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2 DEVENDRA KUMAR

1. I NTRODUCTION

The Bessel polynomials

yn(t) =
∞∑

k=0

(n + k)!

(n− k)!k!
(
t

2
)k

satisfy the differential equation

t2
d2w

dt2
+ (2t + 2)

dw

dt
− n(n + 1)w = 0.

Let us consider the following homogeneous partial differential equation of the second order:

(1.1) t2
∂2u

∂t2
− z2∂2u

∂z2
+ (2t + 2)

∂u

∂t
− 2z

∂u

∂z
= 0.

The existence and behavior of global meromorphic solutions of (1.1) was studied by Hu and
Yang ([2], [3]). According to Hu and Yang ([3]) these solutions are related by Bessel functions
and Bessel polynomials for(t, z) ∈ C2. Also, they proved that partial differential equation (1.1)
has an entire solutionu = f(t, z) onC2 if and only if u = f(t, z) has a series expansion

(1.2) f(t, z) =
∞∑

n=0

cn

n!
yn(t)zn

such that

(1.3) lim sup
n→∞

|cn|
1
n = 0.

It was found ([3]) that the series (1.2) converges in the domainDR = {(t, z) ∈ C2, 2|tz| < R},
where 1

R
= lim supn→∞ |cn|

1
n , 0 < R < ∞.

The generating function of Bessel polynomials has the following expansion in the domainD1

([4]):

(1− 2tz)−
1
2 exp(

1

t
{1− (1− 2tz)

1
2}) =

∞∑
n=0

yn(t)

n!
zn.

Bernstein theorem identifies a real analytic function on the closed unit disk as the restriction
of an analytic function defined on an open disk of radiusR > 1 by computingR from the
sequence of minimal errors generated from optimal polynomials approximates. The disk of
maximum radius on which analytic functionf(t, z) exists is denoted byDR. A functionf(t, z)
is said to be regular inDR if the series (1.2) converges uniformly on compact subsets ofDR. A
class of functionsf(t, z) regular inDR will be denoted byA(DR). If f is an entire function,
then we writef ∈ A(C2).

Let Πn be a set of Bessel polynomials of degree no higher thann. Approximation of function
f(t, z) ∈ A(DR) by Bessel polynomialsgn(t, z) ∈ Πn be determined as

(1.4) En(f, R) = inf
gn(t,z)∈Πn

{ max
(t,z)∈DR

|f(t, z)− gn(t, z)|},

whereDR be the closure ofDR.

In ([3]) Hu and Yang studied the growth order and type of entire solutions of the equation
(1.1) in terms of series coefficientscn given by (1.2). Here in this paper, we eloborate the growth
order and type of entire function solutions of (1.1) in terms of Bessel polynomial approximation
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errors determined by (1.4).

We define the order off(t, z) by

ρ(f) = lim sup
r→∞

log+ log+ M(r, f)

log r
.

If 0 < ρ(f) < ∞, then the type off(t, z) defined by

T (f) = lim sup
r→∞

log+ M(r, f)

rρ(f)
,

wherelog+ x = max{log x, 0} andM(r, f) = max|z|≤r,|t|≤r |f(t, z)|.

2. AUXILIARY RESULTS

Lemma 2.1. Letf(t, z) ∈ A(DR), then the following inequality holds:

|cn|Rn ≤ (−1)n+1(2n)n2
3
2 n!(n +

1

2
)e−n−1En−1(f, R),

whereEn−1(f, R) is defined by (1.4).

Proof. In view of orthogonality property of Bessel polynomials ([1], [4]) with uniform conver-
gence of series (1.2) onDτ , 0 < τ < R, it follows that the coefficientscn given by integrating
counter-clockwise around the unit circle

(2.1) cnτ
n = (−1)n+1 n!

2πi
(n +

1

2
)

∫
|t|=1

f(t, z)yn(t)e−
2
t dt.

Using the addition theorem of Bessel polynomialsyn(t), we get

(2.2)
∫
|t|=1

q(t, z)e−
2
t yn(t)dt = 0,

whereq ∈ Πn−1. Bearing (2.2), we can rewrite (2.1) as

(2.3) cnτ
n = (−1)n+1 n!

2πi
(n +

1

2
)

∫
|t|=1

(f(t, z)− q(t, z))yn(t)e−
2
t dt.

In the consequence of Schwartz inequality and orthogonality of Bessel polynomials in (2.3), we
obtain

(2.4) cnτ
n ≤ max

t,z∈Dτ

|f(t, z)− q(t, z)|(−1)n+1nn2n+ 1
2 n!(n +

1

2
)e−n−1.

Now it follows from the definition ofEn(f, R) that there exists a Bessel polynomialq̂ ∈ Πn−1,
such that

(2.5) max
t,z∈Dτ

|f(t, z)− q̂(t, z)| ≤ 2En−1(f, τ).

Puttingq = q̂ in (2.4) and using (2.5) with the arbitrariness ofτ , we obtain the required result
from (2.4).

Lemma 2.2. Letf(t, z) ∈ A(C2), then

En(f, R) ≤ KM(r, f)(
R

r
)2ntne

1
t ,

for 0 < r < R and all sufficiently large values ofn. K is a constant independent ofn andr.
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Proof. First we consider the truncated polynomial

P f
n (t, z) =

n∑
k=0

cn

n!
yn(t)zk,

wherer > 0 andP f
n (t, z) ∈ Πn. From (1.4) for allr, 0 < r < R, we get

(2.6) En(f, R) ≤ max
t,z∈DR

|f(t, z)− P f
n (t, z)| ≤

∞∑
j=n+1

|cj|
j!

R2j|yj(t)|.

We have ([3]):

(2.7) |ck| ≤
M(r, f)2k(k!)2

r2k(2k)!
for every r < R.

From ([5]) for t 6= 0 andn →∞, we have

(2.8) |yj(t) ∼
√

2(
2jt

e
)je

1
t .

Combining (2.6), (2.7) and (2.8), it gives

En(f, R) ≤ M(r, f)e
1
t

√
2

∞∑
j=n+1

j!2j

(2j)!
(
2jt

e
)j(

R

r
)2j.

Using Stirling formula for the factorials, we get

(2j)!

j!2j
∼
√

2(
2j

e
)j for j > 1.

Hence

En(f, R) ≤2M(r, f)e
1
t

∞∑
j=n+1

tj(
R

r
)2j

≤ 2M(r, f)e
1
t (

R

r
)2n

∞∑
j=n+1

tj(
R

r
)2j−2n.

For r > eR, substitutingν = j − n, we have

En(f, R) ≤2M(r, f)e
1
t (

R

r
)2n

∞∑
ν=1

tν+n(e)−2ν

≤ 2M(r, f)e
1
t (

R

r
)2ntn

∞∑
ν=1

tν(e)−2ν .

For t < e2 the last series is convergent, therefore the required result is immediate.

Lemma 2.3. The partial differential equation (1.1) has an entire solutionu = f(t, z) on C2 if
and only ifu = f(t, z) has a series expansion given by (1.2) such that

(2.9) lim
n→∞

(En(f, R))
1
n = 0.

AJMAA, Vol. 21 (2024), No. 1, Art. 12, 7 pp. AJMAA

https://ajmaa.org


BESSEL POLYNOMIAL APPROXIMATION. . . 5

Proof. Let f(t, z) ∈ A(DR) continues to an entire functionf(t, z). Then equality (2.9) follows
from Lemma 2.2. Now let (2.9) holds and using the estimate (2.6) with Lemma 2.1, we have

|
∞∑

n=0

cnyn(t)

n!
zn| ≤|co||yo(t)|+ e

1
t

∞∑
n=1

|cn|
n!

rn
√

2(
2nt

e
)n

≤ |co|+
√

2e
1
t 2

3
2

∞∑
n=1

(−1)n+1(2n)n(n +
1

2
)e−n(

2nt

e
)nEn−1(f, R)(

r

R
)n

= |co|+ 2e
1
t

∞∑
n=1

(−1)n+1(2n)ne−2ntnEn−1(f, R)(
r

R
)n.

(2.10)

Thus our assumption (2.9), a uniform convergence of the series in the right side of equality
(1.2) on compact subsets of the complex plane follows. Hence the functionf(t, z) ∈ A(DR)
represented by a series (1.2) shall continue over the whole complex planeC.

3. M AIN RESULTS

Theorem 3.1. If f(t, z) is an entire solution of (1.1) defined by (1.2), then the orderρ(f) is
given by

(3.1) ρ(f) = lim sup
n→∞

2 ln n

ln[R−1En(f, R)]−
1
n

,

whereEn−1(f, R) is determined by (1.4).

Proof. First we consider the following functions:

f1(t, z) =
∞∑

k=0

t−ke−
1
t Ek(f, R)(

z

R
)2k;

and

f2(t, z) =
∞∑

k=1

(−1)k+1(2k)kk!(k +
1

2
)e−k−1Ek−1(f, R)(

z

R
)2k.

It is clear from (2.9) thatf1(t, z) andf2(t, z) are entire functions. By Lemma 2.2 and inequality
(2.10), we get

(3.2) µ(r, f) ≤ M(r, f) ≤ co + 2e
1
t M(r, f2),

whereµ(r, f1) is the maximum term of power series off1(t, z) on the diskDR = {(t, z) ∈ C2 :
2|tz| < R}, andM(r, f2) = max|z|≤r,|t|≤r |f2(t, z)| is the maximum of the module of function
f2(t, z). Hence by using [([3]), Thm. 1.5], we obtain

(3.3) ρ(f1) ≤ ρ(f) ≤ ρ(f2).

Applying the formula that expresses the order of an entire solution of (1.1) defined by (1.2) and
(1.3) in terms of coefficientscn given by [([3]), Thm. 1.2], we get

(3.4) ρ(f1) = ρ(f2) = lim sup
n→∞

2 ln n

ln[R−1En(f, R)]−
1
n

.

Combining (3.3) and (3.4) we complete the proof of theorem.
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Theorem 3.2. If f(t, z) is an entire solution of (1.1) defined by (1.2) and (1.3) such that0 <
ρ(f) < ∞, then the typeT (f) of f satisfies

eρ(f)T (f) = 2
ρ(f)

2 lim sup
n→∞

2n[R−1En(f, R)]
ρ(f)
2n .

Proof. In view of inequality (3.2) with [([3]), Thm. 1.5] we obtain

(3.5) T (f1) ≤ T (f) ≤ T (f2).

Now applying the formula of type of an entire solution of (1.1) in terms of coefficientscn given
by [([3]), Thm. 1.3], we have

(3.6) T (f1) = T (f2) = 2
ρ(f)

2 lim sup
n→∞

2n[R−2nEn(f, R)]
ρ(f)
2n .

The equality (3.6) and inequality (3.5) together complete the required proof.

Theorem 3.2 fail to compare the Bessel polynomial approximation errorsEn(f, R) of those
entire solutions of (1.1) defined by (1.2) and (1.3), which have same order but their types are
infinity. To include this important class the concept of proximate order has used.

Definition 3.1. A proximate orderρ(r) (for the orderρ ≥ 0) is a functionρ(r) ≥ 0 defined for
r ∈ R+ satisfying

1.limr→∞ ρ(r) = ρ,
2.limr→∞ rρ′(r) ln r = 0.

So from Theorem 3.2, it is possible to obtain:

Let ρ(r) be the proximate order of entire solutionf(t, z) the formula for the typeT ∗(f) with
respect to the proximate orderρ(r) is given by

R√
2
(T ∗(f)eρ(f))

1
ρ(f) = ϕ(n)[En(f, R)]

1
2n ,

wherer = ϕ(τ) is the function, inverse toτ = rρ(r).

4. Lp-APPROXIMATION ERRORS

In this section we will show that in the results of Section 3,En(f, R) can be replaced by
Ep

n(f, R), the approximation error inLp-norm,1 ≤ p < ∞.

TheLp-norm onDR is defined as

‖ f(t, z) ‖p,R= [

∫ ∫
DR

|f(t, z)|pdtdz]
1
p , 1 ≤ p < ∞.

Forf(t, z) ∈ A(DR), theLp-approximation error is defined as

(4.1) Ep
n(f, R) = inf

gn(t,z)∈Πn

{‖ f(t, z)− gn(t, z) ‖p,R}.

For eachn there is an extremal Bessel polynomialg∗n(t, z) ∈ Πn for which ‖ f(t, z) −
g∗n(t, z) ‖p,R= Ep

n(f, R).

Lemma 4.1. Letf(t, z) ∈ A(DR), then for alln ∈ N the following inequality holds:

(4.2) |cn|Rn ≤ K(−1)n+1(2n)n2
3
2 n!(n +

1

2
)(πR2)

1
η Ep

n−1(f, R),
1

p
+

1

η
= 1,

whereK is a constant depending onp andR only.
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Proof. For p > 1 choose1
p

+ 1
η

= 1. For f(t, z) ∈ A(DR) there exists a Bessel polynomial
q̂n−1 ∈ Πn−1, by using Holder’s inequality we obtain

(4.3)
∫
|t|=1

|f(t, z)− q̂n−1(t, z)|dt ≤ (

∫
|t|=1

|f(t, z)− q̂n−1(t, z)|pdt)
1
p (

∫
|t|=1

dt)
1
η .

Also we know that

(4.4) 2Ep
n−1(f, R) ≥‖ f(t, z)− q̂n−1(t, z) ‖p,R .

Sinceyn(t)e−
1
t ∼

√
2(2nt

e
)n or yn(t)e−

2
t ∼ 2n+ 1

2 nne−n− 1
t tn.

From (2.3), we have

|cn|τn ≤(−1)n+1 n!

2π
(n +

1

2
)

∫
|τ |=1

|f(τ , z)− qn(τ , z)||yn(τ)e−
2
τ |dτ

∼ (−1)n+1 n!

2π
(n +

1

2
)2n+ 1

2 nn

∫
|τ |=1

|f(τ , z)− qn(τ , z)||e−n− 1
τ τn|dτ

≤ K(−1)n+1 n!

2π
(n +

1

2
)2n+ 1

2 nn

∫
DR

|f(τ , z)− qn(τ , z)|dτ .

(4.5)

Now combining (4.3), (4.4) and (4.5) withqn = q̂n in (4.5), by using Holder’s inequality we get

(4.6) |cn|τn ≤ K(−1)n+1 n!

2π
(n +

1

2
)2n+ 1

2 nn2Ep
n−1(f, τ)(πτ 2)

1
η ,

where K is a constant depending onp andτ only. Forp = 1, (4.6) is obvious withη = ∞.
Using the arbitrariness ofτ , we obtain the required result from (4.6).

Lemma 4.2. Letf(t, z) ∈ A(C2), then

(4.7) Ep
n(f, R) ≤ K1M(r, f)(

R

r
)2ntne

1
t ,

for 0 < r < R and all sufficiently large values onn. HereK1 is a constant depending onp and
R only.

Proof. Using Lemma 2.2 and (4.1), the proof is immediate.

Using (4.2) and (4.7) we see thatEn(f, R) can be replaced byEp
n(f, R) in Section 3.

Conclusion 1. Since the entire solutions of linear homogeneous partial differential equation
represented by Bessel polynomials are used not only in mathematics, but also in physics, me-
chanics, and other applied sciences, it is important to estimate their growth by expansion co-
efficients in series or by other characteristics, such as approximation errors in both sup norm
andLp-norm,1 ≤ p ≤ ∞.
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