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ABSTRACT. Let b be a convex quadrilateral in the plane and let M1 and M2 be the midpoints
of the diagonals of . It is well-known that if E is an ellipse inscribed in B, then the center of
E must lie on Z, the open line segment connecting M1 and M2 . We use a theorem of Marden
relating the foci of an ellipse tangent to the lines thru the sides of a triangle and the zeros of a
partial fraction expansion to prove the converse: If P lies on Z, then there is a unique ellipse with
center P inscribed in B. This completely characterizes the locus of centers of ellipses inscribed
in B. We also show that there is a unique ellipse of maximal area inscribed in . Finally, we

prove our most signifigant results: There is a unique ellipse of minimal eccentricity inscribed in
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2 ALAN HORWITZ

1. INTRODUCTION

Let B be aconvex quadrilateral in the zy plane. A problem, often referred to in the
literature as Newton’s problem, was to determine the locus of centers of ellipses inscribed in
b. Chakerian ([1]) gives a partial solution of Newton’s problem using orthogonal projection,
which is the solution actually given by Newton, which we state as

Theorem 1.1.Let M; and M; be the midpoints of the diagonals of b Hfis an ellipse inscribed
in B, then the center off must lie on the open line segme#t,connectingV/; and M.

However, Theorerp 1.1 does not really give the precise locus of centers of ellipses inscribed
in B. Newton only proved that the center 8f must lie onZ, as is noted in (J1]). In[3] we
proved that it is indeed the case tleaery point of Z is the center of an ellipse inscribed in .

In this paper we give a much shorter and more succint proof (Theorem 2.3) thatjfc Z,

then there is a unique ellipse, with centér k), inscribed in . In addition, we prove two other
important results not proved inl[3]. First, we show that there is a unique ellipgexdfnal area
inscribed in B (Theorerp 3.3). Our most signifigant result is Thedremn 4.4: There is a unique
ellipse, £, of minimal eccentricity inscribed in B. Theorern 4.4 is somewhat more difficult to
prove, and our proof gives a constructive method for finding such an ellipse by finding the roots
of a polynomial of degree four. Only one of those roots lies in a known interval containing the
x coordinate of the center df. Of course, if D is @angential quadrilateral, meaning that a
circle can be inscribed in B, then that circle would be the unique ellipse of minimal eccentricity
inscribed in .

The approach given here is based on the following theorem of Mardéen ([4], Theorem 1)
relating the foci of an ellipse tangent to the lines thru the sides of a triangle and the zeros of a
partial fraction expansion.

Theorem 1.2. Let zy, 25, z3 be three noncollinear points in the complex plane, and-let) =
3

t t t
LT . >t = 1,and letZ, andZ, denote the zeros df(z). LetL;, Ly, Ly
Z—2 RR—2Z9 Z—2Z3 1

be the line segments connectingzs, z1, z3, andzy, zo, respectively. It t,t3 > 0, thenZ; and

Z, are the foci of an ellipse, which is tangent td.;, Lo, and L in the points(,, (5, (5, Where
_ lozz + 1329  thizgt+ i3z ¢y = t129 + tozq
AT T A =222 T2

A R

ts + t3
2. Locus oF CENTERS

, respectively.

We shall prove Theorein 2.3 below for the case when no two sides of B are parallel. Our
methods extend easily to the case when exactly two sides of b are parallel, that is, when P is
a trapezoid. Of course, if b is a parallelogram, then the midpoints of the diagonals coincide,
and the line segmerd is just a point. Since ellipses, tangent lines to ellipses, and convex
quadrilaterals are preserved under affine transformations, we may assume that the vertices of
b are(0,0),(1,0), (0,1), and(s, t) for some real numbersandt¢. Then the midpoints of the
diagonals of b aré/; = %,% , My = (1

1 . .
55 §t)’ and the equation of the line thid; and
M,y is

ls—t+2x(t—1)

Since D is convey, it follows easily that> 0,¢ > 0 ands + ¢ > 1. Since D is four-sided
and no two sides of b are parallet,+¢ > 1 ands # 1 # ¢.

. 1 .
Let I denote the open interval betwegrandﬁs. We shall need the following lemmas.
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ELLIPSES INSCRIBED IN A CONVEX QUADRILATERAL 3
Lemma2.1.If h € Tands +¢ > 1, thens + 2h(t — 1) > 0.

11 1
Proof. If s > 1, then] = (5, 53) = h < 35 = s—2h > 0= s+2h(t—1) = s—2h+2ht >

2 2
s+2h(t—1)=2h(s+t—1)+ (1 —2h)s> 0.1

1 1 1
O.Ifsgl,then[:(§s,— >h<-=1-2h>0=

Lemma 2.2. Let £, and E; be ellipses with the same foci. Suppose also haand E, pass
through a common point,. ThenE; = E,.

Proof. Denote the foci byZ; andZ,. ThenE; has equatiof: — Z;|+ |z — Z3| = k;,5 = 1,2,
and‘ZO — Zl| + |Zo — ZQ‘ = kj,j = 1,2 = ki =ko= FE, = FEs. 1

Theorem 2.3. Let B be a convex quadrilateral in they plane and letd/; and M, be the
midpoints of the diagonals of D. Lef be the open line segment connectihg and M,. If
(h, k) € Z then there is a unique ellipse with centér, k) inscribed in .

t
s—1
x. The three intersection points of the lineg, L,, and L; are the complex

Proof. Denote the lines which make up®) by Li: y =0, Lo: x = 0, L3: y =
t—1

(x — 1),

L4:y:1+

. t . .
pointsz; = 0, 23 = 1, andzz = — 17;. Using Theore 2, if, andt¢, are real numbers
8 —_

with ¢1t5 (1 — t; — t9) > 0, there is an ellipsel;, tangent tal,, L,, and L with foci Z; and
t 11—t —t
2 + 1 —
—1 z2+ 1
numerator ofF'(z), which is the polynomial

. t
Z, which are the zeros of (z) = — + 2 7, and Z, are the zeros of the
4 y4

pi(z) = (s = 1) 2% + (it(ty + to) + (s — 1) (t2 — 1)) 2 — ityt
=(s—1)(z—2Z1)(z — Zs).
Thus the centel,;, of E; is

%(ZlJFZQ) _ (it(ts + 1) + (s — 1)(t2 — 1)).

2(s—1)

. . . . 1 1 1t +t

Taking real and imaginary parts yield§ = (5 — Sta =5t Lt 12
S _

points of the lined., L,, and L, are the complex pointg; = 0, w, = i, andws = —

). The three intersection

S
- - - - t n 1 '

Again, using Theorerp 1.2, if; and s, are real numbers with; s, (1 — s; — s5) > 0, there
is an ellipse,F,, tangent toL,, L,, and L, with foci, W; and W;, which are the zeros of

S1 S9o 1-— S1— S

A Z—1 2+
is the polynomial

p2(2) = (t—1) 22 + (s(s1 +52) +i(so—1)(t — 1)) 2 —isys

=(t—1)(z—Wy)(z — Ws).
. . . 1 51+ S2 1
A simple computation shows that the centerffis Cy = ~555 7173 (s —1)). One
can solve fort; andt, to show that the center @, equalsC, = (h, k) if and only if

2. W, andW, are the zeros of the numerator@fz), which

AIJMAA Vol. 2, No. 1, Art. 4, pp. 1-12, 2005 AIJMAA


http://ajmaa.org

4 ALAN HORWITZ

-1
(2.1) t1:2h—1—2k(8 ),t2:1—2h.
Similarly, the center of, equalsCy, = (h, k) if and only if

t—1
(22) 81:2k—1—2h ,52:1—2]{

S

Our objective now is to show that {fs, k) € Z and if s1, s0, 11, t> are defined by (2]1) and
), thent ty (1 —t; —t5) > 0 @andsyss (1 — s; — s2) > 0, so that the ellipse&’; and E,
exist. Then we shall show that = L(h) forces £, and E, to be thesameellipse! Let-
ting £ = E, = E, then gives an ellipse which is inscribed in b sinéek) € B. So given
(h,k) € Z, let sy, so, 11,15 be defined by[(2]1) a.2). NoWi, k) € Z = k = L(h) =

Ls—t42n(t—1) Substitutingk = L(h) into ) and ) givesity (1 — 11 —1y) =

2 s—1
(s —2h) (2h — 1) %ﬁt—l) > 0 sinceh € I and by Lemml. Similarly,
(t—1)°
5159 (1 — 81— 89) = (s + 2h(t — 1)) (2h — 1) (s — 2h) ——= >0,
s?(s—1)

again sincer € I and by Lemma 2|1. The centers Bf and E,, are now both equal tth, k),
with £, tangenttal,, L., and L3, andE, tangent taL,, L,, and L4. By (2.7) and[(2.R),
(2.3) pi(2) = (s —1)22 —2(s—1) (h+ ki)z

i (4(1 = 2h) + 2k(s — 1))

and

(2.4) po(2)=(t—1)22—2(t—1)(h+ik)z
—i(2h(1 —t) + s(2k — 1)).

Lo . - pi(z)  pe(2) , s —2h
Substitutingk = L(h) into (2.3) and|(2.4) glveg—s =17 —2(h+iL(h))z+i P
Thuspl(zi and?z(zl) have thesamecoefficients. Recalling that the zerosafandp, are the

5 — _
foci of £ and E,, respectively, we have shown th&f and £; have thesame foci Also, by

. t1z2 + tQZl tl s—2h
Theorem 1.2F, is tangent tol; at(; = = = = 2p.
El g vates = = T i +t; s—t+2nt—2n
Similarly, F, is tangent tol; at(, = w, which, upon simplifying, also equals.

S S
ThusE; and E, are ellipses with the sarr%e focg:i and which pass through the common pgint,
By Lemma[2.2,E, = E,. HenceE = E, = E, is an ellipse, with centeth, k), which is
tangent taall four lines L,, Lo, L3, andL,. Of courseF is inscribed in  since(h, k) € Z C
b.

To proveuniquenessif F; and E, are distinct concentric ellipses, then, as notedlin ([1]),
their four common tangents would have to form a parallelogram. If B is not a parallelogram,
then this is a contradiction. We leave the proof of Thedrerm 2.3 when exactly two sides of b are
parallel to the readen
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3. MAXIMAL AREA

The following lemma is a generalization of a result which appears in ([1]) on the area of an
ellipse inscribed in a triangle. Chakerian’s result assumes that the pdias inside ABC,
the triangle with verticesi, B, andC', while our result assumes th&tlies outside ABC'. In
that case, aréal BC') = aredC' PA) + ared APB) — ared BPC'). The details of the proof are
similar and we omit them.

Lemma 3.1. Given a triangleABC and a pointP ¢ 0 (ABC), leta = area BPC),[} =
area(CPA),and~y = area(APB). LetL,, L,, and L3 be the three lines thru the sidesABC,

. . L 1
and letE be an ellipse with cente which is tangenttd., Ly, and L. If 0 = 3 (a+B+7),
4
h E)= — — — — ).
then aredFs) = eV (7 = a) (0= ) (7 =)

Lemma 3.2. Let E be the ellipse in Theorejm 1.2 and {ébe the triangle formed by, z», and

z3. Then aredl)) = mx areaU)/t1tat3.

Proof. If T'is the composition of a rotation, a magnification, and/or a translation of the plane,
then it is easy to show that the foci & £) areT'(Z;) andT'(Z;). Thus we may assume that

U has verticesA = (0,0), B = (s,t), andC = (0,1), wheres > 0. ThenZ; and 7, are the

t 11—t —t . 1
2+ L2 and the center ol is P = = (Z; + Z) = (s(t, +
z—1 z—8—1 2

t
zeros of F(z) = = +
z

. , 1
t9)/2, (t(t1 +t2) + 1 —t3) /2). A simple computation shows that afeaPB) = 5 |1 —ty

1 1 L
aredCPA) = 75 |t + to|, and aredBPC') = 5 |1 — t;|. Considering the cases > 0,t, >
0,t1 < 0,ty <0,t > 1,85 < 0,0rt; < 0,t, > 1, it follows that (0 — a)(c — B)(c —

1 47 1/2
7) = geps'titats. By Lemmal 3.1, ared) = m(a(a—a)(a—ﬁ)(o—’y)) 2 =
%st/tltgtg N :izg; _ s/ (Qz/gltﬂ?’ — r/Eals 0

Theorem 3.3. Let B be a convex quadrilateral in they plane. Then there is a unique ellipse
of maximal area inscribed in D.

Proof. Again, we may assume that the vertices of b @), (1,0), (0,1), and(s,t) where
the positive real numbers and¢ satisfy the hypotheses i |§82. Let; = area of an el-
lipse E inscribed in B. We want to maximizél; as a function ofh, where (h, L(h)) de-
notes the center off. Assume first that no two sides of B are parallel. From the proof

2h(t —1 . .
of Theore,t1t2 (1=t —ty) = (s—2h)(2h—1) Ht—g) Since E is tangent
to Ly, Lo, and L3 from the proof of Theorem 2.3, by Lemma 8.2, it suffices to maximize
. 1 1

S(h) = (s —2h)(2h —1) (s + 2h(t — 1)),h € I = the open interval betwee+2q and 35
Now S(1/2) = S(s/2) = 0, andS(h) > 0 for h € I by Lemmg 2.]l. Henc&'(hy) = 0 for
someh, € I with S(ho) a local maximum. AlsoS(hy) must be theonly local maximum of
S(h) on, elseS’(h) would havethree zeros inI. ThusS(hy) is the unique global maximum

of S(h) on I. If exactly two sides of b are parallel, so that b is the trapezoid with vertices

(0,0),(1,0), (0,1), and(1,¢), t # 1, then one can show that the area of the ellipse inscribed in

t

. — . . 1 1 .
bisS(k) = (2k—1) 5 k € I, wherel is the open interval betweeéq and §t. Setting

S'(k) = 0vyieldsk = }Lt + 411 which is themidpointof I. g
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4. MINIMAL ECCENTRICITY

Unfortunately, since the ratio of the eccentricity of two ellipseras preserved in general
under nonsingular affine transformations of the plane, we cannot assume, as earlier, that that the
vertices of B ar€0,0), (1,0), (0,1), and(s, t). However, by using aisometry of the plane,
we can assume that B has verti¢es0), (0, C), (4, B), and(s, t), where

4.1) s>OA>OC>0,t>B

Cac denote the

B - B t—
Let Li: y—AxLQ x =0, L3: y—B—l— A(x—A) andL,: y=C+

lines which make up the boundary of b. As earlier, we shall provide the detalls for the proof of
Theorenj 4.4 below with the assumption that no two sides of b are parallel.

> S —
e Since b is convex(s, t) must lie above0, C') (A, B) and(A, B) must lie below(0,0) (s, t),
which implies

(4.2) A(t—C)+(C — B)s > 0, At — Bs > 0.

e Since no two sides of b are parallél, }f L, and L, }f L3, which implies

(4.3) Bs —A(t—C) #0,s # A.
Let
I—{ (A/2,s/2) IfA<s
| (s/2,A)2) ifs < A

M, = (%A, % (B + C)) andM, = (%s, %t) are the midpoints of the diagonals of b and the

equation of the line thrd/; andM; is

1. B+C-—t 1
4.4 L) =t — 2" (-2 I
(4.4) Yy (x) 2t+ 1 (x 23) T E

Remark 4.1. It is useful to note that reflection of B thru theaxis followed by translation
upward byC' units is equivalent to permutingand A, then replacing by C' — B, and finally
replacingB by C' — t. That transformation leavegh) and D invariant.

We first prove some key lemmas about the following quadratic polynomfal in

(4.5) g(h) = 4((s—A)?+(t—B—C)%) (h— A/2)?
+ 4(s—A)(A(s—A)+Bt—B)+Ct—C))(h—A)2)
+ (A24+(C-B)?) (s—A)>.

Let D denote (the discriminant @f/16 (s — A)2 . A simple computation yields

(4.6) D =4BC((t — B)(t — C) 4 s(s — A)) — (At — s(B+ C))*.

We shall prove in general thathas no zeros id. First we show that it — C' and B have
opposite signstheng has no real zeros whatsoever.

Lemma4.1.If (t — C)B < 0, thenD < 0.
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Proof. If (1) s > A,t > CandB < 0,0r (2)s < A,t < C'andB > 0, thenD < 0 by (4.1)
and [4.6). Ifs < A;t > CandB < 0,0rs > A,t < C'andB > 0, then permutes and A,
replacet by C' — B, and finally replace3 by C' — ¢ (that is equivalent to reflection of B thru the
x axis followed by translation upward By units). It is easy to show that that transformation
leavesg(h) and D invariant and the new parametetsB, C, s, andt then satisfy (1) or (2)n

Now we show that it — C' and B have thesame signand D > 0, theng cannot vanish i
Lemma4.2.1f D > 0and(t — C)B > 0, theng'(A/2)¢'(s/2) > 0.
Proof. A simple computation gives
q'(A/2)q'(s/2) =
16 (s — A)? (D + (As+ B(t —C)+ C(t — B)) (B+C —1)* + (s — A)?))
and the lemma follows immediately frofn (4.%).
Some simplification yieldg(A/2) = (A? +&— B)?) (s — A)* andq(s/2) =

(s> +12) (s — A)*, which are both positive by (4.1). Thyshas arevennumber of roots ir,
which implies that ify’(A/2) andq’(s/2) have the same sign, thercannot vanish i . Thus

lemmag 4.]1 and 4.2 imply
Proposition 4.3. ¢ has no zeros id.
We can now prove

Theorem 4.4.Let B be aconvex quadrilateralin the zy plane. Then there is a unique ellipse
of minimal eccentricity inscribed in D.

Proof. As in the proof of Theorern 2.3,;, Lo, and L; form a triangle,7;, whose vertices are
. , At — Bs . . . . .
the complex points; = 0, z, = A+ Bi, andz; = — Vi If £ is any ellipse inscribed
S R
in B, then E must be tangent to the three sidesidf(though not necessarily inscribedTn).

) t1 to
By Theorem 1.2, the fociZ; and Z,, of E are the zeros of’ = -+ —
Y “ ’ (=) z +z—(A+B7,)
11—t —t9

W. Now F(z) =0 <= p(z) =0, where

plz) = (s—A)z"—
(A((S — A)(l — tg) — Zt(tl -+ tg)) + ZB((S — A)(l -+ tl) + A(tl —+ fig))) Z +
i (Bs — At) (A +iB) .
The centerC, of E is

L2+ 2) = O 0) =
ﬁ (A(X—t2) (s = A)+ (At (t1 +t2) + B(s — A+ Aty +115))i) .

Taking real and imaginary parts yields

C = 5 (A1 —t5) (s — A), —At (t; + t2) + B (s — A+ Aty + t5)).

(s —A)
If C = (h, k) € D, then solving fort, andt, yields
_ 2(t—B)h+2k(A—s)—(At—Bs) , A—2h
(4.7) ty = T B =

AIJMAA Vol. 2, No. 1, Art. 4, pp. 1-12, 2005 AJMAA


http://ajmaa.org

8 ALAN HORWITZ

Substitute fort; and¢, in the formula above fop(z), letk = L(h) (see[(4.4), and denote the
resulting polynomial by, (z). Some simplification yields

(4.8) pn(z) = (s — A)2* = 2(s — A)(h +iL(h))z — (B —iA) (s — 2h) C.

By Theorem$ 1]1 ar{d 3.3, the locus of centers of ellipses inscribed in D is pre@isglywith

k = L(h),h € 1. We now view the fociZ; andZ,, as functions of. € I, and we will minimize
the eccentricity;y = 7(h), as a function of.. Letb = b(h) anda = a(h) denote the lengths of
the semi—minor and semi—major axes of any elligsginscribed in B. Let

1
R:(Iz—bQ:Z’Z2_Z1|2
and let
W = a?b°.
Solvinga? — b* = R, a?b?* = W for a® andb? in terms of R andW yieldsa? = p,+ R, b* = p,,
_ L 1 . .
wherep, is aroot ofZ2 + ZR — W. Thusp, = 3 (=R + VR? + 4W) sincea® > 0, which

2
implies thata®> = %(R+\/R2+4W), b = %(—R+\/R2+4W) =72 =1- b—2 =
a

2

/ 4W
1+ 1+ﬁ

in that case would be a circle). We shall minimize the eccentricity by maX|mﬁgquo derive

,R # 0 (If R =0, then b is tangential and the ellipse of minimal eccentricity

a formula forR?, we proceed as follows. First, leth) denote the discriminant @f,(z): Some
simplification yieldsr(h) = ri(h) + ir2(h), where

(4.9) ri(h) = 4((s—A)? = (t—B-0)) (h—A/2)*+

A(s — A) (A(s — A) + B(B—t) + C(C —t)) (h — A/2) +
(s — A)*(A? = (C - B)?)
and
(4.10) ro(h) = 8(t—B—C)(s— A) (h— A/2)?

+ 4(s— A) (At +sC + Bs — 2AB) (h — A/2)
+ 24(s—A?(B-0C).

Now (s — A)(Z% — Z) = £/i(0) = (s— AP |z~ & = |Vi)| = Ir()] =
(5= AV = 211 = o R = 5 V2= 211 = e O

Let
u(h) = [r(W)[* = (r1(R)* + (r2(R))*,
so thatu is a polynomial of degre¢in h. Then

1
4.11 R = ——u(h).
To obtainW in terms off, usingk = L(h) and [4.7),
C
titats = tita (1 =ty —t2) = (2(Bs — A(t — C)) h — sAC) (2h — A) (2h — .
1tats = ity ( 1 —t2) = (2(Bs ( ) sAC) ( ) ( 8)A2(At—Bs)2
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Thustt,ts is a constant multiple of

(4.12) S(h)=(2(Bs—A(t—C))h—sAC) (2h — A) (2h — s)
S vanishes ab, = %A, hy = %s, and
h _1 AC's
P T 2Bs—A(t—C)

Using (4.1), [(4.R), and (4,3), we show now thgt ¢ I. First, if Bs — A(t — C) < 0, then

1 1 At — Bs
hy < 0= hy ¢ I Bs = At = C) > 0ands > A, thenhs — o5 = os g — 7y >

0 by ):> hs ¢ I. Finally, if Bs — A(t — C) > 0 ands < A, thenhs — %A =

EAA(t_C) +(C —B)s

2 Bs — A(t — C)

(4.13) Bs—A(t—-—C) < 0=h3<0

Bs—A(t—C) > 0= hg>max(s/2,A/2).

Note thatS’(A/2) = 2A (s — A) (A(t — C) + (C — B)s) andS’(s/2) =
—2s (s — A) (At — Bs). Hence, by[(4]1) andl (4.2),

{ S'(A/2) >0,5(s/2) <0 ifs>A

> 0 by ):> hs ¢ I. In addition we have shown

(4.14) S(A)2) < 0,5(s/2) >0 ifs<A

SinceS(h3) = 0 andh; ¢ I, (4.14) implies that5(k) > 0 onI. Also,

Alt—C)+(C - B)s
Bs— A(t—C)

S'(h3) = 2As (At — Bs)

so that, by[(4.1) andl (4.2),
(4.15) Bs — A(t — C)S'(hs) > 0.
Since the area df equalsrab, by Lemmd 3.2V = a?b? is also a constant multiple of(%).

Thus, by((4.11), to maximiz%—2 it suffices to maximize

E(h) = %,he].

N(h)

Write E'(h) = 2(h)

, where

N(h) = u(h)S'(h) — S(h)' (k)

is a polynomial of degree 6. We shall show thaiv, and hence’, has precisely one zero in
1. Using a computer algebra system (we used Maple within Scientific Workplace 4.1),

N(h) = M(h)q(h)

whereq is the polynomial defined earlier in (4.5) aid is a polynomial of degreg 4. While
the expression fob/ is rather long, we shall use the fact that

(4.16)  M(h)=-32(Bs—A{t—0C))((s—A)’+(t—B—-C)?*)h*+ -,

which is again easy to verify using a computer algebra system. Now some algebraic simplifica-
tion shows that(hs) =
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(A(2Bs — At)(t — C) + B(C — B)s?)> + A252C2 (s — A)?

, which implies, by|(4.11), that
(Bs— A(t— C))° plies, by|(4.1)

(4.17) q(hs) > 0.
Also, we showed earlier that
(4.18) q(A/2) > 0,q(s/2) > 0.

It follows easily from [(4.9),[(4.1]0), and a similar expansion aboet s/2 that

(4.19) u(A/2) > 0,u(s/2) > 0.

Nowry(hs) = 0= A (At — 2Bs) (C —t)+s*B(C— B) = +ACs (s — A) andry(h3) = 0 =
A (At —2Bs) (C —t) + s?B(C — B) = 0. Thusry(hz) = r3(h3) = 0 = ACs (s — A) = 0,
which has no solution. Thus(hs) = 7%(hs) + 73(hs) # 0, which implies that

(4.20) u(hg) > 0.

There are now four cases to consider, depending on the sign-ofi and the sign ofBs —
A(t — C). We provide the details for Case Bs — A(t — C') > 0 ands > A. ThenN(A/2) =
u(A/2)S'(A/2) > 0,N(s/2) = u(s/2)5"(s/2) < 0, andN (hs) = u(h3)S'(hs) > 0 by (4.19),
(4.15), [4.19), and (4.20). Since (h) = N(h)/q(h), (4.17) and[(4.118) imply

(4.21) M(A/2) >0, M(s/2) < 0, M(hs) >0

By (4.13),h3 > s/2. Consider the four open intervals = (—o0, A/2), 1, =1 = (A/2,5/2),
I3 = (s/2,h3), andly = (hs,00). By 4.16),hlim M(h) = —o0o. Thus by |(4.2[1) and Rolle’s

Theorem,M has precisely one zero in each lfthru I,. The other cases follow in a similar
fashion. Sinceleg M = 4, M has precisely one root i By Propositiorf 43N = Mg has
precisely one root id. Assume first that does not vanish id. ThenE = S/uandE’ = N/u?

are continuous oti. SinceE(A/2) = E(s/2) = 0, andE’ has precisely one zero ih £ must
have a unique global maximum dn The existence and uniqueness of the ellipse of minimal
eccentricity then follows immediately. Now suppose théi,) = 0 for someh, € I. Then
r(ho) = 0, which implies thatZ, = Z,. h = hy would yield the ellipse of minimal eccentricity

in this case, which would be a circle. In addition, sing¢é) > 0 for all h,u'(hy) = 0 as well,
which implies thatV (hy) = 0. Since N cannot have more than one zerolinu also cannot
have more than one zero in That proves the unigqueness of an inscribed circle when D is a
tangential quadrilateral, which is, of course, well known. Again, we have proven the existence
and unigueness of the ellipse of minimal eccentrigity.

Remark 4.2. The proof above of Theore 4.4 yields a precise formula for the eccentricity of
. . . . . 1
an ellipse inscribed in B in terms 6f W = a?? = = (aredF))* = (aredT}))” (titots)

_ 2
by Lemm. A simple computation yieldaredT}))” = %lAQ%, which, by
S_
1 C 1 2
(4.7) givesW = - S(h). UsingR? = ——————u(h), 7> = —
) g 1Ay (h) g 16(S_A)4u()7 —
14+4/1+ 2

2
1+ /1416 (s — A CE(h)
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4.1. Algorithm. To find the ellipse of minimal eccentricityy, inscribed in a convex quadri-
lateral B with no parallel sides, one does the following:

e Use an isometry of the plane so that B has verti€es), (0,C), (A, B), and(s, t), where
s>0,A>0,C>0andt > B.

e Use E) anO) to find the quartic polynomiah) = (r1(h))* + (r2(h))?

e Use (4.1D) to find the sixth degree polynomté{h) = u(h)S'(h) — S(h)u'(h)

e FactorN(h) = M (h)q(h)

e Thez coordinate of the center df is the unique rooth, in I of the quartic polynomial
B+C—t
A—s
the previous step and takg to be the unique root in of the sixth degree polynomia¥.

e The foci of E are the roots of the polynomig),,(z) given in (4.8)

. . . 1
¢ The length of the major axis df is 2a, wherea? = 3 (R + VR + 4W) ,

9 1 1 C
16 (S — A)4U(h0), andW 1 (3 — A)ZS(h())

Example: Suppose that = 3,¢t = 4, A = 2, B = —1, andC = 3. ThenM(h) =
800h* +480h% — 12 000h? 415 680h — 3840 and the unique root ot/ in I = (1,1.5) ishy ~ 1.
232 8. The corresponding ellipsé;, of minimal eccentricity has foct; ~ 1.0972 — 0.034 4:
andZ, ~ 1.368 4 + 2.965 5i. The length of the major axis df is ~ 3.883 1 and the equation
of E is 60.0190z2 + 24.316 1y® — 6.509 8xy — 138.4402x — 63.248 6y + 41.1289 = 0.
Finally, the minimal eccentricity is- .7757. See Figurg|1 below.

. .1 1 .
M. They coordinate of the center df is §t + ho — 53 . One could also skip

Figure 1: Ellipse of minimal eccentricity inscribed in B

4.2. Trapezoids. We did not give the details of the proof of Theorem4.4 when B is a trapezoid.
We provide here the specifics for finding theoordinate of the center of the ellipse of minimal
eccentricity inscribed in B. Assume, without loss of generality, that the linesnd L3 of B

are parallel. TheBs — A(t — C') = 0, and one can show that

M(h) = 16 (A*+ B*)h* —12(B* + A%) (A+s)h* +
44 (2sA® + ABC — C?A — CBs +2B%s) h+ A’C* (A + s).
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The z coordinate of the center of the ellipse of minimal eccentricity inscribed in B is the
unique root ofM in I. For example, suppose that= 4,¢t = 11, A = 1, B = 2, andC = 3.
ThenM (h) = 80h® — 300h? + 52h + 45 and the unique root o/ in I = (.5,2)ish ~ .5310

5. FUTURE RESEARCH AND OPEN QUESTIONS

e Theorems 3]3 and 4.4 yield two new points inside a convex quadrilateral, B: The centers
of the ellipses of maximal area and of minimal eccentricity inscribed in B. Is there a nice
relationship between these points ?

e In [2], Dorrie characterizes the unique ellipge, of minimal eccentricity passing thru the
vertices of a convex quadrilateral, B. He shows thais the ellipse whose equal conjugate
diameters possess the conjugate directions common to all ellipses passing thru the vertices of
b. Is there a similar characterization for the unique ellipse of minimal eccentimsityibedin
b?

Related to this:

e Is there a nice relationship between the ellipse of minimal eccentricity inscribed in B and
the ellipse of minimal eccentricity passing thru the vertices of B ? This would generalize the
known relationship between the inscribed and circumscribed circles of bicentric quadrilaterals.

e Show that there is a unique ellipse of maxinaat lengthinscribed in B, and provide an
algorithm for finding such an ellipse.
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