; qnk
) ⇀ Az(t) weakly inV ′. Now we see thatz satisfies equation (2.8), i.e. it is

the weak solutionu(q). The uniqueness of the weak solutions implies thatu(qn) → u(q) as
n→∞ in C([0, T ];H) for the entire sequenceu(qn). Thusu(t; qn) → u(q) in C([0, T ];H) as
qn → q in Pad as claimed.

Theorem 3.4. Let q ∈ Pad. Then the solution mapsq → u(q) fromPad into C([0, T ];V ) and
q → u′(q) fromPad intoC([0, T ];H) are continuous.

Proof. We prove this result for approximate solutionum and then extend the proof for the weak
solutionu. Fixm ∈ N. Suppose thatqn → q in Pad asn→∞. Then we claimum(qn) → u(q)
in C([0, T ];V ) andu′m(qn) → u′(q) in C([0, T ];H). The approximate solutionsum(qn) and
um(q) satisfy

u′′m(qn) + Anum(qn) = Pmf + um(qn)− αnu
′
m(qn)− δnPm sin(um(qn)),

u′′m(q) + Aum(q) = Pmf + um(q)− αu′m(q)− δPm sin(um(q)),(3.3)

Note thatA = Aβ andAn = Aβn
. Letw = um(qn) − um(q). Using(3.3) and takingH inner

product we have,

(w′′ + An(w), w′) = ((A− An)um(q), w′) + (w,w′)− αn|w′|2
+(α− αn)(u′m(q), w′)− δn(Pm(sin(um(qn))− sin(um(q))), w′)
+(δ − δn)(Pm sin(um(q)), w′).(3.4)

We havew(t) ∈ L2(0, T ;V ), w′(t) ∈ L2(0, T ;H) andw′′ + An(w) ∈ L2(0, T ;H). Integrating
(3.4) from 0 to t we have,

|w′(t)|2 + ‖w(t)‖2 ≤
∫ t

0

‖(A− An)um(q)‖2
V ′ds+

∫ t

0

|w′(s)|2ds

+|α− αn|
∫ t

0

|u′m(s; q)|2ds+ |α− αn|
∫ t

0

|w′(s)|2ds

+|δ − δn|
∫ t

0

‖um(s; q)‖2ds+ |αn|
∫ t

0

|w′(s)|2ds+ |δn|
∫ t

0

‖w(s)‖2ds

+|δn|
∫ t

0

|w′(s)|2ds.(3.5)

In a finite dimensional normed space all norms are equivalent. Hence there exists a constant
C(m) such that‖w′(s)‖ ≤ C(m)|w′(s)| for anys ∈ [0, T ].

Now the Gronwall’s inequality and the energy estimate (3.2) give

|u′m(t; qn)− u′m(t; q)|2 + ‖um(t; qn)− um(t; q)‖2

≤ c(m)

(∫ T

0

‖(A− An)um(s; q)‖2
V ′ds+ |α− αn|+ |δ − δn|

)
.(3.6)

By the assumptionqn → q in Pad, that isαn → α, δn → δ and βn → β in Pad as
n → ∞. The integral term in the right hand side of (3.6) approaches zero by Lemma 3.1 and
the Lebesgue Dominated Convergence Theorem. Hence the required convergenceum(qn) →
um(q) in C([0, T ];V ) andu′m(qn) → u′m(q) in C([0, T ];H) asn→∞ follows.

Note that the mapping[0, T ] × P → H defined by(s, q) → u(s; q) is continuous, since
q → u(q) ∈ C([0, T ];H) is continuous by Lemma 3.3. Therefore the mapping[0, T ]×P → H
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defined by(s, q) → sin(u(s; q)) is continuous. Thus it takes the compact set[0, T ] × P into a
compact set inH, and the uniform convergence of the integrals in

(3.7)
∫ T

0

| sin(u(s; q))− Pm sin(u(s; q))|2ds→ 0, m→∞

Thereforeu(qn) → u(q), m→∞ in C([0, T ];V ) as claimed. Similar argument can be used
for the convergence of the derivativesu′(qn) → u′(q) in C([0, T ];H). Thus the minimization
problem in(1.4) has a solution if the minimization problem in restrected to compact subset of
Pad.
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