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ABSTRACT. Let Ð be a convex quadrilateral in the plane and let M1 and M2 be the midpoints
of the diagonals of Ð. It is well–known that if E is an ellipse inscribed in Ð, then the center of
E must lie on Z, the open line segment connecting M1 and M2 . We use a theorem of Marden
relating the foci of an ellipse tangent to the lines thru the sides of a triangle and the zeros of a
partial fraction expansion to prove the converse: If P lies on Z, then there is a unique ellipse with
center P inscribed in Ð. This completely characterizes the locus of centers of ellipses inscribed
in Ð. We also show that there is a unique ellipse of maximal area inscribed in Ð. Finally, we
prove our most signifigant results: There is a unique ellipse of minimal eccentricity inscribed in
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2 ALAN HORWITZ

1. I NTRODUCTION

Let Ð be aconvex quadrilateral in thexy plane. A problem, often referred to in the
literature as Newton’s problem, was to determine the locus of centers of ellipses inscribed in
Ð. Chakerian ([1]) gives a partial solution of Newton’s problem using orthogonal projection,
which is the solution actually given by Newton, which we state as

Theorem 1.1.LetM1 andM2 be the midpoints of the diagonals of Ð. IfE is an ellipse inscribed
in Ð, then the center ofE must lie on the open line segment,Z, connectingM1 andM2.

However, Theorem 1.1 does not really give the precise locus of centers of ellipses inscribed
in Ð. Newton only proved that the center ofE must lie onZ, as is noted in ([1]). In [3] we
proved that it is indeed the case thatevery point of Z is the center of an ellipse inscribed in Ð.
In this paper we give a much shorter and more succint proof (Theorem 2.3) that if(h, k) ∈ Z,
then there is a unique ellipse, with center(h, k), inscribed in Ð. In addition, we prove two other
important results not proved in [3]. First, we show that there is a unique ellipse ofmaximal area
inscribed in Ð (Theorem 3.3). Our most signifigant result is Theorem 4.4: There is a unique
ellipse,E, of minimal eccentricity inscribed in Ð. Theorem 4.4 is somewhat more difficult to
prove, and our proof gives a constructive method for finding such an ellipse by finding the roots
of a polynomial of degree four. Only one of those roots lies in a known interval containing the
x coordinate of the center ofE. Of course, if Ð is atangential quadrilateral , meaning that a
circle can be inscribed in Ð, then that circle would be the unique ellipse of minimal eccentricity
inscribed in Ð.

The approach given here is based on the following theorem of Marden ([4], Theorem 1)
relating the foci of an ellipse tangent to the lines thru the sides of a triangle and the zeros of a
partial fraction expansion.

Theorem 1.2.Let z1, z2, z3 be three noncollinear points in the complex plane, and letF (z) =

t1
z − z1

+
t2

z − z2

+
t3

z − z3

,
3∑

k=1

tk = 1, and letZ1 andZ2 denote the zeros ofF (z). LetL1, L2, L3

be the line segments connectingz2, z3, z1, z3, andz1, z2, respectively. Ift1t2t3 > 0, thenZ1 and
Z2 are the foci of an ellipse,E, which is tangent toL1, L2, andL3 in the pointsζ1, ζ2, ζ3, where

ζ1 =
t2z3 + t3z2

t2 + t3
, ζ2 =

t1z3 + t3z1

t1 + t3
, ζ3 =

t1z2 + t2z1

t1 + t2
, respectively.

2. L OCUS OF CENTERS

We shall prove Theorem 2.3 below for the case when no two sides of Ð are parallel. Our
methods extend easily to the case when exactly two sides of Ð are parallel, that is, when Ð is
a trapezoid. Of course, if Ð is a parallelogram, then the midpoints of the diagonals coincide,
and the line segmentZ is just a point. Since ellipses, tangent lines to ellipses, and convex
quadrilaterals are preserved under affine transformations, we may assume that the vertices of
Ð are(0, 0), (1, 0), (0, 1), and(s, t) for some real numberss andt. Then the midpoints of the

diagonals of Ð areM1 =

(
1

2
,
1

2

)
, M2 =

(
1

2
s,

1

2
t

)
, and the equation of the line thruM1 and

M2 is

y = L(x) =
1

2

s− t + 2x(t− 1)

s− 1
.

Since Ð is convex, it follows easily thats > 0, t > 0 ands + t ≥ 1. Since Ð is four–sided
and no two sides of Ð are parallel,s + t > 1 ands 6= 1 6= t.

Let I denote the open interval between
1

2
and

1

2
s. We shall need the following lemmas.
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ELLIPSES INSCRIBED IN A CONVEX QUADRILATERAL 3

Lemma 2.1. If h ∈ I ands + t > 1, thens + 2h(t− 1) > 0.

Proof. If s ≥ 1, thenI =

(
1

2
,
1

2
s

)
⇒ h <

1

2
s⇒ s−2h > 0⇒ s+2h(t−1) = s−2h+2ht >

0. If s ≤ 1, thenI =

(
1

2
s,

1

2

)
⇒ h <

1

2
⇒ 1− 2h > 0⇒

s + 2h(t− 1) = 2h(s + t− 1) + (1− 2h)s > 0.

Lemma 2.2. Let E1 andE2 be ellipses with the same foci. Suppose also thatE1 andE2 pass
through a common point,z0. ThenE1 = E2.

Proof. Denote the foci byZ1 andZ2. ThenEj has equation|z − Z1|+ |z − Z2| = kj, j = 1, 2,
and|z0 − Z1|+ |z0 − Z2| = kj, j = 1, 2⇒ k1 = k2 ⇒ E1 = E2.

Theorem 2.3. Let Ð be a convex quadrilateral in thexy plane and letM1 and M2 be the
midpoints of the diagonals of Ð. LetZ be the open line segment connectingM1 and M2. If
(h, k) ∈ Z then there is a unique ellipse with center(h, k) inscribed in Ð.

Proof. Denote the lines which make up∂ (Ð) by L1: y = 0, L2: x = 0, L3: y =
t

s− 1
(x− 1),

L4: y = 1 +
t− 1

s
x. The three intersection points of the linesL1, L2, andL3 are the complex

pointsz1 = 0, z2 = 1, andz3 = − t

s− 1
i. Using Theorem 1.2, ift1 andt2 are real numbers

with t1t2 (1− t1 − t2) > 0, there is an ellipse,E1, tangent toL1, L2, andL3 with foci Z1 and

Z2 which are the zeros ofF (z) =
t1
z

+
t2

z − 1
+

1− t1 − t2
z + t

s−1
i

. Z1 andZ2 are the zeros of the

numerator ofF (z), which is the polynomial

p1(z) = (s− 1) z2 + (it(t1 + t2) + (s− 1)(t2 − 1)) z − it1t

= (s− 1) (z − Z1)(z − Z2).

Thus the center,C1, of E1 is

1

2
(Z1 + Z2) = − 1

2(s− 1)
(it(t1 + t2) + (s− 1)(t2 − 1)) .

Taking real and imaginary parts yieldsC1 =

(
1

2
− 1

2
t2,−

1

2
t
t1 + t2
s− 1

)
. The three intersection

points of the linesL1, L2, andL4 are the complex pointsw1 = 0, w2 = i, andw3 = − s

t− 1
.

Again, using Theorem 1.2, ifs1 ands2 are real numbers withs1s2 (1− s1 − s2) > 0, there
is an ellipse,E2, tangent toL1, L2, and L4 with foci, W1 and W2, which are the zeros of

G(z) =
s1

z
+

s2

z − i
+

1− s1 − s2

z + s
t−1

. W1 andW2 are the zeros of the numerator ofG(z), which

is the polynomial

p2(z) = (t− 1) z2 + (s(s1 + s2) + i (s2 − 1) (t− 1)) z − is1s

= (t− 1) (z −W1)(z −W2).

A simple computation shows that the center ofE2 is C2 =

(
−1

2
s
s1 + s2

t− 1
,−1

2
(s2 − 1)

)
. One

can solve fort1 andt2 to show that the center ofE1 equalsC1 = (h, k) if and only if
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4 ALAN HORWITZ

(2.1) t1 = 2h− 1− 2k

(
s− 1

t

)
, t2 = 1− 2h.

Similarly, the center ofE2 equalsC2 = (h, k) if and only if

(2.2) s1 = 2k − 1− 2h
t− 1

s
, s2 = 1− 2k.

Our objective now is to show that if(h, k) ∈ Z and if s1, s2, t1, t2 are defined by (2.1) and
(2.2), thent1t2 (1− t1 − t2) > 0 ands1s2 (1− s1 − s2) > 0, so that the ellipsesE1 andE2

exist. Then we shall show thatk = L(h) forcesE1 and E2 to be thesameellipse! Let-
ting E = E1 = E2 then gives an ellipse which is inscribed in Ð since(h, k) ∈ Ð. So given
(h, k) ∈ Z, let s1, s2, t1, t2 be defined by (2.1) and (2.2). Now(h, k) ∈ Z ⇒ k = L(h) =
1

2

s− t + 2h(t− 1)

s− 1
. Substitutingk = L(h) into (2.1) and (2.2) givest1t2 (1− t1 − t2) =

(s− 2h) (2h− 1)
s + 2h(t− 1)

t2
> 0 sinceh ∈ I and by Lemma 2.1. Similarly,

s1s2 (1− s1 − s2) = (s + 2h(t− 1)) (2h− 1) (s− 2h)
(t− 1)2

s2 (s− 1)2 > 0,

again sinceh ∈ I and by Lemma 2.1. The centers ofE1 andE2 are now both equal to(h, k),
with E1 tangent toL1, L2, andL3, andE2 tangent toL1, L2, andL4. By (2.1) and (2.2),

p1(z) = (s− 1) z2 − 2 (s− 1) (h + ki)z(2.3)

+i (t(1− 2h) + 2k(s− 1))

and

p2(z) = (t− 1) z2 − 2 (t− 1) (h + ik)z(2.4)

−i (2h(1− t) + s(2k − 1)) .

Substitutingk = L(h) into (2.3) and (2.4) gives
p1(z)

s− 1
=

p2(z)

t− 1
= z2−2(h+iL(h))z+i

s− 2h

s− 1
.

Thus
p1(z)

s− 1
and

p2(z)

t− 1
have thesamecoefficients. Recalling that the zeros ofp1 andp2 are the

foci of E1 andE2, respectively, we have shown thatE1 andE2 have thesame foci. Also, by

Theorem 1.2,E1 is tangent toL1 at ζ3 =
t1z2 + t2z1

t1 + t2
=

t1
t1 + t2

=
s− 2h

s− t + 2ht− 2h
≡ z0.

Similarly, E2 is tangent toL1 at ζ2 =
s1w3 + s3w1

s1 + s3

, which, upon simplifying, also equalsz0.

ThusE1 andE2 are ellipses with the same foci and which pass through the common point,z0.
By Lemma 2.2,E1 = E2. HenceE = E1 = E2 is an ellipse, with center(h, k), which is
tangent toall four lines L1, L2, L3, andL4. Of courseE is inscribed in Ð since(h, k) ∈ Z ⊂
Ð.

To proveuniqueness, if E1 andE2 are distinct concentric ellipses, then, as noted in ([1]),
their four common tangents would have to form a parallelogram. If Ð is not a parallelogram,
then this is a contradiction. We leave the proof of Theorem 2.3 when exactly two sides of Ð are
parallel to the reader.
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ELLIPSES INSCRIBED IN A CONVEX QUADRILATERAL 5

3. M AXIMAL AREA

The following lemma is a generalization of a result which appears in ([1]) on the area of an
ellipse inscribed in a triangle. Chakerian’s result assumes that the pointP lies inside ABC,
the triangle with verticesA, B, andC, while our result assumes thatP lies outsideABC. In
that case, area(ABC) = area(CPA) + area(APB)− area(BPC). The details of the proof are
similar and we omit them.

Lemma 3.1. Given a triangleABC and a pointP /∈ ∂ (ABC), let α = area(BPC), β =
area(CPA), andγ = area(APB). LetL1, L2, andL3 be the three lines thru the sides ofABC,

and letE be an ellipse with centerP which is tangent toL1, L2, andL3. If σ =
1

2
(α + β + γ),

then area(E) =
4π

area(ABC)

√
σ (σ − α) (σ − β) (σ − γ).

Lemma 3.2. LetE be the ellipse in Theorem 1.2 and letU be the triangle formed byz1, z2, and
z3. Then area(E) = π× area(U)

√
t1t2t3.

Proof. If T is the composition of a rotation, a magnification, and/or a translation of the plane,
then it is easy to show that the foci ofT (E) areT (Z1) andT (Z2). Thus we may assume that
U has verticesA = (0, 0), B = (s, t), andC = (0, 1), wheres > 0. ThenZ1 andZ2 are the

zeros ofF (z) =
t1
z

+
t2

z − i
+

1− t1 − t2
z − s− ti

and the center ofE is P =
1

2
(Z1 + Z2) = (s(t1 +

t2)/2, (t(t1 + t2) + 1− t2) /2). A simple computation shows that area(APB) =
1

4
s |1− t2|,

area(CPA) =
1

4
s |t1 + t2|, and area(BPC) =

1

4
s |1− t1|. Considering the casest1 > 0, t2 >

0, t1 < 0, t2 < 0, t1 > 1, t2 < 0, or t1 < 0, t2 > 1, it follows that σ(σ − α)(σ − β)(σ −
γ) =

1

256
s4t1t2t3. By Lemma 3.1, area(E) =

4π

area(U)
(σ(σ − α)(σ − β)(σ − γ))1/2 =

1

2
πs
√

t1t2t3 ⇒
area(E)

area(U)
=

π(s/2)
√

t1t2t3
(s/2)

= π
√

t1t2t3.

Theorem 3.3. Let Ð be a convex quadrilateral in thexy plane. Then there is a unique ellipse
of maximal area inscribed in Ð.

Proof. Again, we may assume that the vertices of Ð are(0, 0), (1, 0), (0, 1), and(s, t) where
the positive real numberss and t satisfy the hypotheses in §2. LetAE = area of an el-
lipse E inscribed in Ð. We want to maximizeAE as a function ofh, where(h, L(h)) de-
notes the center ofE. Assume first that no two sides of Ð are parallel. From the proof

of Theorem 2.3,t1t2 (1− t1 − t2) = (s− 2h) (2h− 1)
s + 2h(t− 1)

t2
. SinceE is tangent

to L1, L2, and L3 from the proof of Theorem 2.3, by Lemma 3.2, it suffices to maximize

S(h) = (s− 2h) (2h− 1) (s + 2h(t − 1)), h ∈ I = the open interval between
1

2
and

1

2
s.

Now S(1/2) = S(s/2) = 0, andS(h) ≥ 0 for h ∈ I by Lemma 2.1. HenceS ′(h0) = 0 for
someh0 ∈ I with S(h0) a local maximum. Also,S(h0) must be theonly local maximum of
S(h) on I, elseS ′(h) would havethree zeros inI. ThusS(h0) is the unique global maximum
of S(h) on I. If exactly two sides of Ð are parallel, so that Ð is the trapezoid with vertices
(0, 0), (1, 0), (0, 1), and(1, t), t 6= 1, then one can show that the area of the ellipse inscribed in

Ð is S(k) = (2k − 1)
t− 2k

t3
, k ∈ I, whereI is the open interval between

1

2
and

1

2
t. Setting

S ′(k) = 0 yieldsk =
1

4
t +

1

4
, which is themidpointof I.
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6 ALAN HORWITZ

4. M INIMAL ECCENTRICITY

Unfortunately, since the ratio of the eccentricity of two ellipses isnot preserved in general
under nonsingular affine transformations of the plane, we cannot assume, as earlier, that that the
vertices of Ð are(0, 0), (1, 0), (0, 1), and(s, t). However, by using anisometry of the plane,
we can assume that Ð has vertices(0, 0), (0, C), (A, B), and(s, t), where

(4.1) s > 0, A > 0, C > 0, t > B

Let L1: y =
B

A
x, L2: x = 0, L3: y = B +

t−B

s− A
(x−A), andL4: y = C +

t− C

s
x denote the

lines which make up the boundary of Ð. As earlier, we shall provide the details for the proof of
Theorem 4.4 below with the assumption that no two sides of Ð are parallel.

•Since Ð is convex,(s, t) must lie above
←−−−−−−−→
(0, C) (A, B) and(A, B) must lie below

←−−−−−→
(0, 0) (s, t),

which implies

(4.2) A(t− C) + (C −B)s > 0, At−Bs > 0.

• Since no two sides of Ð are parallel,L1 ∦ L4 andL2 ∦ L3, which implies

(4.3) Bs− A(t− C) 6= 0, s 6= A.

Let

I =

{
(A/2, s/2) if A < s
(s/2, A/2) if s < A.

M1 =

(
1

2
A,

1

2
(B + C)

)
andM2 =

(
1

2
s,

1

2
t

)
are the midpoints of the diagonals of Ð and the

equation of the line thruM1 andM2 is

(4.4) y = L(x) =
1

2
t +

B + C − t

A− s

(
x− 1

2
s

)
, x ∈ I.

Remark 4.1. It is useful to note that reflection of Ð thru thex axis followed by translation
upward byC units is equivalent to permutings andA, then replacingt by C − B, and finally
replacingB by C − t. That transformation leavesq(h) andD invariant.

We first prove some key lemmas about the following quadratic polynomial inh:

q(h) = 4
(
(s− A)2 + (t−B − C)2

)
(h− A/2)2(4.5)

+ 4 (s− A) (A(s− A) + B(t−B) + C(t− C)) (h− A/2)

+
(
A2 + (C −B)2

)
(s− A)2 .

Let D denote (the discriminant ofq)/16 (s− A)2 . A simple computation yields

(4.6) D = 4BC((t−B)(t− C) + s(s− A))− (At− s(B + C))2 .

We shall prove in general thatq has no zeros inI. First we show that ift − C andB have
opposite signs, thenq has no real zeros whatsoever.

Lemma 4.1. If (t− C)B < 0, thenD < 0.

AJMAA, Vol. 2, No. 1, Art. 4, pp. 1-12, 2005 AJMAA

http://ajmaa.org


ELLIPSES INSCRIBED IN A CONVEX QUADRILATERAL 7

Proof. If (1) s > A, t > C andB < 0, or (2) s < A, t < C andB > 0, thenD < 0 by (4.1)
and (4.6). Ifs < A, t > C andB < 0, or s > A, t < C andB > 0, then permutes andA,
replacet by C −B, and finally replaceB by C − t (that is equivalent to reflection of Ð thru the
x axis followed by translation upward byC units). It is easy to show that that transformation
leavesq(h) andD invariant and the new parametersA, B, C, s, andt then satisfy (1) or (2).

Now we show that ift− C andB have thesame signandD ≥ 0, thenq cannot vanish inI.

Lemma 4.2. If D ≥ 0 and(t− C)B ≥ 0, thenq′(A/2)q′(s/2) > 0.

Proof. A simple computation gives

q′(A/2)q′(s/2) =

16 (s− A)2 (
D + (As + B(t− C) + C(t−B)) ((B + C − t)2 + (s− A)2)

)
and the lemma follows immediately from (4.1).

Some simplification yieldsq(A/2) = (A2 + (C −B)2) (s− A)2 andq(s/2) =
(s2 + t2) (s− A)2, which are both positive by (4.1). Thusq has anevennumber of roots inI,
which implies that ifq′(A/2) andq′(s/2) have the same sign, thenq cannot vanish inI . Thus
lemmas 4.1 and 4.2 imply

Proposition 4.3. q has no zeros inI.

We can now prove

Theorem 4.4. Let Ð be aconvex quadrilateralin thexy plane. Then there is a unique ellipse
of minimal eccentricity inscribed in Ð.

Proof. As in the proof of Theorem 2.3,L1, L2, andL3 form a triangle,T1, whose vertices are

the complex pointsz1 = 0, z2 = A + Bi, andz3 = −At−Bs

s− A
i. If E is any ellipse inscribed

in Ð, thenE must be tangent to the three sides ofT1 (though not necessarily inscribed inT1).

By Theorem 1.2, the foci,Z1 andZ2, of E are the zeros ofF (z) =
t1
z

+
t2

z − (A + Bi)
+

1− t1 − t2

z +
At−Bs

s− A
i
. Now F (z) = 0 ⇐⇒ p(z) = 0, where

p(z) = (s− A) z2 −
(A((s− A)(1− t2)− it(t1 + t2)) + iB((s− A)(1 + t1) + A(t1 + t2))) z +

i (Bs− At) (A + iB) t1.

The center,̂C, of E is
1

2
(Z1 + Z2) = −p′(0)/p′′(0) =

1

2 (s− A)
((A (1− t2) (s− A) + (−At (t1 + t2) + B (s− A + At2 + t1s))i) .

Taking real and imaginary parts yields

Ĉ =
1

2 (s− A)
(A (1− t2) (s− A) ,−At (t1 + t2) + B (s− A + At2 + t1s)).

If Ĉ = (h, k) ∈ Ð, then solving fort1 andt2 yields

(4.7) t1 =
2(t−B)h + 2k(A− s)− (At−Bs)

At−Bs
, t2 =

A− 2h

A
.
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8 ALAN HORWITZ

Substitute fort1 andt2 in the formula above forp(z), let k = L(h) (see (4.4), and denote the
resulting polynomial byph(z). Some simplification yields

(4.8) ph(z) = (s− A)z2 − 2(s− A)(h + iL(h))z − (B − iA) (s− 2h) C.

By Theorems 1.1 and 2.3, the locus of centers of ellipses inscribed in Ð is precisely(h, k) with
k = L(h), h ∈ I. We now view the foci,Z1 andZ2, as functions ofh ∈ I, and we will minimize
the eccentricity,τ = τ(h), as a function ofh. Let b = b(h) anda = a(h) denote the lengths of
the semi–minor and semi–major axes of any ellipse,E, inscribed in Ð. Let

R = a2 − b2 =
1

4
|Z2 − Z1|2

and let
W = a2b2.

Solvinga2− b2 = R, a2b2 = W for a2 andb2 in terms ofR andW yieldsa2 = ρ1+ R, b2 = ρ1,

whereρ1 is a root ofẐ2 + ẐR −W . Thusρ1 =
1

2

(
−R +

√
R2 + 4W

)
sincea2 > 0, which

implies thata2 =
1

2

(
R +
√

R2 + 4W
)
, b2 =

1

2

(
−R +

√
R2 + 4W

)
⇒ τ 2 = 1 − b2

a2
=

2

1 +

√
1 +

4W

R2

, R 6= 0 (If R = 0, then Ð is tangential and the ellipse of minimal eccentricity

in that case would be a circle). We shall minimize the eccentricity by maximizing
W

R2
. To derive

a formula forR2, we proceed as follows. First, letr(h) denote the discriminant ofph(z): Some
simplification yieldsr(h) = r1(h) + ir2(h), where

r1(h) = 4
(
(s− A)2 − (t−B − C)2) (h− A/2)2 +(4.9)

4(s− A) (A(s− A) + B(B − t) + C(C − t)) (h− A/2) +

(s− A)2 (
A2 − (C −B)2

)
and

r2(h) = 8 (t−B − C) (s− A) (h− A/2)2(4.10)

+ 4 (s− A) (At + sC + Bs− 2AB) (h− A/2)

+ 2A (s− A)2 (B − C) .

Now (s − A)(Z2 − Z1) = ±
√

r(h) ⇒ (s− A)2 |Z2 − Z1|2 =
∣∣∣√r(h)

∣∣∣2 = |r(h)| ⇒

(s− A)4 |Z2 − Z1|4 = |r(h)|2. R2 =
1

16
|Z2 − Z1|4 =

1

16 (s− A)4 |r(h)|2.

Let
u(h) = |r(h)|2 = (r1(h))2 + (r2(h))2 ,

so thatu is a polynomial of degree4 in h. Then

(4.11) R2 =
1

16 (s− A)4u(h).

To obtainW in terms ofh, usingk = L(h) and (4.7),

t1t2t3 = t1t2 (1− t1 − t2) = (2 (Bs− A(t− C)) h− sAC) (2h− A) (2h− s)
C

A2 (At−Bs)2 .
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Thust1t2t3 is a constant multiple of

(4.12) S(h) = (2 (Bs− A(t− C)) h− sAC) (2h− A) (2h− s)

S vanishes ath1 =
1

2
A, h2 =

1

2
s, and

h3 =
1

2

ACs

Bs− A(t− C)
.

Using (4.1), (4.2), and (4.3), we show now thath3 /∈ I. First, if Bs − A(t − C) < 0, then

h3 < 0 ⇒ h3 /∈ I. If Bs − A(t − C) > 0 ands > A, thenh3 −
1

2
s =

1

2
s

At−Bs

Bs− A(t− C)
>

0 by (4.2)⇒ h3 /∈ I. Finally, if Bs − A(t − C) > 0 and s < A, then h3 −
1

2
A =

1

2
A

A(t− C) + (C −B)s

Bs− A(t− C)
> 0 by (4.2)⇒ h3 /∈ I. In addition we have shown

Bs− A(t− C) < 0⇒ h3 < 0(4.13)

Bs− A(t− C) > 0⇒ h3 > max(s/2, A/2).

Note thatS ′(A/2) = 2A (s− A) (A(t− C) + (C −B)s) andS ′(s/2) =
−2s (s− A) (At−Bs). Hence, by (4.1) and (4.2),

(4.14)

{
S ′(A/2) > 0, S ′(s/2) < 0 if s > A
S ′(A/2) < 0, S ′(s/2) > 0 if s < A

SinceS(h3) = 0 andh3 /∈ I, (4.14) implies thatS(h) > 0 on I. Also,

S ′(h3) = 2As (At−Bs)
A(t− C) + (C −B)s

Bs− A(t− C)
.

so that, by (4.1) and (4.2),

(4.15) Bs− A(t− C)S ′(h3) > 0.

Since the area ofE equalsπab, by Lemma 3.2,W = a2b2 is also a constant multiple ofS(h).

Thus, by (4.11), to maximize
W

R2
it suffices to maximize

E(h) =
S(h)

u(h)
, h ∈ I.

Write E ′(h) =
N(h)

u2(h)
, where

N(h) = u(h)S ′(h)− S(h)u′(h)

is a polynomial of degree≤ 6. We shall show thatN , and henceE ′, has precisely one zero in
I. Using a computer algebra system (we used Maple within Scientific Workplace 4.1),

N(h) = M(h)q(h)

whereq is the polynomial defined earlier in (4.5) andM is a polynomial of degree≤ 4. While
the expression forM is rather long, we shall use the fact that

(4.16) M(h) = −32 (Bs− A(t− C))
(
(s− A)2 + (t−B − C)2) h4 + · · · ,

which is again easy to verify using a computer algebra system. Now some algebraic simplifica-
tion shows thatq(h3) =
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(A(2Bs− At)(t− C) + B(C −B)s2)
2
+ A2s2C2 (s− A)2

(Bs− A(t− C))2 , which implies, by (4.1), that

(4.17) q(h3) > 0.

Also, we showed earlier that

(4.18) q(A/2) > 0, q(s/2) > 0.

It follows easily from (4.9), (4.10), and a similar expansion abouth = s/2 that

(4.19) u(A/2) > 0, u(s/2) > 0.

Now r1(h3) = 0⇒ A (At− 2Bs) (C − t)+s2B(C−B) = ±ACs (s− A) andr2(h3) = 0⇒
A (At− 2Bs) (C − t) + s2B (C −B) = 0. Thusr1(h3) = r2(h3) = 0 ⇒ ACs (s− A) = 0,
which has no solution. Thusu(h3) = r2

1(h3) + r2
2(h3) 6= 0, which implies that

(4.20) u(h3) > 0.

There are now four cases to consider, depending on the sign ofs − A and the sign ofBs −
A(t−C). We provide the details for Case 1:Bs−A(t−C) > 0 ands > A. ThenN(A/2) =
u(A/2)S ′(A/2) > 0, N(s/2) = u(s/2)S ′(s/2) < 0, andN(h3) = u(h3)S

′(h3) > 0 by (4.14),
(4.15), (4.19), and (4.20). SinceM(h) = N(h)/q(h), (4.17) and (4.18) imply

(4.21) M(A/2) > 0, M(s/2) < 0, M(h3) > 0

By (4.13),h3 > s/2. Consider the four open intervalsI1 = (−∞, A/2), I2 = I = (A/2, s/2),
I3 = (s/2, h3), andI4 = (h3,∞). By (4.16), lim

h→∞
M(h) = −∞. Thus by (4.21) and Rolle’s

Theorem,M has precisely one zero in each ofI1 thru I4. The other cases follow in a similar
fashion. Sincedeg M = 4, M has precisely one root inI. By Proposition 4.3,N = Mq has
precisely one root inI. Assume first thatu does not vanish inI. ThenE = S/u andE ′ = N/u2

are continuous onI. SinceE(A/2) = E(s/2) = 0, andE ′ has precisely one zero inI, E must
have a unique global maximum on̄I. The existence and uniqueness of the ellipse of minimal
eccentricity then follows immediately. Now suppose thatu(h0) = 0 for someh0 ∈ I. Then
r(h0) = 0, which implies thatZ1 = Z2. h = h0 would yield the ellipse of minimal eccentricity
in this case, which would be a circle. In addition, sinceu(h) ≥ 0 for all h, u′(h0) = 0 as well,
which implies thatN(h0) = 0. SinceN cannot have more than one zero inI, u also cannot
have more than one zero inI. That proves the uniqueness of an inscribed circle when Ð is a
tangential quadrilateral, which is, of course, well known. Again, we have proven the existence
and uniqueness of the ellipse of minimal eccentricity.

Remark 4.2. The proof above of Theorem 4.4 yields a precise formula for the eccentricity of

an ellipse inscribed in Ð in terms ofh: W = a2b2 =
1

π2
(area(E))2 = (area(T1))

2 (t1t2t3)

by Lemma 3.2. A simple computation yields(area(T1))
2 =

1

4
A2 (Bs− At)2

(s− A)2 , which, by

(4.7) givesW =
1

4

C

(s− A)2S(h). Using R2 =
1

16 (s− A)4u(h), τ 2 =
2

1 +

√
1 +

4W

R2

=

2

1 +
√

1 + 16 (s− A)2 CE(h)
.
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4.1. Algorithm. To find the ellipse of minimal eccentricity,E, inscribed in a convex quadri-
lateral Ð with no parallel sides, one does the following:
• Use an isometry of the plane so that Ð has vertices(0, 0), (0, C), (A, B), and(s, t), where

s > 0, A > 0, C > 0 andt > B.
• Use (4.9) and (4.10) to find the quartic polynomialu(h) = (r1(h))2 + (r2(h))2

• Use (4.12) to find the sixth degree polynomialN(h) = u(h)S ′(h)− S(h)u′(h)
• FactorN(h) = M(h)q(h)
• Thex coordinate of the center ofE is the unique root,h0, in I of the quartic polynomial

M . They coordinate of the center ofE is
1

2
t +

B + C − t

A− s

(
h0 −

1

2
s

)
. One could also skip

the previous step and takeh0 to be the unique root inI of the sixth degree polynomialN .
• The foci ofE are the roots of the polynomialph0(z) given in (4.8)

• The length of the major axis ofE is 2a, wherea2 =
1

2

(
R +
√

R2 + 4W
)
,

R2 =
1

16 (s− A)4u(h0), andW =
1

4

C

(s− A)2S(h0).

Example: Suppose thats = 3, t = 4, A = 2, B = −1, andC = 3. ThenM(h) =
800h4 +480h3−12 000h2 +15 680h−3840 and the unique root ofM in I = (1, 1.5) is h0 ≈ 1.
232 8. The corresponding ellipse,E, of minimal eccentricity has fociZ1 ≈ 1. 097 2 − 0.034 4i
andZ2 ≈ 1. 368 4 + 2. 965 5i. The length of the major axis ofE is≈ 3. 883 1 and the equation
of E is 60. 019 0x2 + 24. 316 1y2 − 6. 509 8xy − 138. 440 2x − 63. 248 6y + 41. 128 9 = 0.
Finally, the minimal eccentricity is≈ .775 7. See Figure 1 below.

Figure 1: Ellipse of minimal eccentricity inscribed in Ð

4.2. Trapezoids. We did not give the details of the proof of Theorem 4.4 when Ð is a trapezoid.
We provide here the specifics for finding thex coordinate of the center of the ellipse of minimal
eccentricity inscribed in Ð. Assume, without loss of generality, that the linesL1 andL3 of Ð
are parallel. ThenBs− A(t− C) = 0, and one can show that

M(h) = 16
(
A2 + B2

)
h3 − 12

(
B2 + A2

)
(A + s) h2 +

4A
(
2sA2 + ABC − C2A− CBs + 2B2s

)
h + A2C2 (A + s) .

AJMAA, Vol. 2, No. 1, Art. 4, pp. 1-12, 2005 AJMAA

http://ajmaa.org


12 ALAN HORWITZ

The x coordinate of the center of the ellipse of minimal eccentricity inscribed in Ð is the
unique root ofM in I. For example, suppose thats = 4, t = 11, A = 1, B = 2, andC = 3.
ThenM(h) = 80h3− 300h2 + 52h + 45 and the unique root ofM in I = (.5, 2) is h ≈ .531 0

5. FUTURE RESEARCH AND OPEN QUESTIONS

• Theorems 3.3 and 4.4 yield two new points inside a convex quadrilateral, Ð: The centers
of the ellipses of maximal area and of minimal eccentricity inscribed in Ð. Is there a nice
relationship between these points ?
• In [2], Dorrie characterizes the unique ellipse,E, of minimal eccentricity passing thru the

vertices of a convex quadrilateral, Ð. He shows thatE is the ellipse whose equal conjugate
diameters possess the conjugate directions common to all ellipses passing thru the vertices of
Ð. Is there a similar characterization for the unique ellipse of minimal eccentricityinscribedin
Ð?

Related to this:
• Is there a nice relationship between the ellipse of minimal eccentricity inscribed in Ð and

the ellipse of minimal eccentricity passing thru the vertices of Ð ? This would generalize the
known relationship between the inscribed and circumscribed circles of bicentric quadrilaterals.
• Show that there is a unique ellipse of maximalarc lengthinscribed in Ð, and provide an

algorithm for finding such an ellipse.
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