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ABSTRACT. In this article we address the problem of integral presentation of a convex function.
Let I be an interval inR. Here, using the Riemann or Lebesgues integration theory, we find the
necessary and sufficient condition for a functionf : I → R to be convex inI.
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1. I NTRODUCTION

For convex functions are written many articles. Here we will concentrate only on the as-
pect of their presentation by indefinite integral. In order to achieve this goal we have used
three well-known facts about convex functions dealing with their continuity and differentia-
bility (propositions (P1), (P2) and (P3)). To prove that the derivative of a convex function is
Riemann integrable, we had to prove Lemma 2.1.

This problem is also considered in [1], but only in the case of Riemann’s as the integration
operator. Here, in addition, we reorganize this problem in a simpler, shorter and clearer way
when as the integration operator is that of Riemann, and generalize it even when the integration
operator is that of Lebesgue. This was made possible because of the fact that we have used the
convex function defined by equation (1.2), unlike [7] and [1], where this meaning is given by
equation (1.1).

Definition 1.1. The real functionf : I → R is called convex (from above) at an interval inI,
if

(1.1) f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

for every two pointsx1, x2 ∈ I and everyt ∈ [0, 1].
If in the inequality (1.1) we substitutet = 1

2
then we obtain the inequality (1.2)

(1.2) f(
x1 + x2

2
) ≤ f(x1) + f(x2)

2

for every two pointsx1, x2 ∈ I.

Conversely, from the validity of inequality (1.2) there is no validity of the inequality (1.1).
For this it is sufficient to refer to [5] , where it is indicated that for functionf defined by formula

f(x) =

{
x2, if x is rational number

0, if x is irational number

the inequality (1.2) is true, but not (1.1) .

Lemma 1.1. If the functionf is continuous in the intervalI and satisfies the inequality (1.1)
then it also satisfies the inequality (1.2), i.e.f is a convex function.

An interesting proof of this fact is found in [6].
Characterization of convex functions ([7] App. III, theor. 2) is usually performed within

Lebesgues integration theory, despite the fact that the involved integrands are non-decreasing
(therefore Riemann integrable) functions. We transcribe its statement as it appears in the cited
book:

Theorem 1.2.The class of functions which are convex downward on the interval(a, b) coincides
with the class of indefinite integrals of functions which are increasing on(a, b) and bounded on
every[p, q] ⊂ (a, b).

The same result can be achieved in a similar way, by using only Riemann integrals. In order
to remember the usual proof and show the simpler one, we prefer to adopt the following point
of view.

Theorem 1.2 is an immediate corollary of the next result:

AJMAA, Vol. 15, No. 1, Art. 7, pp. 1-7, 2018 AJMAA

http://ajmaa.org


RELATION BETWEEN THE SET OF NON−DECREASINGFUNCTIONS AND THE SET OF CONVEX FUNCTIONS 3

Theorem 1.3. Let (a, b) be an interval andx0 ∈ (a, b). Let X be the space of non-decreasing
functions on(a, b) and letY be the space of convex functions on the same interval tending at
x0. Then the operators”indefinite integration fromx”

0 and ”differentiation” are inverse to each
other. So,

(1.3)
d

dx

∫ x

x0

f(t)dt = f(x), f ∈ X

and

(1.4)
∫ x

x0

F
′
(t)dt = F (x), F ∈ Y

An elementary general result provides the suitable framework for this point of view.

Theorem 1.4.LetΦ : X → Y andΨ : Y → X be two mappings such that

(1.5) Ψ · Φ = idX

Then, they are inverse to each other, i.e.

(1.6) Φ ·Ψ = idY

if and only if one of the following conditions is satisfied,Ψ is one to one orΦ is onto.

However, Theorem 1.2 may be derived alternatively from the following (Riemann-ian) ver-
sion of Theorem 1.3.

Theorem 1.5. Let (a, b) be an interval andx0 ∈ (a, b). LetX be the space of right continuous
non-decreasing functions on(a, b) and let Y be the space of convex functions on the same
interval tending atx0. Then the operators

Φ(x) =

∫ x

x0

f(t)dt, f ∈ X

and

Ψ(F ) = D+F, F ∈ Y

are inverse to each other.

The proof of Theorem 1.5 is obtained by applying Theorem 1.4.

2. WELL -KNOWN FACTS ABOUT CONVEX FUNCTIONS

If f : I → R is a convex function, then the functionf has the following properties:
(P1) There are partial derivativesD−f(x) andD+f(x), which are finite at each pointx ∈ I.

The functionsD−f andD+f are non-decreasing in the intervalI, meanwhile the right deriva-
tive is continuous from the right, while the left derivative is continuous from the left (see [2] or
[8]).

(P2) The set of points where the functionf is not derivable is computable (denumerable) (see
[2] or [8]).

(P3) If [a, b] ⊂ I andM ≤ max{D+f(x); D−f(x)}, then for every two pointsx andy from
[a, b], it is true inequality

| f(x)− f(y) |= M | x− y |
which means that the functionf satisfies the Lipschitz condition [8].
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To prove that the derivative of a convex function is Riemann integrable, we had to prove
Lemma 2.1.

Lemma 2.1. If the function is convex, then the derivativef
′
is continuous inI, with an excep-

tional denumerable set of points in this interval.

Proof. Due to the statement (P2) the derivativef
′
exists inI, with an exceptional denumerable

set of points
E = {x1, x2, ...}.

Forx ∈ I \ E the equalityD−f(x) = D+f(x) = f
′
(x) is true.

Since the functionD−f is continuous from the right and the functionD+f is continuous
from the left (according to the statement (P1)), it follows that the derivativef

′
is a continuous

function both from the left and from the right inI \E, which means it is continuous inI \E.

3. I NTEGRAL PRESENTATION OF A CONVEX FUNCTION

Let f : I → R be defined at an intervalI anda ∈ I fixed point.

Theorem 3.1.The necessary and sufficient condition that the functionf is convex in the interval
I is that for eachx ∈ I, this function is presented in the form

(3.1) f(x) = C + (R)

∫ x

a

g(t)dt,

whereg is a non-decreasing functions inI andC real constant (in fact,C = f(a)).
(The symbol(R) in front of the integer sign indicates Integration according to Riemann,

which, during the proof, wont be written, but we will imply).

Proof. First, let proof that condition 3.1 is necessary (indispensable). Suppose thatf is convex
in the intervalI. According to Lemma 2.1. the set of disconnection points of functionf

′
has

the mass (according to Lebesgue measure) zero. In the Riemann integral theory (see eg [3]) it
is proven that:

- The derivativef
′
is integrable according to Riemann if and only if the set of disconnection

points off
′
, which is of the typeFσ), have the mass zero according to Lebesgue.

- Each functionf : [a, b] → R that has an integrative derivative according to Riemann in
segment[a, b], is an indefinite integral of its derivative:

(3.2) f(x) = f(a) +

∫ x

a

f
′
(t)dt,

wherea ≤ x ≤ b.
Formula 3.2 is also true whenb < a, i.e. is true in a generalized segment[a, b]. Since each

point x ∈ I can be included in a generalized segment[a, b], such that[a, b] ⊂ I, the equation
3.2 is true for eachx ∈ I.

If in this formula we substitute derivativef
′
(t) with the right derivativeD+f(t), formula 3.2

takes the form

(3.3) f(x) = f(a) +

∫ x

a

D+f(t)dt, (x ∈ Ê)

or

(3.4) f(x) = C +

∫ x

a

g(t)dt, (x ∈ Ê)
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where, according to the statement (P1), the functiong(t) = D+f(t) is non decreasing, mean-
while C = f(a).

Now, let proof that condition 3.1 is sufficient. Suppose that for functionf equation 3.2 is
true. Since the indefinite integral ∫ x

x0

g(t)dt

is a uniformly continuous function, it follows that the functionf is continuous. To prove that
the functionf is convex, it is enough to prove thath(x) =

∫ x

a
g(t)dt is a convex function. For

this, based on Lemma 1.2, it suffices thath proves the inequality:

(3.5) h(
x1 + x2

2
) ≤ h(x1) + h(x2)

2

A concise statement of 3.5 is found in [8] (page 40).

Theorem 3.2. The necessary and sufficient condition that the functionf to be convex in the
interval I is that for eachx ∈ I, this function is presented in the form

(3.6) f(x) = C + (L)

∫ x

a

g(t))dt,

whereg is a non-decreasing functions in[a, b] andC real constant (in fact,C = f(a)).
(The symbol(L) in front of the integer sign indicates integration according to Lebesgue,

which, during the proof, wont be written, but we will imply).

Proof. First, let proof that condition 3.6 is necessary (indispensable). Suppose thatf is convex
in the intervalI. According to the statement (P3) it follows that the functionf is absolutely
continuous in every segment[a, b] ⊂ I. Let bex ∈ I, then there is a segment[a, b], such that
x ∈ [a, b] ⊂ I. Based on the Lebesgue theorem ([4], page 345), the functionf can be expressed
as an indefinite integral (according to Lebesgue) of its derivative in the form

(3.7) f(x) = f(a) +

∫ x

a

f
′
(t)dt

If we substitute derivativef
′
(t) with the right derivativeD+f(t), formula 3.7 takes the form

(3.8) f(x) = f(a) +

∫ x

a

D+f(t)dt

or

(3.9) f(x) = C +

∫ x

a

g(t)dt

where, according to the statement (P2), the functiong(t) = D+f(t) is non decreasing func-
tion, whileC = f(a).

Now, let proof that condition 3.6 is sufficient. Suppose that for functionf equation 3.6 is
true. Since the indefinite integral ∫ x

x0

g(t)dt

is a absolutely continuous function ([4], pg. 344) it follows that the functionf is continu-
ous. To prove that the functionf is convex, it is enough to prove thath(x) =

∫ x

a
g(t)dt is a
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convex function. The other part of proof proceeds in the same way as the proof of the sufficient
condition of Theorem 3.1.

Theorem 3.3. Fix a point a ∈ I. By the integration operators according to Riemann or ac-
cording to Lebesgue, can establish a biunivoke correspondence (one by one) between the set
Φ = {ϕ} of non-decreasing functions in an intervalI ⊂ R and the setF = {f} of the convex
functions (from above) inI, for whichf(a) = 0, according to the formula

(3.10) f(x) =

∫ x

a

ϕ(t)dt, (x ∈ I)

Proof. - Let f ∈ F. According to the Theorems 3.1 and 3.2 we can write the equation

f(x) = f(a) +

∫ x

a

D+f(t)dt =

∫ x

a

ϕ(t)dt,

wherex ∈ I andϕ = D+f is a monotone non-decreasing functions inI. Thus, the function
f ∈ F responds to the functionϕ = D+f ∈ Φ.

- Let ϕ ∈ Φ. Sincef is a non-decreasing function in the intervalI, then it is integrable ac-
cording to Lebesgue, even according to Riemann. We will build the functionf(x) =

∫ x

a
ϕ(t)dt,

where
∫ x

a
is the integration operator according to Riemann or according to Lebesgue. From the

reasoning we did in Theorems 3.1 and 3.2, it follows that the functionf is convex in the interval
I. Thus we established a correspondence between setsF andΦ.

It remains to be proven that this correspondence is biunivoke (one by one).
- Let f1 andf2 be two different functions fromF, it meansf1 6= f2. Let’s mark it

ϕ1 =
d+

dx
(f1) andϕ2 =

d+

dx
(f2).

Let prove thatϕ1 6= ϕ2. In opposite, we would haveϕ1 = ϕ2, which meansD+f1 = D+f2.
In [9] it is proved that if the right derivative of a continuous function is zero at an interval, then
this function is constant at that interval. Thus, in our case, sincef1 − f2 is continuous and

d+

dx
(f2 − f1) = 0, in I

it follows thatf1 − f2 = c(constant) in I. Meanwhile, since we havef1(a) − f2(a) = 0,
it follows that for eachx ∈ I, we havef1(x) − f2(x) = 0, which meansf1 = f2, which
contradicts the assumption.
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