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1. INTRODUCTION

Let C' be a nonempty closed and convex subset of a real Hilbert SgearedS : C' — C be
any nonlinear mapping. Thes,is calledL-Lipschitzianif there exists a constarit > 0 such
that

15z = Syll < Lz —y|| Va,y € C,
if L =1, thenS is callednonexpansiveA pointz € C'is called afixed pointof S if Sz = .
Throughout this paper, we shall denote the set of fixed points oy 7(.S). A mappings$ :
C — C'is said to be
(i) monotoneif
<S$ - Syw%. _y> > 07 V.T,y € Ca
(ii) p-strongly monotongf there exists a constapt > 0 such that
(Sz — Sy,x —y) > pllz —y|*, Yo,y € C,
(i) p-inverse strongly monoton# there exists a constapt > 0 such that
(Sz — Sy,x —y) > pl|Sz — Sy|?, Va,y € C,
(iv) firmly nonexpansivef

A mappingT : C — H is said to be relaxed — o monotone (se€ [8]), if there exists a
mappingn : C x C' — H and a functiony : H — R positively homogeneous of degrgéi.e.,
a(tz) = tPa(z) forall ¢ > 0 andz € H, wherep > 1) such that

(Tz — Ty, n(z,y)) > a(z —y) Vz,y € C.

In particular, ifn(x,y) = x — y, Vx,y € C, T is called relaxedr-monotone. Furthermore, if
n(z,y) =x —y, Yo,y € C anda(z) = p||z||P, wherep > 1 andp > 0 are constants, theh
is calledp-monotonel[12, 23]. In fact, if = 2, thenT is calledyu-strictly monotone (seé [24]).
Clearly, every monotone mapping is relaxgd monotone withy(x,y) = x —y Vz,y € C and
a = 0. Thus, inverse strongly monotone mappings are relgxednonotone. The following is
an example of a relaxegtae monotone mapping.

Example 1.1.[7] Let H = R?* andC = [0, 1] x [0,1]. Define a mappind” : C — H by
T(z1,79) = (71, 22) V(21,22) € C,a: H— Rbya(zy,25) =323 +3z2andn : CxC — H
by n((x1,22), (y1,52)) = (4@1 — y1), (@2 — y2)) V(21,22) X (y1,42) € C' x C. ThenT'is
relaxedn-ae monotone.

Recall that a mapping’ : ¢’ — C is said to be averaged nonexpansiveity € C, F =

(1 — B)I + S holds for a nonexpansive operatdr: C — C' andg € (0,1). In this case,

we say thatF' is g-averaged. The term "averaged mapping" was coined by Biall@h. [4].
Moreover,F is firmly nonexpansive if and only if’ can be expressed &= (I + S), where

S is nonexpansive (see [20]). Thus, we make the following remark which can be easily verified
(see, alsa 13, 14]).

Remark 1.1. In a Hilbert spaceF is firmly nonexpansive if and only if it is averaged with
=1

The metric projectionP: is a map defined o/ onto C' which assigns to each € H, the
unique point inC, denoted byPcx such that

||z — Pox|| = mnf{[[z —y|| : y € C}.
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It is well known thatPox is characterized by the inequality — Pcx, z — Pox) <0, Vz € C
and P is a firmly nonexpansive mapping. Thug; is nonexpansive. For more information on
metric projections, see [10] 6].

The Equilibrium Problem (EP) (in the sense of Blum and Oettli [1]) is to firel C' such that

(1.1) d(x,y) >0vy € C,

where¢ : C' x C' — R is a bifunction. We denote the solution set of EP|(1.1349y). To solve
the EP, the bifuncton is assumed to satisfy the following conditions:

(Al) ¢(z,x) =0forallz € C;

(A2) ¢ is monotone; thatis(z,y) + ¢(y,x) < 0forall z,y € C;
(A3) forallz,y € C, lim ¢(tz + (1 — t)z,y) < o(z,y);

(A4) forall z € C, ¢(z,.) is convex and lower semicontinuous.

The Mixed Equilibrium Problem (MEP) is to finel € C' such that
(1.2) oz, y) + (Tx,y —x) + f(y) — flx) 2 0Vy € C,

where¢ : C' x C' — R is a bifunction,T" is some nonlinear mapping arfd C' — (—oo, +09]

is a proper convex and lower semi continuous function. The solution det bf (1.2) is denoted by
G(6.T. f).

Equilibrium problems and mixed equilibrium problems are known to be one of the most suc-
cessful tools in many fields such as physics, economics, engineering, computer science, among
others for solving problems like linear and nonlinear programming, variational inequality prob-
lems, fixed point problems, optimization problems and others (for example,/seé [3] 9] 17, 18]).
The MEP have been studied widely by many authors in the case Whisran inverse strongly
monotone mapping (for example, seel[B, 9] and the references therein). Since the introduction
of the relaxed monotone mapping by Fang and Huahg [8], authors are now beginning to study
MEP for the case wher# is a relaxed monotone mapping. For instance, Waingl. [24]
introduced the following iterative algorithm for solving MEP (in the case whfere 0) and

fixed point problem for a nonexpansive mapping in Hilbert space:

(xl € C chosen arbitrarily,

O(tn,y) + (Tun, 0y, un)) + %QJ — Un, Un — Tp) > 0Vy € C,
Yn = anTp + (1 — ) 8,57, + (1 — ay)(1 — 5,,)un,

Co={z € C:|lyn — 2|l < ||z — 2|I},

Q” = m;'L:lev

Ty = Pg,x1, n > 1,

(1.3)

\

where ¢ is a bifunction satisfying( A1)-(A4), T is a relaxedn-o monotone mapping and

S : C — Cis nonexpansive. Under some conditions on the control sequéngés {5, }
and{r, }, they obtained strong convergence of Algorithm{1.3) to a solution of the mixed equi-
librium problem (in whichf = 0), which is also a fixed point of.

Recently, Cheret al. [7] studied the MEP with the relaxed monotone mapping in uniformly
convex and uniformly smooth Banach space. They proposed the following algorithm to ap-
proximate a common solution of the MEP and fixed point problem for ghiasinexpansive

mapping:
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(1.4)

(21 = x € Cis chosen arbitrarily,

Y = J HapJr, + (1 — ) JSzy),

u, € C such that

Gty y) + (At 0y, un)) + f(y) = f(un) + 1y = tn, Jup — Jyn) > 0Vy € C,
Cn={z€C:|lyn — 2[| < lwn — 2][},

Qn = Nj_,Cj,

Ty = Po,v1,n > 1,

where¢ is a bifunction satisfyingA1)-(A4), T is a relaxed)-a monotone mappingf : C —

R U {400} is a proper convex and lower semi continuous function &irisl a quasi¢ nonex-
pansive mapping frond’ to C'. Under some certain assumptions on the parameter sequences
{a,,} and{r,}, they obtained strong convergence [of [1.4) to common solution of MEP and
fixed point problem foiS.

Motivated by the works of Wangt al. [24] and Chenet al. [7], we introduce and study

the following Split Generalized Mixed Equilibrium Problem (SGMEP) which involves relaxed
monotone mappings:

(1.5) Findz € C} such that: € G(¢,,T1, f1, F),

(1.6) andAz =y € Cy such thay € (G(¢,, Ty, f2) N F(5)),

whereC; andC; are nonempty closed and convex subsets pand H, respectivelyA : C; —

(5 is a bounded linear mapping, : ¢, x C; — Rand¢, : Cy x Cy — R are bifunctions?; :

Cy — Cy andT; : Cy — (), are relaxed)-a monotone mappingg; : C; — (—oo, +00| and
fa: Cy — (—o0, +00] are proper convex and lower semicontinuous functiohsCy — Cs is

a nonlinear mapping anfl : C; — (4 is ap-inverse strongly monotone mapping. Throughout
this paper, we denote b, the solution set of SGMER (1.5)-(1.6). If we consider SGMEP
(1.5)-(1.6) separately, then we denote®i,, 71, f1, F') the solution set of the problem: Find
x € C such that

Oz, 2)+ (Te —n(z,x)) + f(2) = f(z)+ (Fr,z —2z) > 0Vz € C,
and byG(¢,, T1, f1) the solution set of the problem: Finde C' such that
Oy, z) +(Ty —n(z,y) + f(z) = fly) + (Fy,z —y) 2 0Vz € C.

Remark 1.2. We observe that, to prove strong convergence results for MEP and other related
optimization problems, the CQ (modified Haugazeau) algorithms are often used. In some other
cases (where algorithms other than the CQ algorithm are used), some compactness conditions
are assumed on the operators under consideration, or the proof maybe divided into two cases
which may result to a very long proof (see, for example [7,13| 14, 15, 16, 21, 24,125, 26] and
the references therein). On this note, Shehu and lyiola [22] in 2017, proposed the following
modified proximal split feasibility iterative algorithm:

Algorithm 1.1. (1) Given the initial pointse;, u € Hy
(2) Setn = 1 and compute:
(4) ©(yn) = [|A*(I — prox,,) Ay, + (I — prox, s )yn||
(5) 2, = Yy — pn% (A*(I — prox,,) Ay, + (I — prox, )y, )
(6) v = (1 - 6n)yn + By2n-
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(7) If A*(I — prox,,) Ay, = 0 = (I — prox,;)y, andzr, 1, = z,, then stop, otherwise
(8) setn = n + 1 and repeat step (3)-(6),
whereh(y,) = 3||(I — prox,,)Aya||*, I(yn) := 3|[(I — prox,;)yx|*>, and the sequences
{a}, {6, } and{p, } satisfy the following conditions:

(i) {an} C (0,1) such thatlim o, = 0and) > | a,, = 0.
(i) 0 < liminfg, <limsupg, < 1,foralln € N.

n—oo

(iii) liminfp,(4 — p,) > 0.

Furthermore, Shehu and lyiola [22] obtained strong convergence of Algdrithim 1.1 to a solu-
tion of the following Proximal Split Feasibility Problem (PSFP): Find H, such that

(1.7) g}g{f(m) +g(Az)},

whereA : H, — H, is a bounded linear mapping, : H; — (—oo,+oc] andg : Hy —
(—o0, +00] are proper convex and lower semi-continuous functions.

Remark 1.3. As observed by Shehu and lyiola [22], the termination test in the above algorithm
(Algorithm ) is justified by the fact that, it* (1 — prox,,) Ay, = 0 = (I — prox, )y, and

Tni1 = T, thenzx,, solves|[(1.J7). This is becaus¥ (I — prox, Ay, = 0 = (I — profo)yn
implies thaty, is a solution of [(L]7). Also, from Algorithm 1.14*(I — prox,,) Ay, = 0 =

(I — profo)yn implies thatz, = v, andz,,.; = v,. So that, ifz,,; = x,, then we get that

x, =y, and hencey,, is a solution of[(1.[7). Therefore, Algorithm 1.1 is well-defined.

Inspired by the above work of Shehu and lyidla![22], we obtain strong convergence results
for solving our proposed SGMEP (1.%)-(L.6) without using any of the methods mentioned in
RemarK 1.p, and the method of proof which we adopted appears to be more shorter and easier
to read. Our results extends and improves the results of \&alg[24], Chenet al. [7], Shehu

and lyiola [22], and many other results in literature.

2. PRELIMINARIES
We state some useful results which will be needed in proving our main results.
Lemma 2.1. [5][11] Let H be a real Hilbert space, then for all,y € H anda € (0,1), the
following hold:
() 2(z,y) = ||| + [yl = [lz =yl = [l +yl* = [l=|* = [lyll*,

(i) [z +yl> < [[yl|]> + 2z, z + ),

(i) [lax + (1= a)yl* = afz]* + (1 = a)[lyl* — (1 = a)|lz — y|I*.
Lemma 2.2.[27] Let H be a real Hilbert space and : H — H be a nonlinear mapping, then
T is nonexpansive if and only If— 7' is %-inverse strongly monotone.

Lemma 2.3. [7] LetC' be a nonempty, closed and convex subset of a real Hilbert siieeed
T : C — H be a relaxed; — a monotone mapping. Let : C' x C — R be a bifunction
satisfying(Al) — (A4) and f : C — RU{+o0} be a proper convex function. For> 0, define
the resolvent mapping, : H — C associated witky, T"and f by

(@)= {2 € C: 9l=,9) + (Tn(y.2)) + f() = f() + {y— 2,2~ 2) 20, y C},
for all z € H, and assume that

() n(z,y) +n(y,z) =0V, y €C,
(i) foranyz,y € C, a(r —y) + a(y —x) > 0.
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Then the following hold:
(1) T, is single-valued,
() F(T)) = G(o, T, f).

Lemma 2.4.[28] LetC be a nonempty, closed and convex subset of a real Hilbert sigaaed
S : C'— C be a nonexpansive mapping. Ther 7' is demiclosed & (i.e., if {x, } converges
weakly tox € C' and{x,, — T'z,,} converges strongly t0, thenz = T'z).

Lemma 2.5.[19] Let{a, } be a sequence of non-negative numbers such that
anJrl S (1 - Oén)an + Oén’}/rn

where{v,,} is a sequence of real numbers bounded from above{and C |0, 1] satisfies
>, = 00. Then,
limsupa, < limsup-y,,.

3. MAIN RESULTS

Lemma 3.1. Let H be a real Hilbert space and’ be a nonempty closed and convex subset of
H. LetT : C' — C be arelaxed;-a-monotone mapping ang: C' x C' — R be a bifunction
satisfying(A2). Letf : C' — (—o0, +oc] be a proper convex function arfd : C' — C' be a
p-inverse strongly monotone mapping. Assume that the following conditions are satisfied:

() n(z,y) +nly,z) =0,y € C,
(i) foranyz,y € C,a(z —y) + aly —z) > 0.
Then, for eachr > 0,
(i) T, is nonexpansive,
(i) [|Toe =yl + [|Tox — [|* < ||z — yl|]? Vo € H andy € F(T;),
(iii) for0 <r <s,we have thaf|T,x — Tsz|| < ||z — Tsx|| Vx € H,
(iv) z € G(o, T, f,F)ifand only ifz = T,.(I — rF)z,
(v) forr € (0,2u), T.(I — rF) is averaged.

Proof. (i) Let z, y € H, then we obtain fron{ (2]1) that
o(Trx,w) + (T (Tx),n(w, T,x)) + f(w) — f(T,z) + %(w — T, T,x —x) >0VweC.
In particular, we have
STy, Tog) + (T (L) 0Ty, To)) + F(Toy) — (o) + Ty — T, Tyr — ) >0
Similarly, we have that
STy, To) + (T(Toy), 0Ty, T)) + f(T0) — F(Tog) + (T = Ty, Toy — ) > 0
Adding both inequalities, and using assumption (i) and (A2), we obtain
(T(T) = T(T), Ty, ) +
SinceT is relaxedn-o monotone, we obtain that
Ty —Toa, (Thx —x) = (Ty —y)) = r({T(Ty) —T(Tx),n(Ty, Tx))

<T7"y - TTI',TTIE —T— TTy + y) Z 0.

(3.1) > ra(T,y —T.x).
By exchanginge andy in (3.7), we obtain
(3.2) (Tx - Ty, (Ty—y) — (Ta—x) = re(Ta—Ty).
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Adding (3.1) and[(3]2), and using assumption (ii), we obtain

ATy — Ty, (Try — y) — (Tyx — ) 2 0.
That s,
(3.3) (Tox =Ty, Trx — Toy) < (Tox — Ty, v — y),
which implies

1T — Toyl)* < || Tox — Tyl — yll,
and this gives that
1Tz = Tyl < [lz—yll.
(if) From (3.3), we obtain that
1T — Tyl* < (T — Ty, o — y).
That is, T, is firmly nonexpansive. Thus, for eache H, y € F(T,), we obtain from Lemma
[2.7(i) that
T =yl < (To—ya-y)

1
(3.4) = 5 (IBe =yl +[ly — 2| = [T —2I]°) .

That is,
1Toa =yl + | Tox — 2| * < [ly — =
(iii) Let z = T,x andw = Tz, from (2.1), we have

(3.5) o(z,w) + (Az,n(w, 2)) + f(w) — f(z) + %(w —z,z—1x) > 0.
Similarly we obtain that
@) olw2)+ {Awn(zw) + [(2) — Fw) + (=~ ww—7) >0
Adding equation[(3]5) andl (3.6), we obtain from assumption (i) that

1 1

By, w) + ¢p(w, 2) + (Az — Aw, n(w, 2)) + ;(w—z,z—x> —I—;(z—w,w—x} > 0.

Using condition(A2), we have

(3.8) %(w — 2,2 — ) + %(z —w,w—x) > (Aw — Az, u(w, 2)) > a(w — z),

Observe that adding (3.5) arjd (3.6), and using assumption (i) and (A2), one can also get that
(Aw — Az, n(z,w)) + %(w —2,2—1I)+ é(z —w,w —z) >0,

which by the definition of" implies

(3.9) %@—wwhﬂ»+%w—az—@za@—w)
Adding (3.8) and[(3]9), and using condition (ii), we have
(3.10) 2<%<w—z,z—x)+§<z—w,w—x>> >0,
which implies that

(x — 2,z —w) > £<x—w,z—w>.

AJMAA Vol. 15, No. 2, Art. 13, pp. 1-16, 2018 AIJMAA


http://ajmaa.org

8 U.A. OsisioGy, F.L. AbuMm, AND C. IZUCHUKWU

Thus, from Lemma 2]1 (i), we have that

r

12z — w|* = [lo = 2[|* = |lz — wl]* = - (lz = w|* + [lw = 2[|* = ||lz — 2[[*) .

»

Since’ < 1, we obtain that

(1+ D)l —wlP < (1=2) llo = wl®
S S

So that
2 s§—=T 2 2
(3.12) 2 — g( )Hx—wll < lla - w|P”.
sS+7r
Hence||T,z — Tsz|| < ||z — Tsz|| Vo € H.
)

2z € G, T, f, F) <= o2y +{Tz—ny,2)) + fly) - f(z
= oz, y) + (Tz,ny, 2)) + fly) — f(2) +

= ¢(2,9) + Tz, n(y,2)) + fly) — f(2) +
— z=T,(I—rF)z.

(Fz,y—2z) >0Vy el
(z—=(z—1Fz),y—2)>0

(z—= (I —=rF)z,y—2)>0

S| =3 |~ t

(v) We first observe that for € (0,2u), (I — rF) is ﬁ-averaged. Also, sincg, is firmly
nonexpansive, we have thAt is averaged. Hence, the compositibii/ — rF') is averaged for
re(0,2u). 1

Under the assumptions of Lemina|3.1, we make the following remark.

Remark 3.1. (i)Since every averaged mapping is nonexpansive, we have from Lémma 3.1 (v)
that7,.(I — rF) is nonexpansive for € (0,2u).

(i) For r € (0,2p), we obtain from Remark 1.1 and Leminal3.1 (v) that/ — »F) is firmly
nonexpansive. Thus, for anye H andy € F(7,(I — rF')) with r € (0,2u), we have from

Lemmd 2.1 (i) that
1T:(I = rF)z —y|* <

—~

TT(I—T’F)J]—y71’—y>

IT(I = rF)z = yl* + [l =yl = IT.(I = rF)z — 2] ,

| —

which implies

ly = T.(I = rF)a|* + |lo = To(1 = rF)a||* < [ly — =],
Lemma 3.2. Let H be a real Hilbert space and’ be a nonempty closed and convex subset of
H. LetT : C' — H be a relaxed)-a-monotone mapping and: C' x C' — R be a bifunction

satisfying(A2). Letf : C' — (—o0, +0oc] be a proper convex function arfd: C' — H be any
nonlinear mapping. Assume that the following conditions are satisfied:

) n(z,y) +n(y,z) =0Vr,y € C,
(i) foranyz,y € C, a(x —y) + a(y — z) > 0.

Then, for) < r < s, we have thal|T,.(I —rF)x—Ts(I —sF)x|| < ||z —Ts(I —sF)z||Vx € H.
Proof. Letz = T.({ — rF)z andw = T,(I — sF)x, from (2.1), we have

313)  d(zw)+ (Azn(w, 2)) + fw) — F() + %(w e (I—rF)) > 0.
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Similarly, we obtain that
1
Thus, following the same line of arguments ag in|(3.7)-(3.10), we obtain that

2(l(w—z,z—(I—TF)x)—l-l(z—w,w—(I—sF)x>) > 0.

T S
That is,

<1:—z—7’F1:,z—w>—Qx—w—st,z—w)20.
s

Hence,
r r
(x—rFrx—2)—(—x—rFz—-w),z —w) >0,
s s
which implies that

<

(x —z,z—w) > —(v —w,z—w).

By the same line of arguments as|in (3.11)-(8.12), we obtain the desired gesult

VA

Throughout this paper, we shall wrie" for the resolvent mapping associated with 7

and f1, and7;? for the resolvent mapping associated with 7, and f,. We also make the
following assumptions

Assumption 3.1. Assume thafa,, }, {3,,} and{t,} are sequences of real numbers satisfying
the following:

(i) {an} C (0,1) such thatlim o, = 0and > | v, = 0.
(i) 0 <liminfg, <limsupg, < 1,foralln € N.

n—oo

(iii) liminft,(2 —t,) > 0.

Leth(x) := L[|(I — ST\?) Az||> andi(z) := L||(I — T\" (I — rF))z||>. Then, we consider the

following algorithm to study problerfL.5)-(1.6).

Algorithm 3.1. (1) Let{w,}, {3, } and{t,} be such that Assumptipn B.1 is satisfied
(2) Given the initial pointr; € C;
(3) Setn = 1 and compute:
(4) Yn = ang(xn) + (1 - O‘n)xn
(5) O(yn) = | A*(1 = STD) Ay + (I = TR (1 = v F)yal|
(6) 20 = Y — ta ) (A (1 = ST ) Ay, + (1 = T = )

(8) If A*(I—ST?) Ay, = 0= (I —T" (I =1, F))y, andz,.1 = z,,, then stop, otherwise

(9) setn = n + 1 and repeat step (4)-(7).
We observe here that, by similar argument as in Rernatk 1.3, one can easily see that Algorithm
[3.1 is well defined. Therefore, using Algorithm]|3.1, we present in what follows, our strong
convergence theorem for solving problébH)-(1.6).

Theorem 3.3.LetC; andC; be nonempty closed and convex subsets of real Hilbert sgéces
and H, respectively, andl : C; — C, be a bounded linear mapping. Let : C; x C; — R,
¢y : Cy x Cy — R be bifunctions satisfyingA1)-(A4) andT; : C; — C, Ty : Cy — Cs
be n-hemicontinuous and relaxegc« monotone mappings. Lgt : C; — (—o0,+o0], fo :
Cy — (—o00, +o0] be proper convex and lower semicontinuous functionsand’; — C; be
a u-inverse strongly monotone mapping. Let C; — C5 be a nonexpansive mapping and
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g : C1 — C} be a contraction with constait Suppose thdt # () and{r, } is a real sequence
such that0 < r» < r, < b < 2u. Then, the sequence generated by Algorithm 3.1 converges
strongly toz € T, wherez = Prg(z).

Proof. Let z € Prg(z) and.J,, = T\)(I — r,F)), thenz = J, z andAz = ST?) (Az). Also,

sinced < r <r, < b < 2u, we have from Remarfk 3.1(i) thdf, is nonexpansive. Again, from
Lemm (i), we obtain that o 7,'?) is nonexpansive. Thus, by Lem@z.z, we obtain that

(I = ST Ay, Ay — Az) = (I = STD) Ay — (I — ST,?)) Az, Ay, — Az)
> I~ ST) Ay, — (1 — STE) 2|
(3.15) = h(Yn)-

Similarly, we obtain that
From Lemma 211 (i),[(3.15)] (3.16) and Algorithhm 3.1, we obtain

h(yn) + U(yn)
92(yn)

2
|A*(I = ST2) Ayy + (1 = Jr, )yl

len = 211" = lyn — 2lI* — 2t (AL = ST Ayy + (I = T, Vs Yo — 2)

t2(h(yn) + 1(yn))
- 04 (yn)

= lyn — 2" — 2,

h(yn) + Uyn) (I — ST Ay, Ay, — Az) + (I = J0 )Yy Yn — 2)]

©2(yn)
£ (h(yn) + 1(yn))
©2(yn)
2 h(yn) + 1(yn) ta(h(yn) +1(yn))?
< yn — 2" — Qtnw (h(y) +1(yn)) + 02(y)
2 (P (yn) + 1(yn))*
ATl ol = (2 —1,) [ L),
Now, observe from Algorithr 3]1 that
(3.18) Tni1 = Yn = B, (20 — Yn)-
Thus, we obtain from Algorithrn 3] 1 that
e =217 = 11y = 2) = Bultn — 2

< Nlyn = 2117 = B,(1 = B)lyn — 20l

1
(3-19) - ||yn_z||2 - ﬂ_(l_ﬁn)Hxn—H _yn||2'
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From Algorithm[3.1, we obtain

|zt = 2l = lan(g(zn) = 9(2)) + an(g(2) — 2) + (1 = an)(zn — 2)]|
< ankllen — 2l] + anllg(2) = 2l + (1 — an)zn — 2]]
= (I—an(l =k)llzn — 2| + anllg(2) — 2|
llg(z) — =[]
< _ LA, |
< maX{Hmn 2], %
< max {Hxl — 2|l —||g(12)_—kz|| } .
Hence{z,} is bounded. So arfy, } and{z,}. Now, from (3.18), we obtain
e b 2 Y |21 — ynl|?
(3.20) |20 = ynll” = ﬁinnJrl unll” = 3 a3y, '

Also, from Algorithm[3.] and Lemnja 3.1 (ii), we obtain
lan(9(2n) = 9(2)) + an(9(2) = 2) + (1 = an)(wn = 2)|I°

1y — 2II*

< New(g(@n) — 9(2) + (1 — an) (= 2)|P + 200 (9(2) — 2,90 — 2)
< O‘?LkQHxn - Z||2 + (1 - an)2||xn - Z||2
+20an (1 = an){g(zn) — 9(2), 20 — 2) + 200, (9(2) — 2, Yn — 2)
< (1= on)?||zn — 2| + K2l |z, — 2|1 + 200(9(2) — 2,y — 2)
+20an (1 — an)|lg(@n) — g(2)||[|zn — 2]
< (1 —ap)?||lzn — 2|? + 2|20 — 2||* + 20 {g(2) — 2, yn — 2)

+20, (1 — ) k||, — zHQ
= (1—20,(1 = k(1 — a)))l|zn — 2|7
+o (L4 E)|[an — 2])* + 200 (g(2) — 2,40 — 2)

MW _Z||2]

(3.21) < (1 —2a,(1 —E))||lzn — 2|]* — 20 {(g(z) — 2,2 — Yp) — 5

From (3.19) and (3.21), we obtain that

(1 + k2
fewss — 22 < (1= 2an(1 = k))llan — 22 = 20 [<g<z>—z,z—yn>—qun—zu‘é’]

2
5= ) =l
= (1 2001 K)o —
n(1 4 K2
©22) =20, (0(2) = 25 = ) + o (1= Bllowes =l = 22 o, 1]

Qn 2
Lety, = (9(2) — 2,2 = yu) + 3o (1 = Bu)ll@nrs — ] — L) |2, — 2[|2. Then, [3.2R)
becomes

< (1= 2a,(1 = K))[[zn — 2[|* — 2007,
(3.23) < (1= 2a,(1 = K))[zn — 2[]* + 200 (1 = k) (—,,)-

Letd, = 2a,(1 — k). Then, it follows from Assumptiop 3.1 (i) thaf>” | 6, = oco. Also, we
know that{x,, } is bounded below (so i§y,}), thus(—~,,) is bounded above. Hence, applying

AJMAA Vol. 15, No. 2, Art. 13, pp. 1-16, 2018 AIJMAA


http://ajmaa.org

12 U.A. OsisioGy, F.L. AbuMm, AND C. IZUCHUKWU

Lemmd 2.5 in[(3.23), we obtain that

limsup ||z, — z||* < limsup(—7,,)

(3.24) = —liminf~,.

n—oo

That s,
liminf~y, < —limsup ||z, — z||*.

n—oo n—o0

Thus,lim inf~,, exists. Also, by Assumpti.l (i), we obtain that

1
(1= B, = )

Since{z,} is bounded, there exists a subsequeficg } of {z,} that converges to a point
z* € Cy, and

(3.25Dirrlllilgf’yn = k;h—>Holo ((g(z) — 2,2 — Yn,) +

liminf v,, = liminf ((g(z) — 2,2 — Yn) +

n—oo n—oo

1
200, 8,

Hence {Tnk(l — B )| Tn1 — ynkllz} is bounded. Furthermore, Assumpt.3 1 implies
that there exists € (0, 1) such that,, < b < 1. Thus,

(1= By ) mss — ynku?) |

1 1
S ) 2 505, Y
which implies that{+||xnk+1 - ynk||2} is bounded. Also, Assumpti.l, implies that
there exists: € (0, 1) such that) < a < 3,,. Thus,0 < B”’c < 0, k — oo. Hence, we

obtain from [(3.2D) and the fact th%tmuxnkﬂ — Y, ||? } is bounded that
(3.26) dim []20, — || = 0.

From Algorithm[3.1 and (3.26), we obtain that

(327) ||wnk+l - ynkH = ﬁnkHznk - ynk“ - 07 k — oo.

Again, we obtain from Algorithm 3|1 that

(3.28) ||ynk - xnk|| = ank||g(xnk) - xnk“ — 0, k — oo.

From (3.27) and (3.28), we obtain that

Also, from (3.17) and (3.26), we obtain that

o) (02 £ 100))

< Y = 2I° = llzm, — 2II°

< Hynk _anH2+2Hynk _anHHan _ZH - O, k — oo.

By Assumptio , We obtain thaim %@;k» = 0. Consequently, we obtain that
nE

klim (h(Yny) + UYn,)) =0 <= khm h(yn,) = 0 and klirn [(Yn,) = 0.
That s,
(3.30) lim || Ay,, — ST?) Ay, || = 0, and
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(3.31) B (Jyn, =, i || = 0.

Now, setv,, = Tr(f)Ayn, then [3.3D) becomekls‘m || Ay, — Svy, || = 0. Thus, from Lemml
(i), we obtain that

||Aynk_vnk||2 S ||Aynk—AZ||2—||Unk—AZ||2
S ||Aynk—AZ||2—||SUnk—SAZ||2
< Ay, — Svn, |2 + 2| AYn, — Sn||||SVn, — SAz|| — 0, k — oo.
That is,
(3.32) Jim [[ Ay, — T72) Ay, || = 0.
Also,
(333) < HAynk - SU”kH + ank - AynkH - 07 k — oo.

From (3.32) and Lemma 3.1(iii), we obtain that
HAynk - Tr(z)AynkH < HAynk - Trgfi AynkH + HTr(fi Aynk - Tr@)AynkH
(3.34) < 2||Ayn, — qufZAynkH — 0, k — oo.

Again, by Lemma 3]2, we obtain that

Hynk - JTynkH < ||ynk - JTnkynkH + ||Jrnkynk - JTynkH
Since {z,,} converges weakly ta* € (), we have from[(3.28) that there exists a subse-
quence{y,, } of {y,} such that{y,, } converges weakly ta* € C;. Also, sinceA is a
bounded linear mapping, we have that there exists a subseq{idpge; of { Ay, } that con-
verges weakly todz* € Cs. It then follows from Lemma 2]4[ (3.83), (3]34) and (3.35) that
Azt € (F(S) N F(TT@))) andz* € F(J,). Hencexz* e T.
We now show thafz,, } converges strongly te. Now, from [3.25),[(3.27) and by the property
of the metric projectiorP:, we obtain

'rkankH - 07 k — OQ.

liminfy, = klim (9(2) — 2,2 — Yny)
= (o) - 22—
> 0.
Thus, from [[3:24), we obtain thaim sup||z,, — z||> < 0. Hence,limsup||z,, — z||*> = 0.

n—oo n—od

Therefore, we conclude thét,, } converges strongly to. g
Consider the following Split Mixed Equilibrium Problem:
(3.36) Findz € C; such thatr € G(¢,, T3, f1),

(3.37) andAx = y € Cy such thaty € G(¢,, T, f2),

whereg,, T4, f1, ¢,, T5, f» are as defined in Theorém B.3.

As corollary of our main results, we can solve Problém (3.86)-(3.37) by sefting I and

F = 0in Algorithm [3.1. Also, by setting, = ¢, = 71 =T, = FF = 0andS = I

in Algorithm[3.1, we can apply Theorem B.3 to solve the Proximal Split Feasibility Problem
studied in [22].
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4. SPLIT GENERALIZED MIXED EQUILIBRIUM PROBLEM OVER THE SOLUTION SET
OF VARIATIONAL INCLUSIONS
Recall that a multivalued mappiny : H — 27 is called monotone, if
<x—y,u—v> > vaay S H7 u € M(IL’), CAS M(y)a
and maximal monotone if the grajgh( M ) of M defined by
GM)=:{(z,y) e Hx H:ye€ M(x)}
is not properly contained in the graph of any other monotone mapping. The resolvent operator
JM associated with a mapping and ) is the mapping/}’ : H — 2 defined by
(4.1) I (x) =T+ AM) 'z, x € H X > 0.
It is known that if the mapping/ is monotone, thed}” is single valued and firmly nonexpan-
sive (seell2]).
Now, consider the following Monotone Variational Inclusion Problem (MVIP): Find
(4.2 x € H suchthab € M;(x) + Fy(x),
whereM, : H — 2" is a multivalued mapping ané, : H — 2% is a single valued mapping.
We shall denote the solution set of problém|4.2) by + F3)~*(0). In [20], Moudafi proved
thatr € (M, + F,)~(0) ifand only ifz = J}' (I = \Fy)(x), VA > 0. Itwas also shown in [20]
that, if F; is ap-inverse strongly monotone mapping ahd is a maximal monotone mapping,
thenJ)" (I — \F,) is averaged witt) < \ < 2u. Hence,J," (I — AF3) is a nonexpansive
mapping with0 < A < 2.
Thus, by settings = J" (I — AF) in Algorithm[3.1, we can apply Theoregm 8.3 to solve the
following SGMEP over the solution set of MVIP:

(4.3) Findz € C, such thatr € G(6,, T3, f1, 1),

(4.4) andAz = y € Cy such thaty € (G(¢,, Ts, fo) N (M; + F»)~(0)),
whereg,, 11, fi, F1, ¢, T5, f» are as defined in Theorgm B.3.
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