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1. I NTRODUCTION

The first order Euler-Maclaurin formula for a smooth functionf : [a, b] → R (a < b in Z)
states that

(1.1)
∑

a≤k<b

f(k) =

∫ b

a

f(t) dt− 1

2
[f ]ba + R, R =

∫ b

a

f ′(t)B1(t− [t]) dt,

whereB1(t) = t− 1

2
is the first Bernoulli polynomial. The formula is useful in the approxima-

tion of finite sums, and to relate the convergence of generalized integrals with that of numerical

series: we refer to [1, 2, 3] for a survey on the subject. Since|B1| ≤
1

2
on [0, 1] it follows that

the remainderR is bounded above by
1

2

∫ b

a

|f ′(t)| dt, so that iff is monotonic one has

|R| ≤ 1

2
|f(b)− f(a)|.

The proof is based on a simple, though smart, integration by parts and begins assuming thatf
is defined on[0, 1]: sinceB′

1 = 1, writing that∫ 1

0

f(t) dt =

∫ 1

0

f(t)B′
1(t) dt = [fB1]

1
0 −

∫ 1

0

f ′(t)B1(t) dt

yields

f(0) =

∫ 1

0

f(t) dt− 1

2
[f ]10 +

∫ 1

0

f ′(t)B1(t) dt,

which is (1.1) whena = 0 andb = 1.
In Theorem 3.1 we show that iff is just of bounded variation (BV) on[a, b] then (1.1) holds

with the exception that the remainderR is bounded above by
1

2
pV(f, [a, b]). The proof of

the result is elementary: indeed one can deal with monotonic function, and adapt the same
arguments that are involved in the proof of the integral criterion for the convergence of a series
with monotonic terms; part of the material arises from the thesis [4]. In the final part of Section 3
we obtain the results that follow the traditional Euler-Maclaurin formula for a smooth function,
that is assumed here to be just BV: the approximation of the partial sums of the series

∑
0≤k≤N

f(k)

in terms of
∑

0≤k≤N

f(k) (n < N ), the existence of the Euler constant with a related asymptotic

formula for
∑

0≤k≤N

f(k) asn → +∞ and a generalization to BV functions of the integral test

for the convergence of a series.
The BV version of (1.1) is formulated in Theorem 4.3: the new formula takes into account

the possible lack of continuity of the functionf , and relates the sum of the averages of the left
and right limits off in an interval of integers with the Euler-Maclaurin first-order development∫ b

a

f(t) dt− 1

2
(f(b−)− f(a−)). The remainder, the analogue ofR in (1.1), is here the explicit

integral of the mid-value modification ofB1(t − [t]), with respect to the Lebesgue-Stieltjes
measure associated tof . Quite surprisingly, deducing Theorem 3.1 from the Euler-Maclaurin
formula for BV functions as stated in Theorem 4.3 is not straightforward.

In Section 4 we prove a version of (1.1) based on a partial integration formula for BV func-
tions; in this formula the measure theoretic variation of the function is involved, which may be
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EULER-MACLAURIN FORMULAS FOR BV 3

smaller than the point variation for discontinuous functions, and to deduce (1.1) from it we need
to explicit the formula that connects the two variations; this is done in Proposition 4.1.

We are not aware of other formulations of the Euler-Maclaurin formulas for BV functions in
the spirit of Theorem 3.1. Instead, the approximation formula for the sum of a series (Corol-
lary 3.4) was established in a more general setting in [5], [6, 4.1.5] for functions whoser-th
derivative is BV. The methods involved there arise from Fourier analysis, far from our elemen-
tary approach. A recent extension, comparing in the multidimensional case the Fourier integral
of a function of bounded variation and the corresponding trigonometric series with its Fourier
coefficients was recently established in [7].

2. NOTATION

Our main reference for the basic facts and related notation on BV functions is [8]. Let us
recall that a real valued functionf defined on an intervalI is of Bounded Variation (we often
simply write BV) if the so-calledpointwise variationpV(f, I) of f on I, given by

pV(f, I) := sup

{ ∑
0≤i<n

|f(ti+1)− f(ti)| : ti ∈ I, t0 < t1 < · · · < tn

}
is finite. In this case there exist two increasing and bounded functionsf1, f2 : I → R satisfying

(2.1) f = f1 − f2, pV(f, I) = pV(f1, I) + pV(f2, I).

In particular, every function of bounded variation is locally integrable. The left and right limit
of a BV functionf in c will be denoted, respectively,f(c−) andf(c+).

We find useful here to adopt the following sum notation that is quite common in the field of
Discrete Calculus: ifa < b are natural numbers we set∑

a≤k<b

f(k) :=
b−1∑
k=a

f(k).

Moreover, we set[f ]ba = f(b)− f(a).

3. A EULER -M ACLAURIN TYPE FORMULA FOR BV FUNCTIONS AND ITS

CONSEQUENCES

3.1. A Euler-Maclaurin type formula.

Theorem 3.1(Euler-Maclaurin type formula for BV functions). Leta, b in Z andf : [a, b] → R
be a function of bounded variation. Then

(3.1)
∑

a≤k<b

f(k) =

∫ b

a

f(x) dx− 1

2
[f ]ba + R, |R| ≤ 1

2
pV(f, [a, b]).

Proof. Assume first thatf is monotonic increasing. On every interval[k, k + 1] (k ∈ Z) con-
tained in[a, b] one has

f(k) ≤ f(t) ≤ f(k + 1) ∀t ∈ [k, k + 1],

from which it follows that

f(k) =

∫ k+1

k

f(k) dt ≤
∫ k+1

k

f(t) dt ≤
∫ k+1

k

f(k + 1) dt = f(k + 1).
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4 G. DE MARCO, M. DE ZOTTI, C. MARICONDA

Summing the terms of the foregoing inequalities, ask varies betweena andb− 1, one obtains∑
a≤k<b

f(k) ≤
∫ b

a

f(t) dt ≤
∑

a≤k<b

f(k) + f(b)− f(a).

Subtracting the term
1

2
(f(b)− f(a)) from the members of the preceding inequalities one finds

∑
a≤k<b

f(k)− 1

2
(f(b)− f(a)) ≤

∫ b

a

f(t) dt− 1

2
(f(b)− f(a))

≤
∑

a≤k<b

f(k) +
1

2
(f(b)− f(a)),

from which the conclusion follows.
If f is of bounded variation, letf1, f2 be as in (2.1): since∑

a≤k<b

fi(k) =

∫ b

a

fi(x) dx− 1

2
[fi ]

b
a + Ri, |Ri| ≤

1

2
pV(fi, [a, b]) (i = 1, 2)

by subtracting term by term we get∑
a≤k<b

f(k) =

∫ b

a

f(x) dx− 1

2
[f ]ba + R, R = R1 −R2,

so that

|R| ≤ |R1|+ |R2| ≤
1

2
pV(f1, [a, b]) +

1

2
pV(f2, [a, b]) =

1

2
pV(f, [a, b]),

proving the claim.

Remark 3.1. If f is monotonic on[a, b] thenpV(f, [a, b]) = |f(b)− f(a)|, the remainder term

R can be thus estimated by
1

2
|f(b) − f(a)|: this fact is well known as a consequence of the

Euler-Maclaurin formula whenf is monotonic or of classC1 [1].

Corollary 3.2 (The approximation formula for finite sums). Letf : [0, +∞[→ R be of bounded
variation. For everyN ≥ n the followingapproximation formulaholds:

(3.2)

∑
0≤k<N

f(k) =
∑

0≤k<n

f(k) +

∫ N

n

f(x) dx− 1

2
[f ]Nn + ε1(n, N),

|ε1(n, N)| ≤ 1

2
pV(f, [n, N ]) ≤ 1

2
pV(f, [n, +∞[).

Proof. It is enough to remark that∑
0≤k<N

f(k)−
∑

0≤k<n

f(k) =
∑

n≤k<N

f(k)

and to apply (3.1) witha = n andb = N .
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3.2. A generalization of the integral criterion for the convergence of a series.Let f :
[0, +∞[→ R be locally integrable. We set

γf
n :=

∑
0≤k<n

f(k)−
∫ n

0

f(x) dx ∀n ∈ N.

Notice that, iff is of bounded variation, thenf(∞) := lim
x→+∞

f(x) exists and is finite.

Theorem 3.3(The Euler constant). Let f : [0, +∞[→ R be of bounded variation. The Euler
constant off defined byγf := lim

n→+∞
γf

n exists and is finite, and the followingestimateof γf

holds:

(3.3) γf = γf
n −

1

2
[f ]∞n + ε1(n), |ε1(n)| ≤ 1

2
pV(f, [n, +∞[) ∀n ∈ N.

Proof. Givenn,N ∈ N with N > n, by Theorem 3.1 we have

(3.4) γf
N − γf

n =
∑

n≤k<N

f(k)−
∫ N

n

f(x) dx = −1

2
[f ]Nn + R(n, N),

with |R(n, N)| ≤ 1

2
pV(f, [n,N ]).

Since the limits lim
N→+∞

f(N) and lim
N→+∞

pV(f, [0, N ]) = pV(f, [0, +∞[) are both finite, and

pV(f, [n, N ]) = pV(f, [0, N ])−pV(f, [0, n]), it follows from the necessary part of the Cauchy
convergence criterion that

lim
n,N→+∞

−1

2
[f ]Nn + R(n,N) = 0.

The sufficiency part of the very same criterion thus implies that the limitlim
n→+∞

γf
n exists and is

finite. Passing to the limit in (3.4) we get

γf − γf
n =

∑
n≤k<N

f(k)−
∫ N

n

f(x) dx =
1

2
(f(∞)− f(n)) + ε1(n),

whereε1(n) := lim
N→+∞

R(n,N) is dominated by
1

2
pV(f, [n, +∞[).

An immediate consequence of Theorem 3.3 is the following generalization of the well known

integral criterion for the convergence of the series
∞∑

k=0

f(k) for bounded and monotonic func-

tions.

Corollary 3.4 (Integral criterion for series and approximation of its sum). Letf : [0, +∞[→ R
be of bounded variation.

(1) The series
∞∑

k=0

f(k) and the generalized integral
∫ +∞

0

f(x) dx have the same behavior:

both are either convergent or divergent.

(2) Assume that the series
∞∑

k=0

f(k) converges. For everyn ∈ N the followingapproxima-

tion holds:
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(3.5)

∞∑
k=0

f(k) =
∑

0≤k<n

f(k) +

∫ +∞

n

f(x) dx− 1

2
[f ]∞n + ε1(n),

|ε1(n)| ≤ 1

2
pV(f, [n, +∞[).

Proof. 1. We know from Theorem 3.3 that

γf = lim
n→∞

( ∑
0≤k<n

f(k)−
∫ n

0

f(x) dx

)
∈ R.

Thus
∞∑

k=0

f(k) and the limit lim
n→+∞

n∈N

∫ n

0

f(x) dx have the same behavior. Sincef(∞) belongs to

R, the value of lim
n→+∞

n∈N

∫ n

0

f(x) dx coincides with that of
∫ +∞

0

f(x) dx: the conclusion follows.

2. It follows from (3.2) that for everyN ≥ n we have

(3.6)
∑

0≤k<N

f(k) =
∑

0≤k<n

f(k) +

∫ N

n

f(x) dx− 1

2
[f ]Nn + ε1(n, N),

with |ε1(n,N)| ≤ 1

2
pV(f, [n,N ]) ≤ 1

2
pV(f, [n, +∞[). From Point 1. we know thatf is

integrable in a generalized sense on[0, +∞[. Passing to the limit forN → +∞ in (3.6) we
deduce thatε1(n) := lim

N→+∞
ε1(n,N) is finite, whence the validity of (3.5).

Remark 3.2. The approximation formula (3.5) was established, for a wider class of functions
and with an explicit form of the reminder, in [5], [6, 4.1.5] by means of Fourier analysis meth-
ods.

3.3. Asymptotic formulas.

Theorem 3.5(Asymptotic formulas). Letf : [0, +∞[→ R be a function.

(1) If f is of bounded variation, then for everyn ∈ N∑
0≤k<n

f(k) = γf +

∫ n

0

f(x) dx + ε′1(n), |ε′1(n)| ≤ pV(f, [n, +∞[).

(2) If f is monotonic and unbounded then for everyn ∈ N we have∑
0≤k<n

f(k) =

∫ n

0

f(x) dx + O (f(n)) n → +∞;

Proof. 1. From (3.3) we obtain
γf

n = γf + ε′1(n),

whereε′1(n) :=
1

2
[f ]∞n − ε1(n) and since|ε1(n)| ≤ 1

2
pV(f, [n, +∞[), the following estimate

holds

|ε′1(n)| =
∣∣∣∣12 [f ]∞n − ε1(n)

∣∣∣∣ ≤ pV(f, [n, +∞[) :

the conclusion follows.
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2. It follows from Theorem 3.1, together with Remark 3.1, that for everyn ∈ N∑
0≤k<n

f(k) =

∫ n

0

f(x) dx− 1

2
(f(n)− f(0)) + R(n),

with |R(n)| ≤ 1

2
|f(n)− f(0)|. Since lim

n→+∞
f(n) = ±∞, then

f(n)− f(0) = O(f(n)) n → +∞,

whence−1

2
(f(n)− f(0)) + R(n) = O(f(n)) for n → +∞: the conclusion follows.

4. THE EULER -M ACLAURIN FORMULA FOR BV FUNCTIONS : A MORE MEASURE

THEORETIC LOOK

4.1. Variation and point variation. A function of locally bounded variation (i.e. of bounded
variation on every bounded interval)f : R → R provides a finite signed measureµf on the
σ−algebra of Borel subsets of any subinterval ofR on whichf is bounded, in particular on any
bounded interval. Denoting byf(x−) (resp.f(x+)) the left (resp. right) limit off at a pointx,
the measures of bounded intervals with end-pointsc < d are:

µf

(
]c, d[

)
= f(d−)− f(c+), µf

(
[c, d]

)
= f(d+)− f(c−),

µf

(
[c, d[

)
= f(d−)− f(c−), µf

(
]c, d]

)
= f(d+)− f(c+),

and forc = d we haveµf

(
{c}
)

= f(c+) − f(c−), the jump off at c. As for every signed
measure thetotal variation measure|µf | of the Borel setE is

|µf |(E) = sup

{
m∑

k=1

|µf (Ak)| : A1, . . . , Am ⊆ E disjoint and Borel

}
.

WhenE is an interval one can prove that the same supremum is obtained ifA1, . . . , Am range
only over subintervals ofE, so that, ifE is an interval

|µf |(E)=sup

{
m∑

k=1

|µf

(
]xk−1, xk[

)
|+

m∑
k=0

|µf

(
{xk}

)
| : xk ∈ E, x0 < · · · < xm

}

= sup

{
m∑

k=1

|f(x−k )− f(x+
k−1)|+

m∑
k=0

|f(x+
k )− f(x−k )| : xk ∈ E, x0 < · · · < xm

}
.

If, moreover,E is open bounded then|µf |(E) coincides with thevariation V (f, E) of f on E
[8], given by

V (f, E) := sup

{∫
E

f(x)φ′(x) dx : φ ∈ C1
c (E), |φ| ≤ 1

}
.

If f : R → R is locally BV it is convenient to introduce the function

ρf (x) := |f(x+)− f(x)|+ |f(x)− f(x−)| − |f(x+)− f(x−)| ∀x ∈ R.

Notice thatρf (x) equals twice the distance fromf(x) to the interval whose end-points are
f(x−), f(x+).
Here is how the pointwise variation of a BV function on a boundedopeninterval is related to
its variation.
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Proposition 4.1. Letf : R → R be locally of bounded variation. Then for every bounded open
intervalE:

pV(f, E) = |µf |(E) +
∑
x∈E

ρf (x).

Proof. Givenε > 0 we can findx0 < x1 < · · · < xm in E such that

pV(f, E)− ε <

m∑
k=1

|f(xk)− f(xk−1)|;

now for everyk ∈ {0, . . . ,m} we pickx′k, x′′k ∈ E such that

x′0 < x0; xm < x′′m; xk−1 < x′′k−1 < x′k < xk

for everyk = 1, . . . ,m. Consider now the set{x′k, xk, x
′′
k : k = 0, . . . ,m}; by the triangular

inequality we get

pV(f, E)− ε <

m∑
k=1

|f(xk)− f(xk−1)|

≤
m∑

k=0

(|f(xk)− f(x′k)|+ |f(x′′k)− f(xk)|) +
m∑

k=1

|f(x′k)− f(x′′k−1)|

≤ pV(f, E);

taking limits in the preceding inequality asx′k increases toxk andx′′k decreases toxk we get

pV(f, E)− ε <
m∑

k=0

(|f(xk)− f(x−k )|+ |f(x+
k )− f(xk)|) +

m∑
k=1

|f(x−k )− f(x+
k−1)|

≤ pV(f, E),

which immediately yields

pV(f, E)− ε <

(
m∑

k=1

|f(x−k )− f(x+
k−1)|+

m∑
k=0

|f(x+
k )− f(x−k )|

)
+

m∑
k=0

ρf (xk)

≤ pV(f, E);

taking suprema on{x0, . . . , xm} this easily gives

pV(f, E)− ε < |µf |(E) +
∑
x∈E

ρf (x) ≤ pV(f, E),

and ends the proof.

Remark 4.1. Notice that the claim of Proposition 4.1 does not hold, in general, ifE is not open.
It is easy to see that for acompactinterval[a, b] (a < b) we have

pV(f, [a, b]) = pV(f, ]a, b[) + |f(a)− f(a+)|+ |f(b)− f(b−)|

= |µf |(]a, b[) +
∑

x∈]a,b[

ρf (x) + |f(a)− f(a+)|+ |f(b)− f(b−)|.

This proves actually thatpV(f, I) and|µf |(I) coincide for every bounded intervalI if and only
if f is continuous; thuspV(f, I) gives rise to a measure if and only iff is continuous.
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4.2. The Euler-Mac Laurin formula. Let f ∈ BVloc(R). Themid-value modificationfm for
f is the function defined by

fm(x) :=
f(x−) + f(x+)

2
.

The following version of the integration by parts formula for BV functions will be used in the
sequel.

Lemma 4.2 (Integration by parts for BV functions). If f, g : R → R are locally of bounded
variation then, for everya < b:

(4.1)
∫

[a,b[

gm(x) dµf (x) = g(b−)f(b−)− g(a−)f(a−)−
∫

[a,b[

fm(x) dµg(x).

Proof. By following the lines of the proof of [9, Theorem 3.36] one gets∫
[a,b[

g(x−) dµf (x) = g(b−)f(b−)− g(a−)f(a−)−
∫

[a,b[

f(x+) dµg(x),

∫
[a,b[

g(x+) dµf (x) = g(b−)f(b−)− g(a−)f(a−)−
∫

[a,b[

f(x−) dµg(x).

The result is obtained by summing up term by term the members of the above equalities, and
dividing by 2.

The following Euler-Maclaurin formula for the sums
∑

a≤k<b

fm(k) holds: differently from the

classical one, the sums involve the mid-value modification off , due to its possible disconti-

nuities. The first Bernoulli polynomialB1(x) = x − 1

2
, restricted to[0, 1], is involved in the

first-order Euler-Maclaurin formula for smooth functions [1, Theorem 12.27]; we will use here
the mid-value modification of its extension by periodicityβ1 : R → R defined by

β1(x) :=

{
B1(x− [x]) if x /∈ Z,

0 otherwise.

Theorem 4.3(First-order Euler-Maclaurin formula for BV functions). Assume thatf : R → R
is locally of bounded variation. Then, for anya < b in Z,

(4.2)
∑

a≤k<b

fm(k) =

∫ b

a

f(x) dx− 1

2
(f(b−)− f(a−)) +

∫
]a,b[

β1(x) dµf (x).

Proof. The proof of Theorem 4.3 goes formally as that of the classical first-order Euler-Maclaurin
formula. Clearlyβ1 is locally of bounded variation; plainlyµβ1

= λ1 −
∑
n∈Z

δn, whereλ1 is the

Lebesgue measure. Since(β1)m = β1, applying formula (4.1) withg = β1 we get∫
[a,b[

β1(x) dµf (x) = β1(b
−) f(b−)− β1(a

−) f(a−)−
∫

[a,b]

fm(x) dµβ1
(x)

=
f(b−)− f(a−)

2
−
∫ b

a

f(x) dx +

∫
[a,b[

fm(x) d

(∑
k∈Z

δk

)
(x)

=
f(b−)− f(a−)

2
−
∫ b

a

f(x) dx +
∑

a≤k<b

fm(k),
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which we can rewrite∑
a≤k<b

fm(k) =

∫ b

a

f(x) dx− f(b−)− f(a−)

2
+

∫
[a,b[

β1(x) dµf (x);

sinceβ1(a) = 0, we get
∫

[a,b[

β1(x) dµf (x) =

∫
]a,b[

β1(x) dµf (x).

Theorem 4.3 yields an alternative proof of (3.1).

Alternative proof of Theorem 3.1.To deduce (3.1) from the preceding theorem we rewrite∑
a≤k<b

f(k) =

∫ b

a

f(x) dx− f(b)− f(a)

2
+ R,

R : =

∫
]a,b[

β1(x) dµf (x) +
∑

a≤k<b

f(k)−
∑

a≤k<b

fm(k) +
1

2
[f ]ba −

f(b−)− f(a−)

2

=

∫
]a,b[

β1(x) dµf (x) +
1

2

∑
a<k<b

(
(f(k)− f(k−)) + (f(k)− f(k+))

)
+

+
1

2

(
(f(a)− f(a+)) + (f(b)− f(b−))

)
.

so that

(4.3) |R| ≤
∣∣∣∣∫

]a,b[

β1(x) dµf (x)

∣∣∣∣+ 1

2

∑
a<k<b

(
|f(k)− f(k−)|+ |f(k)− f(k+)|

)
+

+
1

2

(
|f(a)− f(a+)|+ |f(b)− f(b−)|

)
.

Now, since
∫

]a,b[

|β1(x)| d|µf |(x) lacks the contribution of the jumps off on the integers and

|β1| ≤ 1/2, ∫
]a,b[

|β1(x)| d|µf |(x) ≤ 1

2
|µf |

(
]a, b[\Z

)
=

1

2
|µf |

(
]a, b[

)
− 1

2

∑
a<k<b

|f(k+)− f(k−)|.

It follows from (4.3) and Proposition 4.1, taking account of Remark 4.1, that

|R| ≤ 1

2

(
|µf |

(
]a, b[

)
+
∑

a<k<b

ρf (k)
)

+
1

2

(
|f(a)− f(a+)|+ |f(b)− f(b−)|

)
≤ 1

2
pV(f, ]a, b[) +

1

2

(
|f(b)− f(b−)|+ |f(a+)− f(a)|

)
=

1

2
pV(f, [a, b]),

proving the claim.
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