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ABSTRACT. Non homogeneous fractional diffusion-wave equation has been solved under lin-
ear/nonlinear boundary conditions. As the order of time derivative changes from0 to 2, the
process changes from slow diffusion to classical diffusion to mixed diffusion-wave behaviour.

Numerical examples presented here confirm this inference. Orthogonality of eigenfunctions
in case of fractional Stürm-Liouville problem has been established.
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1. I NTRODUCTION

The time fractional diffusion-wave equation [1] is obtained from the classical diffusion or
wave equation by replacing the first-or second order time derivative by a fractional derivative of
orderα with 0 < α < 1 or 1 < α < 2, respectively [8]. It represents anomalous subdiffusion
if 0 < α < 1, and anomalous super diffusion in case of1 < α < 2. It is a well established
fact that this equation models various phenomena. Nigmatullin [10] has employed the frac-
tional diffusion equation to describe diffusion in media with fractal geometry. Mainardi [8] has
pointed out that the fractional wave equation governs the propagation of mechanical diffusive
waves in viscoelastic media. Metzler and Klafter [9] have demonstrated that fractional diffusion
equation describes a non-Markovian diffusion process with a memory. Ginoaet al [4] have pre-
sented a fractional diffusion equation describing relaxation phenomena in complex viscoelastic
materials. Recently Agrawal [1] has solved fractional-diffusion equation defined in a bounded
space domain using finite sine transform technique. This equation has also been solved using
Adomian decomposition method [2, 5].

In the present paper we solve nonhomogeneous fractional diffusion-wave equation under ho-
mogeneous/nonhomogeneous boundary conditions using the method of separation of variables
to get analytical solutions. Some numerical solutions have been obtained for derivatives of
fractional order. It is observed that asα increases from0 to 2, the process changes from slow
diffusion to classical diffusion to diffusion-wave to classical wave process.

The paper has been organized as follows. In Section 2 nonhomogeneous fractional diffusion-
wave equation with boundary conditions has been solved by variation of parameters method
to get analytical solution. Section 3 deals with diffusion-wave equation in higher dimensions.
In Section 4, nonhomogeneous boundary conditions have been explored. Some Numerical
examples have been presented in Section 5 and fractional Stürm-Liouville problem has been
studied in Section 6.

2. NONHOMOGENEOUS FRACTIONAL DIFFUSION -WAVE EQUATION

We consider the following nonhomogeneous fractional diffusion-wave equation:

(2.1) Dα
t u(x, t) = k

∂2u(x, t)

∂x2
+ q(t), 0 < x < π, t > 0, 0 < α ≤ 2,

whereDα
t denotes Caputo fractional derivative with respect tot variable andk denotes a con-

stant coefficient,x andt are the space and time variables,q(t) is assumed to be a continuous
function oft. The Caputo fractional derivative of orderα, is defined as:

Dα
t u(x, t) =

1

Γ(m− α)

∫ t

0

(t− τ)m−α−1∂mu(x, t)

∂tm
dτ , m− 1 < α ≤ m,m ∈ IN, t > o.

Note that forα = 1 and forα = 2, ( 2.1) represents the standard diffusion and the wave equation
respectively (homogeneous ifq(t) ≡ 0 and non-homogeneous otherwise). In the present paper
we consider the cases0 < α < 1 and1 < α < 2, which represent slow diffusion and diffusion-
wave respectively [7]. We consider (2.1) along with the boundary conditions given below:

u(0, t) = u(π, t) = 0, t ≥ 0,(2.2)

u(x, 0) = f(x), 0 < x < π,(2.3)

ut(x, 0) = 0, 0 < x < π.(2.4)

Equation (2.1) (0 < α < 1 ), together with boundary conditions (2.2) and (2.3), yields boundary
value problem for fractional diffusion. Since (2.1) is nonhomogeneous, we use the method
of variation of parameters [3]. In this method first we solve the corresponding homogeneous
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equation (puttingq(t) ≡ 0 in (2.1)), together with the boundary conditions, by separation of
variables method. Assumeu(x, t) = X(x)T (t), then (2.1) along with conditions (2.2) and (2.3)
yields

(2.5) X
′′
(x) + λX(x) = 0, X(0) = X(π) = 0,

and

(2.6) Dα
t T (t) + λkT (t) = 0, t ≥ 0.

The Stürm-Liouville problem given by (2.5) has eigenvaluesλn = n2 and the corresponding
eigenfunctionsXn(x) = sin nx, (n = 1, 2, · · · ). The solution of (2.6) for the caseλ = n2 is
(upto a constant multiple)Tn(t) = Eα(−n2ktα), whereEα denotes the Mittag-Leffler function
[6, 11]. Now we seek a solution of the nonhomogeneous problem which is of the form

(2.7) u(x, t) =
∞∑

n=1

Bn(t) sin nx.

We assume that the series (2.7) can be differentiated term by term. Note [3]

(2.8) 1 =
∞∑

n=1

2[1− (−1)n]

nπ
sin nx, 0 < x < π.

Hence, in view of (2.1), we get

(2.9)
∞∑

n=1

[
Dα

t Bn(t) + kn2Bn(t)
]
sin nx =

∞∑
n=1

2[1− (−1)n]

nπ
q(t) sin nx.

By identifying the coefficients in the sine series on each side of this equation, we get

(2.10) Dα
t Bn(t) + kn2Bn(t) =

2[1− (−1)n]

nπ
q(t), n = 1, 2, · · · .

Using (2.3),

(2.11)
∞∑

n=1

Bn(0) sin nx = f(x), 0 < x < π,

which yields

(2.12) Bn(0) = bn =
2

π

∫ π

0

f(x) sin nx dx, (n = 1, 2, · · · ).

For each value of n, (2.10) and (2.12) make up a fractional initial value problem, having the
solution [6]
(2.13)

Bn(t) = bnEα,1(−n2ktα)+

∫ t

0

τα−1Eα,α(−n2ktα)
2[1− (−1)n]

nπ
q(t− τ) dτ , (n = 1, 2, · · · ).

Substituting (2.12) and (2.13) in (2.7), we get

u(x, t) =
2

π

∞∑
n=1

Eα(−n2ktα) sin nx

∫ π

0

f(r) sin nr dr

+
∞∑

n=1

sin nx
2[1− (−1)n]

nπ

∫ t

0

τα−1Eα,α(−n2ktα)q(t− τ) dτ .(2.14)

Note: Equation (2.1) together with (2.2),(2.3) and (2.4) form boundary value problem for frac-
tional wave equation. Solving similarly and observing thatB′

n(0) = 0, we get the solution as
given in (2.14).q(t) ≡ 0 in ( 2.14) corresponds to the case discussed by Agrawal [1].
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3. FRACTIONAL DIFFUSION -WAVE IN HIGHER DIMENSIONS

In this section we consider

(3.1) Dα
t u = a2

(
∂2u

∂x2
+

∂2u

∂y2

)
, 0 < x, y < π, t > 0, 0 < α ≤ 2,

wherea denotes a constant coefficient. We consider (3.1) along with the following boundary
conditions.

u(x, 0, t) = u(x, π, t) = u(0, y, t) = u(π, y, t) = 0, t ≥ 0,(3.2)

u(x, y, 0) = f(x, y), 0 ≤ x, y ≤ π,(3.3)

ut(x, y, 0) = 0, 0 ≤ x, y ≤ π.(3.4)

We assume that the partial derivativesfx(x, y) andfy(x, y) are also continuous. Functions of
the typeU = X(x)Y (y)T (t) satisfy (3.1) if

(3.5)
Dα

t T (t)

a2T (t)
=

X
′′
(x)

X(x)
+

Y
′′
(y)

Y (y)
= −λ,

whereλ is a separation constant. (3.5), implies:

(3.6)
Y

′′
(y)

Y (y)
= −λ− X

′′
(x)

X(x)
= −µ,

whereµ is another separation constant. In view of (3.1) we get,

(3.7) X
′′
(x) + (λ− µ)X(x) = 0, X(0) = 0, X(π) = 0,

and

(3.8) Y
′′
(y) + µY (y) = 0, Y (0) = 0, Y (π) = 0.

(3.5), together with (3.4) gives:

(3.9) Dα
t T (t) + λa2T (t) = 0, T ′(0) = 0.

The Stürm-Liouville problem given in (3.8) has eigenvaluesµ = m2 (m = 1, 2, · · · ) and
the corresponding eigenfunctions areYm(y) = sin my. Similarly the Stürm-Liouville problem
given in (3.7) has eigenvaluesλ − µ = n2 (n = 1, 2, · · · ) and the corresponding eigenfunc-
tions areXn(x) = sin nx. Thus (3.9) takes the form:

(3.10) Dα
t T (t) + a2(m2 + n2)T (t) = 0, T ′(0) = 0, m = 1, 2, · · · , n = 1, 2, · · ·

For any fixed positive integersm andn, the solution of (3.10) is (except for a constant factor)
Tmn(t) = Eα (−a2(m2 + n2) tα)[6]. The formal solution of the boundary value problem is,
therefore

(3.11) u(x, y, t) =
∞∑

n=1

∞∑
m=1

Bmn sin nx sin my Eα

(
−a2(m2 + n2) tα

)
,

where the coefficientsbmn need to be determined so that

(3.12) f(x, y) =
∞∑

n=1

∞∑
m=1

Bmn sin nx sin my, 0 ≤ x, y ≤ π.

By grouping terms in this double sine series so as to display the total coefficient ofsin nx for
eachn, one can write formally

(3.13) f(x, y) =
∞∑

n=1

(
∞∑

m=1

Bmn sin my

)
sin nx,
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for each fixedy (0 ≤ y ≤ π), (3.13) is a Fourier series representation of the functionf(x, y),
with variablex (0 ≤ x ≤ π), provided that

(3.14)
∞∑

m=1

Bmn sin my =
2

π

∫ π

0

f(x, y) sin nx dx (n = 1, 2, · · · ).

The right-hand side here is a sequence of functionsFn(y) (n = 1, 2, · · · ), each represented by
its Fourier sine series ( 3.14) on the intervaly (0 ≤ y ≤ π) where

(3.15) Bmn =
2

π

∫ π

0

Fn(y) sin my dy (m = 1, 2, · · · ).

Hence the coefficientsBmn have the values

(3.16) Bmn =
4

π2

∫ π

0

sin my

∫ π

0

f(x, y) sin nx dx dy.

In view of (3.16), (3.11) gives
(3.17)

u(x, y, t) =
4

π2

∞∑
n=1

∞∑
m=1

Eα

(
−a2(m2 + n2) tα

)
sin nx sin my

∫ π

0

sin mr

∫ π

0

f(s, r) sin ns ds dr

4. NONHOMOGENEOUS BOUNDARY CONDITIONS

We consider the following homogeneous fractional diffusion-wave equation

(4.1) Dα
t u = k

∂2u

∂x2
, 0 < x < 1, t > 0, 0 < α ≤ 2,

along with the nonhomogeneous boundary value conditions:

u(0, t) = 0, , t > 0,(4.2)

u(x, 0) = 0, 0 < x < 1,(4.3)

Kux(1, t) = A, t > 0.(4.4)

For1 < α ≤ 2, the initial condition:

(4.5) ut(x, 0) = 0, 0 < x < 1,

should be added. Let

(4.6) u(x, t) = U(x, t) + Φ(x).

Equations(4.1)–(4.6) yield

Dα
t U = k

[
∂2U

∂x2
+ Φ

′′
(x)

]
, 0 < x < 1, t > 0, 0 < α ≤ 2,

U(0, t) + Φ(0) = 0,(4.7)

K [Ux(1, t) + Φ′(1)] = A,

U(x, 0) + Φ(x) = 0,

Ut(x, 0) = 0, (for 1 < α ≤ 2).

Assume

(4.8) Φ
′′
(x) = 0 andΦ(0) = 0, KΦ′(1) = A.
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(4.8) yields a boundary value problem forU(x, t) that does have two-point boundary conditions
leading to a Stürm-Liouville problem:

Dα
t U = k

∂2U

∂x2
, (0 < x < 1, t > 0), 0 < α ≤ 2

U(0, t) = 0,(4.9)

Ux(1, t) = 0,

U(x, 0) = −Φ(x),

Ut(x, 0) = 0, (for 1 < α ≤ 2).

(4.8) implies that

(4.10) Φ(x) =
A

K
x.

Let U = X(x)T (t). Then

(4.11) U(x, t) =
∞∑

n=1

Eα(−[
(2n− 1)π

2
]2k tα) φn(x),

whereφn(x) = (2n−1)π√
2

sin x. The BVP given in (4.9) has been solved in Section 2, and has the
following solution.

(4.12) u(x, t) =
A

K

[
x + 8

∞∑
n=1

(−1)n

(2n− 1)2π2
Eα(−[

(2n− 1)π

2
]2k tα) sin

(2n− 1)π

2
x

]
.

5. I LLUSTRATIVE EXAMPLES

Example. Consider the following nonhomogeneous fractional diffusion-wave equation along
with the boundary conditions given below:

Dα
t u =

∂2u

∂x2
+ t, 0 < α ≤ 2, t > 0,

u(0, t) = u(π, t) = 0, t ≥ 0,

u(x, 0) = f(x), 0 < x < π,

ut(x, 0) = 0, 0 < x < π,

where

(5.1) f(x) =

x 0 < x <
π

2
,

π − x
π

2
< x < π.
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In Figs. 1, 2, 3 and 4 we plotu(x, t) for 0 ≤ t ≤ 1 and various values ofα.

Fig. 1 (α = .75) Fig. 2 (α = 1)

Fig. 3 (α = 1.5) Fig. 4 (α = 2)

Comment: As the order of the time derivative changes from0 to 2, the process changes from
slow diffusion to classical diffusion to mixed diffusion wave behaviour.

6. FRACTIONAL STÜRM -L IOUVILLE PROBLEM

Consider the following BVP

(6.1)
[
p(x) y(β)

]′
+ λ q(x) y = 0, 0 < β < 1, y(a) = y(b) = 0,

wherey(β) = 1
Γ(1−β)

∫ x

a
(x− t)−βy′(t)dt. Let yn andym satisfy (6.1) for the valuesλ = λn and

λ = λm respectively,i.e.[
p(x) y(β)

n

]′
+ λn q(x) yn = 0, yn(a) = yn(b) = 0,(6.2) [

p(x) y(β)
m

]′
+ λm q(x) ym = 0, ym(a) = ym(b) = 0.(6.3)

Multiplying (6.2) byym and (6.3) byyn respectively, integrating and subtracting, we get∫ b

a

{
yn(x)

[
p(x) y(β)

m (x)
]′ − ym(x)

[
p(x) y(β)

n (x)
]′}

dx =

−
∫ b

a

[
p(x) y(β)

m (x) y′n(x)− p(x) y(β)
n (x) y′m(x)

]
dx =(6.4)

(λm − λn)

∫ b

a

q(x) yn(x) ym(x) dx.
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Note ∣∣∣∣∫ b

a

p(x)y(β)
n (x)y′m(x)dx

∣∣∣∣ =

∣∣∣∣∫ b

a

[∫ x

a

(x− t)−β

Γ(1− β)
y′n(t)dt

]
p(x) y′m(x)dx

∣∣∣∣
≤ M

Γ(1− β)

∣∣∣∣∫ b

a

[∫ x

a

(x− t)−β dt

]
y′m(x) dx

∣∣∣∣(6.5)

≤ M

Γ(1− β)

∣∣∣∣∫ b

a

(x− a)1−β

1− β
y′m(x) dx

∣∣∣∣
≤ M(b− a)1−β

(1− β)Γ(1− β)

∣∣∣∣∫ b

a

y′m(x) dx

∣∣∣∣
= 0, asym(a) = ym(b) = 0.

Similarly
∣∣∣∫ b

a
p(x)y

(β)
m (x)y′n(x) dx

∣∣∣ = 0. Hence(λm − λn)
∫ b

a
q(x)yn(x)ym(x) dx = 0. Thus

the eigenfunctions corresponding to distinct eigenvalues are orthogonal.
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