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ABSTRACT. In this paper, the class of harmonic functions f = h+ ḡ with positive real part and
normalized by f(ζ) = 1, (|ζ| < 1) is studied, where h and g are analytic in U = {z : |z| < 1}.
Some properties of this class are searched. Sharp coefficient relations are given for functions in
this class.

On the other hand, the author make use of Alexander integral transforms of certain analytic
functions (which are starlike with respect to f(ζ)) with a view to investigating the construction
of sense preserving, univalent and close to convex harmonic functions.
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1. INTRODUCTION

In papers [2], [3] and [7] there were studied some classes of complex harmonic functions
defined in simply connected domains. As is known, such functions are representable in a simply
connected domain D in the form f = h + ḡ, where h and g are analytic in D. Moreover, for
mappings f of this type, the Jacobian

Jf (z) = |h′(z)|2 − |g′(z)|2, z ∈ D,

Jf (z) > 0 implies that a harmonic function f is sense preserving in D and locally 1-1.
Next we denote by SH the class of functions f = h + ḡ which are harmonic univalent

and sense -preserving in the open unit disk U = {z : |z| < 1}with the normalization f(0) =
fz(0)− 1 = 0.

There has been interest [5] in studying the class PH of all the functions of the form f = h+ ḡ
that are harmonic in U and such that z ∈ U, Re{f(z)} > 0, where

h(z) = 1 +
∞∑
n=1

anz
n , g(z) =

∞∑
n=1

bnz
n

are analytic in U.
We recall that with the usual normalization

f(z) = z +
∞∑
n=2

anz
n

the condition

Re

{
zf ′(z)

f(z)

}
> 0

is necessary and sufficient for f(z) to be starlike in U . The set of all functions is denoted by
ST.

Suppose that f(z) is a bounded univalent function and f(ζ) lies inside D = f(U). Then
w0 = f(ζ) for some unique ζ = ρeiθ0 . If ρ < r < 1 and θ0 ≤ θ ≤ θ0 + 2π, then the domain
Dr = f(Ur) is starlike with respect to w0 = f(ζ) if and only if

Re

{
zf ′(z)

f(z)− f(ζ)

}
> 0, z ∈ Cr : |z| = r.

We let STN(ζ) be the set of functions

f(z) =
∞∑
n=1

bnz
n

which are analytic and univalent in U for which f ′(ζ) = 1, and f(U) is starlike with respect to
f(ζ).

In the other hand, P (ζ) is the class of all functions

q(z) =
∞∑
n=0

qnz
n ≡ 1 +

∞∑
n=1

Qn(z − ζ)n, |ζ| = ρ < 1

that are analytic in U , have positive real part in U and for which q(ζ) = 1. This class is studied
by Wald [8]. Similarly, we defined the class PH(ζ), |ζ| < 1 in this paper.

The set STN(ζ) will lead naturally to a related set, P (ζ). Following Lemma 1.1 is due to
Wald [8].
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Lemma 1.1. If f(z) is in STN(ζ), then

f
(
z+ζ
1+ζ̄z

)
− f(ζ)

1− ρ2

is in ST.

Also let CH denote the subclass SH consisting of functions f for which the image domain
f(U) is close to convex. A domain D is said to be close to convex if the complement of
D can be expressed as the union of non-crossing half lines. The construction of harmonic
close to convex functions using convex analytic functions was investigated earlier by Clunie
and Sheil Small [2]. Jahangiri et al.[4] make use of the Alexander integral transforms(see
[1]) of certain analytic functions (which are starlike or convex of positive order) with a view
to investigating the construction of sense-preserving, univalent, and close to convex harmonic
functions. Similarly, we apply the Alexander integral transforms of analytic functions which
are starlike respect to f(ζ) with a view to constructing sense preserving, univalent, and close to
convex harmonic functions.

The following result (due to [2]) will be required in our present investigation.

Lemma 1.2. If f = h + ḡ is locally univalent in U and h + εg is convex for some ε(|ε| < 1),
then f is univalent close to convex in U .

2. THE CLASS PH(ζ) AND MAIN RESULTS

Let h and g be analytic in U = {z : |z| < 1}. Denote by PH(ζ) the class of all functions of
the form

f(z) = h(z) + g(z) =
∞∑
n=0

anz
n +

∞∑
n=0

bnzn(2.1)

≡ 1 +
∞∑
n=1

An(z − ζ)n +
∞∑
n=1

Bn(z − ζ)n, z ∈ U, |ζ| < 1,

that are harmonic in U , have positive real part in U and for which f(ζ) = 1. The subclass of
PH(ζ) with B1 = 0 will be denoted by P 0

H(ζ).
If f ∈ PH(ζ), the Jacobian Jf (ζ) 6= 0 and A1, B1 are real, then the function

f0(z) =
A1f(z)−B1f(z)

A1 −B1

∈ P 0
H(ζ);

next, if f0 ∈ P 0
H(ζ), then the function f takes the form

f(z) =
A1f0(z) +B1f0(z)

A1 +B1

.

Theorem 2.1. If f = h + g ∈ P 0
H(ζ), then q = h + g ∈ P (ζ). Conversely, if h, g are analytic

in U, h(ζ)− 1 = g(ζ) = 0 and q = h+ g ∈ P (ζ), then f = h+ g ∈ P 0
H(ζ).

Proof. Let f = h+ g ∈ P 0
H(ζ). Since q = h+ g is analytic in U,

Re{q(z)} = Re{h(z) + g(z)} = Re{f(z)} > 0,

and
q(ζ) = h(ζ) + g(ζ) = 1,

q ∈ P (ζ).
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Conversely, let q = h + g ∈ P (ζ), let h, g be analytic in U and h(ζ) − 1 = g(ζ) = 0. Then
f = h+ g ∈ P 0

H(ζ), since Re{f(z)} = Re{q(z)} > 0.

Proposition 2.2. If f and F are related by

f(L(z)) = F (z) or F (z) = f(M(z)),

then F (z) is in PH if and only if f(z) is in PH(ζ), where

L(z) =
z + ζ

1 + ζz
and M(z) =

z − ζ
1− ζz

are two mappings of U onto itself.

Proof. If F (z) ∈ PH , then f(ζ) = F (M(ζ)) = F (0) = 1 and

Re{f(z)} = Re{f(M(z)} > 0, |M(z)| < 1.

Consequently, f(z) ∈ PH(ζ).
Conversely, if f(z) ∈ PH(ζ), then F (0) = f(L(0)) = f(ζ) = 1 and

Re{F (z)} = Re{f(L(z)} > 0, |L(z)| < 1.

Hence, F (z) is in PH .

Theorem 2.3. If f is in PH(ζ) and has the series expansions (2.1), then for all n ≥ 1 and for
|ζ| = ρ < 1

||a0| − |b0|| ≤
1 + ρ

1− ρ
,

||an| − |bn|| ≤ 2
1 + ρ

1− ρ
and

||An| − |Bn|| ≤
2

(1 + ρ)(1− ρ)n
.

Proof. If f = h+ g ∈ PH(ζ), then by Theorem 2.1, h+ g is in P (ζ) and has the form

h(z) + g(z) =
∞∑
n=0

(an + bn)zn = 1 +
∞∑
n=1

(An +Bn)(z − ζ)n.

Hence, by [8],

||a0| − |b0|| ≤ |a0 + b0| ≤
1 + ρ

1− ρ
,

||an| − |bn|| ≤ |an + bn| ≤ 2
1 + ρ

1− ρ
and

||An| − |Bn|| ≤ |An +Bn| ≤
2

(1 + ρ)(1− ρ)n
.

All the inequalities are sharp.

Theorem 2.4. If f ∈ P 0
H(ζ) and f is sense preserving in U, then

(2.2) |an| ≤
1 + ρ

1− ρ
(n+ 1), |bn| ≤

1 + ρ

1− ρ
(n− 1)

and

(2.3) |An| ≤
n+ 1

(1 + ρ)(1− ρ)n+1
, |Bn| ≤

n− 1 + 2ρ

(1 + ρ)(1− ρ)n+1
.
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All the inequalities are sharp. Equality in (2.2), (2.3) occur for the functions

f(z) =
1 + ρ

1− ρ

[
1

(1− z)2
+

(
z

1− z

)2
]
, z ∈ U

and

f(z) =
1− ρ
1 + ρ

[
1

(1− z)2
+

(
2(z − 2)

(1− z)2

)]
, z ∈ U

respectively.

Proof. If f = h + g ∈ P 0
H(ζ), then by Theorem 2.1, q = h + g ∈ P (ζ). Since f is sense

preserving in U, then |g′(z)| < |h′(z)| , for z ∈ U. If we say that w(z) = g′(z) / h′(z), then
w(z) satisfy the conditions as Schwarz Lemma in U. Thus we get

(2.4) g′(z) =
w(z)

1 + w(z)
q′(z), h′(z) =

g′(z)

w(z)
.

Next, we have for z ∈ U, |ζ| = ρ < 1

q(z)� 1 + ρ

1− ρ
1 + z

1− z
and

w(z)

1 + w(z)
� z

1− z
; q(−ρ) = 1,

therefore by (2.4), we obtain the following results

g′(z)� 1 + ρ

1− ρ
2z

(1− z)3
and h′(z)� 1 + ρ

1− ρ
1

(1− z)3

where� means that the moduli of the coefficients of the left are bounded by the corresponding
coefficients of the function on the right. Using the technique of dominant power series we have

g(z)� 1 + ρ

1− ρ
z2

(1− z)2
, h(z)� 1 + ρ

1− ρ
1

(1− z)2

and

g(n)(z)� 1 + ρ

1− ρ
n!(n+ 2z − 1)

(1− z)n+2
, h(n)(z)� 1 + ρ

1− ρ
(n+ 1)!

(1− z)n+2
.

Furthermore, so for n ≥ 1

an =
h(n)(0)

n!
and bn =

g(n)(0)

n!
,

we obtain (2.2).
In the other hand, using

q(z)� 1− ρ
1 + ρ

1 + z

1− z
and

w(z)

1 + w(z)
� z

1− z
; q(ρ) = 1,

we have from (2.4),

g(z)� 2
1− ρ
1 + ρ

z − 2

(1− z)2
, h(z)� 1− ρ

1 + ρ

1

(1− z)2

and

g(n)(z)� 1− ρ
1 + ρ

n!(n+ 2z − 1)

(1− z)n+2
, h(n)(z)� 1− ρ

1 + ρ

(n+ 1)!

(1− z)n+2
.

Therefore, so

An =
h(n)(ζ)

n!
and Bn =

g(n)(ζ)

n!
,

for |ζ| = ρ < 1,we obtain the inequalities in (2.3), where h and g converge for |z − ζ| < 1−ρ.
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Theorem 2.5. If f = h+ g ∈ PH(ζ), then for X = {η : |η| = 1} and for z ∈ U,

(2.5) h(z) + g(z) =

∫
|η|=1

1− ηζ + z(η − ζ)

1 + ηζ − z(η + ζ)
dµ(η) ;

1

2π

∫
|η|=1

dµ(η) = 1, |ζ| < 1.

Proof. If f(z) ∈ PH(ζ), then by Proposition 2.2 and [8] for X = {η : |η| = 1} and z ∈ U,

h(z) + g(z) =

∫
|η|=1

1 + η(M(z))

1− η(M(z))
dµ(η) ;

1

2π

∫
|η|=1

dµ(η) = 1.

Hence, we have (2.5).

Theorem 2.6. PH(ζ) is convex and compact.

Proof. Let f = λf1 + (1− λ)f2, for f1, f2 ∈ PH(ζ), 0 < λ < 1. Thus,

f = h+ g = λh1 + (1− λ)h2 + λg1 + (1− λ)g2

and h and g are analytic in U. Furthermore,

Re{f(z)} = λRe{f1(z)}+ (1− λ) Re{f2(z)} > 0

and
f(ζ) = λf1(ζ) + (1− λ)f2(ζ) = λ+ 1− λ = 1.

Hence, the harmonic function f = h+ g belongs to the class PH(ζ).
In the other hand, PH is compact implies that PH(ζ) is compact, [6].

Next theorem makes use of certain analytic functions (which are starlike with respect to f(ζ))
in the construction of harmonic close to convex functions.

Theorem 2.7. Let λ ∈ C and 0 < |λ| < 1
2
. If f is in STN(ζ), then

F (z) = H(z) +G(z)(2.6)

=

z∫
0

f(L(t))− f(ζ)

(1− ρ2)t
dt+

λ

1− ρ2

[
f(L(z))− f(ζ)

]
∈ CH .

Proof. First of all it follows from Lemma 1.1 that
f (L(z))− f(ζ)

1− ρ2

is starlike of positive order in U . Therefore, by a result of Alexander[1], its integral transform:

(2.7) H(z) =

z∫
0

f(L(t))− f(ζ)

(1− ρ2)t
dt

is convex in U . Thus, by choosing H in Lemma 1.2 as in (2.7), and letting

G(z) =
λ

1− ρ2

[
f(L(z))− f(ζ)

]
and ε = 0,

the assertion (2.6) of Theorem 2.7 would follow if we can show that

|H ′(z)| > |G ′(z)| (z ∈ U).

Since

|H ′(z)| =
∣∣∣∣f(L(z))− f(ζ)

(1− ρ2)z

∣∣∣∣ and |G ′(z)| = |λ|
∣∣∣∣f ′(L(z))

1

(1 + ζ̄z)2

∣∣∣∣ ,
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it is sufficient to show that∣∣∣∣∣zf
′(L(z)) 1

(1+ζ̄z)2

f(L(z))− f(ζ)

∣∣∣∣∣ < 1

|λ|(1− ρ2)
, (z ∈ U).

But, from ∣∣∣∣∣∣
zf ′(L(z)) 1−ρ2

(1+ζ̄z)2

f(L(z))− f(ζ)
− 1

∣∣∣∣∣∣ < 1

and by 0 < |λ| < 1
2
, we have∣∣∣∣∣zf

′(L(z)) 1
(1+ζ̄z)2

f(L(z))− f(ζ)

∣∣∣∣∣ < 2

1− ρ2
<

1

|λ|(1− ρ2)
, (z ∈ U),

which evidently completes the proof of Theorem 2.7.

Example 2.8. By setting

f(z) = (1− ρ2)
(
M(z)eM(z) + ζe−ζ

)
in Theorem 2.7, we observe that the integral function:

F (z) =

z∫
0

etdt+ λzez = ez + λ̄ z̄ez̄ − 1

is sense preserving, univalent, and close to convex harmonic in U if 0 < |λ| < 1
2
.
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