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2 K. R. KARTHIKEYAN AND MUSTHAFA IBRAHIM AND S. SRINIVASAN

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Recently, one of the substantive issues in many applications of geometric function theory is
how to employ the fractional operators to analytic univalent functions and what are the advan-
tages of this operators. So far, many mathematicians in different stages considered this issues
and gave numerous applications based on certain fractional operators of analytic function in
physics, engineering and mathematical applications (see [9]). Also, the areaqeétiadysis
has attracted serious attention of researchers. The great interest is due to its applications in
various branches of mathematics and physics, as for example, in the areas of ordinary fractional
calculus, optimal control problems;difference and;—integral equations and ig-transform
analysis. The generalizeg-Taylor formula in the fractionag—calculus was introduced by
Purohit and Raine [23]. The application @fcalculus was initiated by Jacksan [13] 14]. He
was the first to develop thg-integral and;—derivative in a systematic way. Later, geometrical
interpretation of the—analysis has been recognized through studies on quantum groups. Sim-
ply, the quantum calculus is ordinary classical calculus without the notion of limits. It defines
g—calculus andv—calculus. Here: ostensibly stands for Planck’s constant, whilstands for
guantum. Mohammed and Darus [20] studied approximation and geometric properties of these
g—operators in some subclasses of analytic functions in compact disk. Recently, Purohit and
Raina [23] 24] have used the fractiomalcalculus operators in investigating certain classes of
functions which are analytic in the open disk. Also Purahit [22] also studied thegperators,
defined by using the convolution of normalized analytic functionsg@slglypergeometric func-
tions. A comprehensive study on the applicationg-etalculus in the operator theory may be
found in [1].

Theg-difference operator denoted d%, f () is defined by

f(z) = flaz)
DQf(’Z)_ Z(l—q) 7(f6~/47 zelU {O}>7
andD,f(0) = f'(0), whereg € (0, 1). It can be easily seen that, f(z) — f'(z) asq — 1.

Let S be the subclass ofl consisting of functions which are univalentlih We denote by
S§*, C, K andC* the familiar subclasses od consisting of functions which are respectively
starlike, convex, close-to-convex and quasi-conveX.i®ur favorite references of the field are
[6),7,8] which covers most of the topics in a lucid and economical style.

The concept of starlike functions and convex functions were further extended as follows.

2f (2)
f(2)
Cla) = {f € A: Re (l—l— Z]{,”((ZZ))) >a,z€U}.

S*(a):{fEA:Re >a,z€bl},

We note that
fecla)e zf €8 (a),
whereS*(«) andC(«) are respectively, the classes of starlike of ord@nd convex of order

a in U (see Robertson [25]).
Similarly, close-to convex functions and quasi-convex functions were further extended as

follows. )
K(a,B) = {f eA:ReZ;C(iZ) >a, ge S (B), 2 eu},
C*(a, ) = {fe.A:Re (%) > a, g € C(0), ZGU},
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where/C(a, 5) andC*(«, 3) are respectively, the classes of close-to-convex of aidgpe
(£ and gquasi-convex of orderand types in U (see K. I. Noor and D. K. Thomas [21]).

The Koebe function which plays a pivotal role in the study of univalent function theory is
given by

f(z) = TEE = ;nz”

The rotated Koebe function is

_ ? _ - n—1 _n
R0 = g =

with o being a complex number of absolute value 1. The Koebe function and its rotations are
univalent and achieving the normalizatigf0) = 0 and f’(0) = 1.

Srivastava et al (see [27]), introduced a fractional analytic function as follows:

Za+1
f(Z) = m, a €R.

In this effort, we let4,, to denote the class of functional fractional analytic functidpé:)
inunitdisk U = {z € C;|z| < 1} as follows:

por
N

wherey = ”*Tm‘l, n, m € N. Henceu = 1, whenn = 1 and has the formal power series:

(1.1) F,(2)

(1.2) FM(Z)zz+Zanz’m, (u>1LneN,zel).
n=2

which is normalized by, (z) = 1andF}, (z) = 1atz = 0 for all = € &. Recall that a function
F, € A, is called bounded turning if it satisfies the following inequality:

(1.3) Re(F(z)>¢ (0 < v < 1)
and a functiont’, € A, is starlike function irt/ if it satisfies
(1.4) R (ZF*/‘(Z)> w0 <Y<
: e > < < 1)
£ (2)
Furthermore, a functios, € A, is convex in/ if it satisfies
15 Re(14+ 2 En ) 0 < 1
(1.5) e +FL(Z’> > 1) 0 < v < 1)

For more details about the subclasses of univalent functions defined using functidps in
we refer to[5] and[[10].
Next, if the functionF), (=) of form (1.2) and

Gu(z) =2+ anz‘m
n=2
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are two functions in the clas$,,, then the convolution (or Hadamard product) of two analytic
functions is denoted by, (z) * G, (¢) and is given by

F,(2) G, (2 z+Zanb el

and satisfy{F}, (z) * G, (z)] = 0 and (F}, (z) * G, (2 )) =latz =0.
Now let a functional functio® , (») defined as follows:

pet o un
(1_Zu)2+1_zﬂ—z+;(un)z . (z€el).

By employing Hadamard product of analytic functiér (=), we obtain

0,(2) =

Ouk(2) =F,(2)*..xF,(z), ktimes

=z+ Z(,un)k M (2 eU).

The g-analogue of &lagean differential operator (see [3H)'f(z) : A — Aform € N,
is formed as follows.

Rif(z) = [f(2)
2(Dgf (2))

oy
—_
kﬁ
T
Il

Rf(z) = RY(RMf(2) .
From the definition of?}" f (), we get
(1.6) R'f(z) =2+ Z <11__qq ) a2, (2 €U).

It can be seen that if we let — 17, then R} f () reduces to the well-knownagean
differential operatori[31].

For I, € A, , analogous ta?7" f (z) we define a differential operatét;' F,(z) : A, — A,
for m € N, as follows.

9] 1 — ghn m
(1.7) RI'F(2) :z+2( a ) 2,

(u>1;mne N\ {1}; m € No; z e U).

Remark 1.1. If we letq — 17 in (1.9), then it can be easily seen tHRjf F,(z) reduces to the
operator defined by Abdulnaby et. al. (seel [33]).

Let f andg be analytic in the open unit digk. The functionf is subordinate tg written as
f < ginU, if there exist a functionv analytic ini/ with w(0) = 0 and| w(z) |< 1; (z € U)
such thatf(z) = g(w(2)), (z € U).
Now we define a new class of analytic functions and investigate several interesting results.

Definition 1.1. Let the functions

D, (2) —z—l—Zﬁ 2" and ¥, —2—1—2)\ 2+,

n=2
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be analytic in the open unit digk where
U, > 0,\, >0andd, > X\, (neN\{0, 1}).
Then a function¥),(z) € A,(z) is said to be in the class, ,,,(®,, V,, A, B, 11,) if and only
if
Ry (Fux @) (2) (1A
Ry (F, + 0,) (2) 1y B

whereF),(z) * ¥, (z) # 0, A andB are arbitrarily fixed numbers suchthat < B < A <
land —1 < B<Owith—-1 <~y <1andk > m (k,m € Np).

+7, (z€l),

Let x,, be the class of analytic functior,(z) in unit diski/ of the following form

o0

F(z)=2z— Z an, 2",
(18) n=2
(an > Lip > 13n € N\{1})
which satisfied), (z) |.—o= 1 andF}, (z) |.—o= 1 forall = € U. We let
gk,m(q);u \I}ya A7 B; M, '7) - 5k,m(q),u7 \Il,ua A7 B7 M, ’Y) N XM'

For suitable choices @b and¥ , we obtain various subclasses4f . For example, we have
the following:

. pzt 2t .
(19) 60’0((1—2/1)271—2#7 17 _17,U77) :Su(r)/%
and
2 2.2 m
. (R4t Pz *
(110) €0,0 ( (1 _ Z/“")3 ) (1 _ Z'U‘)2 ) 17 _17 oy 7) = Hu(f)/)'
If o =1in ) and ) respectively, we obtain the well known subclasS$esdx;,

which were investigated by Silverman In [18].

2. CHARACTERIZATION PROPERTIES

In this section, we consider several properties for the fundijgn) € & ,,,(®,, V., A, B, 11,7).
We will divide this section into five subsections.

(2.1)
2

n

(1-B)

Theorem 2.1.1f F,(z) € A, satisfies the following inequality
q

1_q/_1,n k 1_q/m, m
(1—61> ﬁ”_(l—Q) A
< (A—B)(1- ).

(P >0, 0 >20;9, >N neN{1});p>10<~v<1L;k>mk,me Ny

FA-B)(1-7) (11‘_q“”)mxn] a

Then

F.(z) € epm(®u, Yy, A, B, 1, 7).
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Proof. Let the conditior] (2]1) holds, then we obtain

|R§(Fu*q>u)(z)_RZR(FM*\DM)(Z”_|(A_B>(1_7)R;R(FM*\I/M)(Z)_B[RS(FM*@MMZ)
00 1—Q’un k 1—(]“” m
2[( 1—Q) q9"_< 1—Q) A

oo 1_q,un " 1_q,u,n k 1_qun m .
+(A=—B)(1—~ Z( ) Aty 2" BZ (1_q> "_(1—q A | Q2™

— Ry (Fux 0, (2)] | =

—|(A=B)(1 =7)z

a2

n=2
(2.2)
> 1_qlm k 1_qun m
< _ pn _ _
_Z[ 1_q) U, (1_q> An] | 7" + (A = BY(1 = )r
n=2
0 1_q,un m [ee} 1_qﬂn k 1_q,un m
+A_B 1_ ( ) )\n (075 run+ B ( ) ﬁn_( )\n Qp, Tun
=B -3 (T) Al B (T — ]
g 1 — g\ * 1 — g \™
<3 (1—B)(< a )19”—( d ) An)
l—¢q l—¢q
(2.3) n=2

1— g

Ha- )= (FL0) 0 el - (4= i) <o

For all7(0 < r < 1), the inequality in[(2.2) holds true. Thus, letting— 1— in (2.7), we
obtain [2.8). This completes the proof of the Theofem 2.1.

Remark 2.1. If we let ¢ — 1~ in Theoren{ 2./, then we get the result obtained by Zainab E.
Abdulnaby (se€ [33]).

Theorem 2.2.1f F,(z) € x, satisfies the following inequality

(2.4)
s 1 — ghm k 1—gm\™
,LZ; (1—61)19"_(1—61) A"]
A= B)(1- ) (11_ q;")mxn} a,

IN

(A= B)(1—\).

(P >0, A 20,9, >N neN\{1});n>10<~v<1l;k>m k,mée Ny

Then

FM(Z) € gk,m<q),ua \P/M A7 Ba /'Lv ’7)

Proof. Since
§k7m<q)#,‘l/”,A,B,u,’y) - 8k,m(q)p7‘yu>A787M>7)7

we only need to prove the only if part of Theor2.2, for functioniz) € x,, we can write
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Rk(FM*CP )(2) 1
Ry (FuxV,,)(z)
(A B (Rk Fux®,) (2 )

Ry(Fy *%)(z)

R';(F x @ )(z)—RZ“(FM*\IfM) (2) ‘
T (A= B)(1 - )R (F* ¥, (= ))—B(R'; (Fl# ®,) (2) — Ry (F % W,,) (2))

m
p,n gL _
[ 1 q (113(] ) )\n} a, 21

(A= B)(1 =) = (A= B)(1 = 7) 5%, (5£2) " Anaasm?

00 1_qﬂn k 1_qun m .
B Up — An | a2t
' ;((H) (F5) )

SinceRe(z) < |z| forall z € U, we have

Sl {(1;3‘;")'“19” - ()" An] 0, i1
(A= B)(1=7) = (A= B)1 =) 25, (557) " Myt

s 1 — ghm k 1—gm\™
B 9, — Ay | a2t < 1.
+;((1—q) (1—Q) )az ]_
If we choose: to be real and let — 1—, we obtain

i (1— (11__‘1;")k19n—(11__q2n>mAn +(A—B)(1—)\)(11_qw)m)\n] o,

n=2 -4
which is equivalent t4). The result is sharp for functiéhsz) given by

Re

<(A-B)(1-7),

(2.5)
FM(Z):Z— (A_B)(l_f)/)

k m m
(1-B) (( ) o - (52 An) +(A-B)(1-9) (52)" A,
This completes the proof of Theor¢m|2.2.
Corollary 2.3. Let a functionF),(z) defined by[(1]8) belongs & ,,(®,, ¥,,, A, B, i1, 7). Then

(2.6)
(A=DB)(1-19)

S k m m
(1_3)((1;g;"> I — (42 )\n>+(A—B)(1—fy) (2) " A

Remark 2.2. By taking different choices for the functiords,(») and¥,(z) same as stated in
(1.9) and[(1.10), Theorefn 2.2 leads us to the necessary and sufficient conditions for a function
F,(z) to be in the following classeS; () and r (7).

(n>2).
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3. DISTORTION THEOREMS

Theorem 3.1. Let the functionF), (=) defined by[(1]8), be ify, ., (®,, ¥y, A, B, i1, 7). Then

(3.1)
(A-B)(1—9) 2
Fl) 2 12l - k . e
-5 ((52) 0= (52) "0 ) + (A= B =) (42) "
s (A-B)0 =) .
-8 ((52) 0= (55) "0 ) + (- B =) (522) ",

The result is sharp.
Proof. By considering Theorem 2.1, since

1 — g\ F 1 g \™
(=) - ()
1—g¢q 1—gq
is an increasing function of(n > 2), we get

=(2 Z|an|<z ) lan] < (A= B)(1—7),

=(n) = (1 - B)

that is
- (A-B)(1-9)

Therefore, we have

[Fu()] < L2+ 12 fanl
n=2

IF,(2)] < ||+ — 1({—5)(1—7) — o2
-5 () - (52) ") + a- By - ) (22) "
Similarly, we have
Fu(z)| = |2] = IZIQ“ZIanI
A-B)(1—~
FN(Z)l Z |Z|— — - 1( : m)( ) — — |Z|2;U«‘
-5 (7)o (52) ") + 4 By - ) (322) "
The result is sharp for the function
AJMAA
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(;(2)) L (A= B)(1-7) "
(1-B) ((ﬂ)% _ (Pq”)’”») FA-B) -7 (5F2)"

1—q 1-¢q

This completes the proof of Theor¢gm|3.1.
Theorem 3.2. Let F,(z) defined by[(1]8) be in the clasg,,,(®,, V,,, 4, B, i, ), then

| (52) (a-B)(1 - 7) -
Fi(2)] 21 : : — o™
(1—3)((1;Eq”) xe - (42 A2)+(A—B)(1—v)(11‘i’q“) Ao
(52) (A= BY1—7) -
§1+ k m m |Z’“
<1—B>((1;33;‘) X - (42 Az)+<A—B>(1—v>(11‘EZ‘) Mo

The result is sharp.
Proof. Similarly # is an increasing function of(n > 1),

T

(3.3)

that is

o0 2 (11__q;") o] < (= 2(2)

n=2
Then, we get
e 1—qg"
FM( )‘<1—|—|z|2u 12(1 )|an\,
n=2
(3.5)
) (A= B)(1—-7)
F;L(z) <1+ — (1142> _ — \z|2“_1
-5 () - (52) ")+ a- By - ) (322) "0
Similarly, we have
’ _ > 1 q n
RG]z -1 S () el
n=2
(3.6)
) (A= B)(1-7)
F;(Z) >1- — <11q2> _ — |22
(1—3)(( 1gq> 192_<1qq) )\) (A - B)( w(qu) A
AIJMAA
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Itis clear that the assertions of Theorpm| 3.2 are sharp for the funEior) given by 3.2).
This complete the proof of Theorém Bg.

4. THE RADII SUBCLASSES OF CLASS &, (P, ¥, A, B, 1, 7)

In this section radii of bounded turning, convexity and starlikeness for funcfi9(s) <
Ekm (P, ¥, A, B, 11, y) are studied.

The real number
r*(f) =sup{r > 0|Re(k(z)) > pforall z € U, }

p

is called the radius of starlikeness of orgeof the functionf whenk(z) = % Note that

r5(f) = r5(f) is in fact the largest radius such that the image reg‘icéur*(f)) is a starlike

domain with respect to the origin. Similar definition is used to define radius of convexity and

close to convexity by equivalently replacikgz) with 1 + Z}C(g) and g 7 8 respectively. For the
study of various radius problems, we refer[to/[2,[15, 16/ 26, 32].

Hereafter, we let

Q7 (A, B: ) = (1-B) ((11_ qw)kﬂn - (1 - qm>mxn> +H(A=B)(1—7) (1 - q’m)mxn.

—q 1—g¢q 1—gq

Theorem 4.1.Let F,,(z) given by [(1.B) be in the class ., (®,, V,,, A, B, ;1,7), then
(i) F.(z) is starlike of order)(0 < < 1)in |z| < ry, where

g [ QA B ) Ly \]e
“h e e
(i) F,(z)is convex of ordet)(0 < ¢ < 1)in |z| < r2, where
g [Q8(A B ) L-y ]
2 ”‘5£LA—erdwx(wwm—wQ} |
(iii) F,(z) is close to convex of order(0 < ¢ < 1) in |z| < r3, where
[ QA By (1]
) T“‘££hA—BX1—w><<un>} |

Each of the results are sharp for the functibj(z) given by|[(3.P).
Proof. It is sufficient show that

2F (2)

m

F,(2)

In

wherer; is defined by[(4]1). Further, we find frofn (]L.8) that

(4.4) <1—1v, for|z| <,

Fu) | S em = e n— 1
FGE T Y1

Therefore, we satisfy (4.4) if and only if

AJMAA Vol. 15, No. 1, Art. 9, pp. 1-15, 2018 AJMAA
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s St
n=2

Nevertheless, from Theorein (R.1), inequaljty (4.5) it will be true that if

(=) zl"n -1 _ (A B;7)

-y S (A-B)(1-7)
this is, if

Q1 (A, B;y) ([ 1=\
(4.6) Mg[m—meﬂon—¢ﬂ

Or equivalent to

[ Q2(A B ) 1— \]Ve Y
h_gghA—Bwa)XQm—wﬂ

This completes the proof of (4.1). To prove (4.2) and](4.3) respectively, it is sufficient to
show that

ZF/;/ (2)
L+

M

-1

<1—9 (]2 <rys0<y <),

and

Fuz) =1 1= (2] <10 < v < 1),

But we choose to omit the details of the proof as it is analogous to the prdof pf §4.1).

5. EXTREME POINT

The study of the convex hulls and extreme points of various families of univalent functions
was initiated by L. Brickman, T. H. MacGregor, and D. R. Wilken[in [3]. The importance of
determining the extreme points of a compact fanilylies in the fact that the maximum or
minimum value of any continuous linear functional defined over the set of analytic functions
occurs at one of the extreme points of the closed convex hul. dfhere have been numerous
papers recently dealing with the extreme points for the closed convex hull of several compact
families of univalent functions, but for the classical analysis of the significance of extreme
points can be found in [3, 4, 30] . But we employ the technique adopted by Silverman in [30]
to find the extreme points for our class.

Theorem 5.1.Let Fi(z) = z,and

(A=B)(1=7)
Qh (A, B; )

ThenF,(z) € &,.(P, ¥, A, B, i, ) if and only if it can be expressed in the following form:

(5.1) Fun(2)=2— (n>2).

F(z) = 3 0. Fn(2)

wheren,, > 0and > 7 n, =1.

AJMAA Vol. 15, No. 1, Art. 9, pp. 1-15, 2018 AIJMAA
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Proof. Assuming that,

= Z nnFMn<Z)
n=1

where

—~ (A-B)(1=7)
Fun(z):z—; O (A B ) 2",

Then, from Theorern 2.1, we obtain

[e.9]

> (mz (A.B: )] x 2 g(?g'—;w)

n=2

=(A Znn— B)(1—7)(1—n) < (A= B)(1—7).

Therefore in view of Theore@.l, we find thatz) € &;.,,.(®, ¥, A, B, u,7). Conversely,
let us suppose thdt(z) € &, (P, U, A, B, i, ), then

7)
T

By settingn, =1—->_",n,, where

_ Q;Il (AvB; ’7)
T A=B)(1—7)

a, (n=2,3,...)

Therefore, we have

= Z nnF,Un(Z)
n=1
By this, we complete the proof of Theor¢m]|5.1.
|
Corollary 5.2. The extreme point of the clasg,,(®, ¥, A, B, u, ) are given by

Fun(z) =2 — T (A B ) M,

6. INTEGRAL MEANS INEQUALITY
In this section, we consider some result due to Littlewood subordination (see [19]).

Lemma 6.1. If the functionsf and g are analytic in open unit disi with

(6.1) f(z) < g(w(z)), (z€l)

then,forg > 0andz =€ (0 <r < 1),

6.2) / " If()rde < / " lgz)|7 db.

Now, we use Lemmia §.1 to prove the following Theorem.

AJMAA Vol. 15, No. 1, Art. 9, pp. 1-15, 2018 AIJMAA
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Theorem 6.2. Assume that,(z) € Epm (P, ¥V, A, B, p,y), ¢ > 0,-1 < B < A<
1, k;m € Ny, and F,(z) is defined by

(6.3) () = 2 — A= B =) o,

thenz = r¢??(0 < r < 1), we obtain

[Tiseras [T

Proof. For F,(z) = z — > ", a,2"™ (a, > 0) and by [6.2) it is equivalent to prove,

27 0 27 q
- (A_B)<1_7) 2u—1
(6.4) / 1— E a, 2"t dh < / 1— zH deo.

By applying Lemmé 6]1, it would suffice to show that

q

N - A=B)(1=7) 5
1 — pun—1 1— ( 2p 1.
2 i)

By putting

el (A=B)(1—7)
1—Zanz =1- 004 B ) O(z)

and by using Theore@.i, we have

= QI(A B;7) . o 1] QqAB )
an 22t <z“ a, < |z| <1.
ZO(A—B)(l—v | |Z —7) o

This completes the proof of the Theorem.

7. CONCLUSION

In unit disk, we derived a new class of fractional powgy and consider this class to define
a generalized differential operator, also we employed this operator to define a new subclasses
in open unit disk. Further, we studied some characteristic properties including that of certain
fractional calculus operators.
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