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ABSTRACT. We deal with entire solutions of some special type linear homogeneous partial dif-
ferential equations that are represented in convergent series of Bessel polynomials. We determine
the growth orders and types of the solutions, in terms of Bessel polynomial approximation errors
in both sup norm and”-norm,1 < p < oo.
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2 DEVENDRA KUMAR

1. INTRODUCTION

The Bessel polynomials

= (n+ k)t
yn(t) = Z m(i)
k=0
satisfy the differential equation

d*w dw
2— —_— =
t T (2t +2) o n(n+ 1w = 0.
Let us consider the following homogeneous partial differential equation of the second order:
0%u 0%u ou ou
1.1 P — P 2+2)— —2z— =
(¢ g 7 g PG 2

The existence and behavior of global meromorphic solutions of (1.1) was studied by Hu and
Yang (2], [3]). According to Hu and Yang! ([3]) these solutions are related by Bessel functions
and Bessel polynomials f@t, z) € C2. Also, they proved that partial differential equatil.l)
has an entire solution = f(¢, z) onC? if and only ifu = f(¢, z) has a series expansion

Cn "
12) F(2) = 3 )
n=0
such that
(1.3) lim sup \cn]% = 0.

n—oo

It was found ([3]) that the seriefs (1.2) converges in the domigin= {(t, z) € C%,2|tz| < R},
Where% = limsup,, ., \cnﬁ, 0 < R < 0.
The generating function of Bessel polynomials has the following expansion in the démain

([41):

(1— 2tz)_§exp(%{1 TR o yT;L('t>z”.

Bernstein theorem identifies a real analytic function on the closed unit disk as the restriction
of an analytic function defined on an open disk of raditis> 1 by computingR from the
sequence of minimal errors generated from optimal polynomials approximates. The disk of
maximum radius on which analytic functigfit, =) exists is denoted b z. A function f (¢, z)

is said to be regular iV, if the series[(1]2) converges uniformly on compact subsei3;0fA

class of functionsf (¢, z) regular inDg will be denoted byA(Dg). If f is an entire function,

then we writef € A(C?).

LetIl, be a set of Bessel polynomials of degree no higher thakpproximation of function
f(t,z) € A(Dg) by Bessel polynomialg,(t, z) € I1,, be determined as
(1.4) En(f,R) = inf { max |f(t,z) —gn(t,2)[},

gn(t,z)GHn (t,Z)GDR
whereDy, be the closure oDp.
In ([3]) Hu and Yang studied the growth order and type of entire solutions of the equation

(1.1) in terms of series coefficients given by [1.2). Here in this paper, we eloborate the growth
order and type of entire function solutionsof (1.1) in terms of Bessel polynomial approximation
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errors determined by (1.4).

We define the order of (¢, z) by

logt logt M
o(f) = limsup 2818 (r.f)

r—o00 logr
If 0 < p(f) < oo, then the type of (¢, z) defined by
log" M (r, f)

T(f) = limsup

T—00

rp(f) ’

wherelog™ z = max{log z, 0} and M (r, f) = max|, <, < | (L, 2)].

2. AUXILIARY RESULTS

Lemma 2.1. Let f(¢, z) € A(Dg), then the following inequality holds:
3 1
lea| R" < (=1)" 1 (2n)"22nl(n + 5)6‘”‘1En_1(f, R),
whereE,_(f, R) is defined by[ (1]4).

Proof. In view of orthogonality property of Bessel polynomials! ([1], [4]) with uniform conver-
gence of serie.2) ob.,0 < 7 < R, it follows that the coefficients, given by integrating
counter-clockwise around the unit circle

2.1) e = () s Ly [ g et

21 2 |t|=1

Using the addition theorem of Bessel polynomigl$t), we get

(2.2) / q(t, z)e_%yn(t)dt =0,
t|=1
whereq € 1I,,_;. Bearing[(2.R), we can rewritg (2.1) as
! 1 2
(2.3) cpT" = (—1)”+1n—,(n + —)/ (f(t,2) —q(t,2))yn(t)e  tdt.
21 2 t]=1

In the consequence of Schwartz inequality and orthogonality of Bessel polynomjalg in (2.3), we
obtain

1 1
(2.4) co™" < max |f(t, 2) — q(t, 2)[(=1)"Tn"2" 2 nl(n + 5)6_"_1.
t,ZEDT

Now it follows from the definition oft,, (f, R) that there exists a Bessel polynomjat 11,4,
such that

(2.5) max |£(t,2) — (t, 2)| < 2B, 1(f,7).

t,ZGDT

Puttingg = ¢ in (2.4) and using (2]5) with the arbitrarinessmofwe obtain the required result

from (2.4).
Lemma 2.2. Let f (¢, z) € A(C?), then

B, R) < KM(r, f)( et

for 0 < r < R and all sufficiently large values af. K is a constant independentofandr.
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Proof. First we consider the truncated polynomial

n

Pl(t,2) = > Zyn(®)",

k=0
wherer > 0 and P/ (t, z) € I1,,. From [1.4) for all-,0 < r < R, we get
2.5) Bu(fR) < max 11(62) - L2l < 3 R0,
t,2€DR j=n+1 j'
We have ([3]):

M (r, f)2" (k1)
r2k(2Fk)!

From ([5]) fort # 0 andn — oo, we have

(2.7) lex| < for every r < R.
(2.8) (0) ~ V3L et
Combining [2.6).[(2]7) andl (2.8), it gives

E.(f.R) < M(r, f)e' V2 i '2] Ey Ry,

Jj= n+1

Using Stirling formula for the factorials, we get

(25)! 27, :
712 ~ \/5(?)’ for 7> 1.

Hence

Fort < ¢? the last series is convergent, therefore the required result is immegliate.

Lemma 2.3. The partial differential equatiorj (1.1) has an entire solutior= f(t, z) on C? if
and only ifu = f(¢,z) has a series expansion given py {1.2) such that

(2.9) lim (E,(f, R))" =

n—oo
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Proof. Let f(t, z) € A(Dg) continues to an entire functiof(¢, z). Then equality[(2]9) follows
from Lemmg 2.2. Now le{ (2]9) holds and using the estinjatg (2.6) with Lmma 2.1, we have

(2.10)
L can(t) 1= lenl 2nt .,
> ) eyl (o) + o 3 v 2
n=0 ’ n=1 :

n

< Jeol 4 VEer2E 3 =1y 20)" (0 + D) () B 1 R) ()"

= |co| + 2e7 > (=1 2n) e M B (f, R)(

n=1
Thus our assumptiof (2.9), a uniform convergence of the series in the right side of equality

(1.2) on compact subsets of the complex plane follows. Hence the funttion) € A(Dy)
represented by a serigs ([1.2) shall continue over the whole complex@®|ane

r

2

3. MAIN RESULTS

Theorem 3.1.If f(t, z) is an entire solution of[ (1]1) defined Hy (1.2), then the ordef) is
given by
2lnn

G- ) = s BB R

whereE,_(f, R) is determined by (1}4).

Proof. First we consider the following functions:
_ k -1 < \2k.
fl(taz) _kzzot € Ek(faR)(E) )

and

o0

Plt:2) = 0@+ et B R ™

Itis clear from [2.) thaf (¢, z) and f»(t, z) are entire functions. By Lemma 2.2 and inequality
(2.10), we get
(3.2) u(r, f) < M(r, f) < co+ 26T M(r, f2),

wherey(r, f1) is the maximum term of power series fif¢, z) on the diskDy = {(t,2) € C? :
2/tz| < R}, andM (r, f) = max.j<, <, | f2(t, 2)| is the maximum of the module of function
f2(t, z). Hence by using [([3]), Thm. 1.5], we obtain

(3.3) p(f1) < p(f) < p(fa)-

Applying the formula that expresses the order of an entire solutidgn df (1.1) defingd py (1.2) and

(T:3) in terms of coefficients, given by [([3]), Thm. 1.2], we get
2Inn

3.4 = =1 .

(3.4) p(f1) = p(f2) im sup Wl RLE,(f R

Combining [3.8) and (3]4) we complete the proof of theorgm.
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Theorem 3.2.1f f(t, z) is an entire solution of (1]1) defined Ky (1.2) ahd [1.3) such that
p(f) < oo, then the typd’(f) of f satisfies

ep(f)T(f) = 2°¢ limsup 2[R E,(f, R)| %" .

n—oo

Proof. In view of inequality [(3.2) with [([8]), Thm. 1.5] we obtain
(3.5) T(f1) <T(f) <T(f2)

Now applying the formula of type of an entire solution[of (1.1) in terms of coefficigntgven
by [([3]), Thm. 1.3], we have
p(f) p(f)

(3.6) T(f1) = T(f2) = 2°7 limsup 2[R *"E,(f, R)

n—oo

The equality[(3.6) and inequality (3.5) together complete the required proof.

Theorenj 3. fail to compare the Bessel polynomial approximation effgf$, R) of those
entire solutions of[ (1]1) defined by (1.2) and {1.3), which have same order but their types are
infinity. To include this important class the concept of proximate order has used.

Definition 3.1. A proximate ordep(r) (for the orderp > 0) is a functionp(r) > 0 defined for
r € RT satisfying

1lim, ., p(r) = p,

2lim, oo/ (r)Inr = 0.

So from Theorer 3]2, it is possible to obtain:

Let p(r) be the proximate order of entire solutig(y, ) the formula for the typ&™ (f) with

respect to the proximate ordefr) is given by
ST Depl AT = ) B (1R

wherer = ¢(7) is the function, inverse te = ("),

4., [P-APPROXIMATION ERRORS

In this section we will show that in the results of Sectidn/3,(f, R) can be replaced by
E2(f, R), the approximation error id?-norm,1 < p < oc.

The LP-norm onDy, is defined as
50 = ([ [ 15602 Pl < p < o
Dgr

For f(t,z) € A(Dg), the LP-approximation error is defined as
(4.1) EL(f,R) = inf A f(£,2) = gn(t, 2) llp.R]-

gn(t,z)eHn
For eachn there is an extremal Bessel polynomigl(t,z) € II, for which || f(¢,z) —
g;(tv Z) HP,R: Eg(fv R)
Lemma4.1. Let f(¢,z) € A(Dg), then for alln € N the following inequality holds:
1 1 1
(42) el B < K (=102l + )R B R), = 1
whereK is a constant depending gnand R only.
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Proof. Forp > 1 choose; + % = 1. For f(t,z) € A(Dg) there exists a Bessel polynomial
Gn_1 € II,,_1, by using Holder’s inequality we obtain

4.3) /tl:llf(w)—dn-l(t,Z)ldtS(/ F(62) = Guos (4, 2)Pdt) / ).

[t|=1 [t|=1

3=

Also we know that
(4.4) 2B ((f,R) 2| f(t,2) = Gn-a(t,2) lIp.r -

Slnceyn(t)e*% ~ \/5(%)” or yn(t>€7% ~ 2n+%nnefn,%tn.
From (2.3), we have

n! 1 2
el UM+ 3) [ 1) = (2 llva()e Fdr
T 2" Jir=1
! 1 1 1
(4.5) ~ (—1)"+1n—(n + —)2"+2n"/ |f(7,2) = qu(T,2)||le " =7"|dT
2T 2 |r|=1
! 1
<KD"t )2t [ 1f(r2) = (e 2l
2w 2 Dn
Now combining[(4.8),[(4]4) andl (4.5) with, = ¢,, in (4.5), by using Holder’s inequality we get
‘ 1 1
(4.6) alr™ < K(=1)" 2 (n 4 )2 A" 2ED (£, ) ()5,
m

where K is a constant depending prand 7 only. Forp = 1, (4.6) is obvious with; = oc.
Using the arbitrariness of, we obtain the required result frofn (4.@).

Lemma 4.2. Let f(t, 2) € A(C?), then
(@) BT B) < KaM(r, f)(Ryniret,
for 0 < r < R and all sufficiently large values an Here K is a constant depending gnand
R only.
Proof. Using Lemma 2.2 andl (4.1), the proof is immediage.
Using [4.2) and[(4]7) we see thal(f, R) can be replaced bi?( f, R) in Sectior] B.

Conclusion 1. Since the entire solutions of linear homogeneous partial differential equation
represented by Bessel polynomials are used not only in mathematics, but also in physics, me-
chanics, and other applied sciences, it is important to estimate their growth by expansion co-
efficients in series or by other characteristics, such as approximation errors in both sup norm
and LP-norm,1 < p < .
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