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2 G. DE MARCO, M. DE ZOTTI, C. MARICONDA

1. INTRODUCTION

The first order Euler-Maclaurin formula for a smooth functipn [a,b] — R (a < bin Z)
states that

(1.1) /f dt—— P +R R= /f (0)By(t — [f]) dt

a<k<b

whereB; (t) =t — 5 is the first Bernoulli polynomial. The formula is useful in the approxima-
tion of finite sums, and to relate the convergence of generalized integrals with that of numerical

: . : 1 .
series: we refer to [1,/2] 3] for a survey on the subject. Sjité < 3 on [0, 1] it follows that

, . 1[0 L :
the remainder? is bounded above bg/ |f'(t)| dt, so that if f is monotonic one has

Rl < 51£8) - f(@).

The proof is based on a simple, though smart, integration by parts and begins assumjng that
is defined orf0, 1]: sinceB; = 1, writing that

/fdt/fB’dtf& /f31
/fdt—— /f31

which is (1.1) wherw = 0 andb = 1.
In Theorenj 3.JL we show that ffis just of bounded variation (BV) ofa, 5] then [1.1) holds

with the exception that the remaind&ris bounded above b% pV(f,|a,b]). The proof of

the result is elementary: indeed one can deal with monotonic function, and adapt the same
arguments that are involved in the proof of the integral criterion for the convergence of a series
with monotonic terms; part of the material arises from the thesis [4]. In the final part of Section 3
we obtain the results that follow the traditional Euler-Maclaurin formula for a smooth function,
thatis assumed here to be just BV: the approximation of the partial sums of the s@egf(k)
0<k<N
in terms of Z f(k) (n < N), the existence of the Euler constant with a related asymptotic
0<k<N
formula for Z f(k) asn — 400 and a generalization to BV functions of the integral test
0<kE<N
for the convergence of a series.
The BV version of[(L.]1) is formulated in Theor¢gm4.3: the new formula takes into account
the possible lack of continuity of the functigh and relates the sum of the averages of the left
and right Iimits off in an interval of integers with the Euler-Maclaurin first-order development

/ f(t) dt— —(f(b™) — f(a™)). The remainder, the analogue®fin (L.7), is here the explicit

integral of the mid-value modification aB; (¢ — [t]), with respect to the Lebesgue-Stieltjes
measure associated fo Quite surprisingly, deducing Theorém]3.1 from the Euler-Maclaurin
formula for BV functions as stated in Theorém|4.3 is not straightforward.

In Sectior{ # we prove a version ¢f (IL.1) based on a partial integration formula for BV func-
tions; in this formula the measure theoretic variation of the function is involved, which may be

yields
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smaller than the point variation for discontinuous functions, and to deduce (1.1) from it we need
to explicit the formula that connects the two variations; this is done in Propogitipn 4.1.

We are not aware of other formulations of the Euler-Maclaurin formulas for BV functions in
the spirit of Theorem 3]1. Instead, the approximation formula for the sum of a series (Corol-
lary [3.4) was established in a more general settinglin [5], [6, 4.1.5] for functions whibse
derivative is BV. The methods involved there arise from Fourier analysis, far from our elemen-
tary approach. A recent extension, comparing in the multidimensional case the Fourier integral
of a function of bounded variation and the corresponding trigonometric series with its Fourier
coefficients was recently established(in [7].

2. NOTATION

Our main reference for the basic facts and related notation on BV functions is [8]. Let us
recall that a real valued functiofidefined on an interval is of Bounded Variation (we often
simply write BV) if the so-callegointwise variatiorpV(f, I) of f on I, given by

pV(f, 1) :SUP{ Z |f(tin) — fta)| - i€ I, tg <ty <--- <tn}

0<i<n

is finite. In this case there exist two increasing and bounded funcfiorfs : I — R satisfying

(2.1) f=Fh="Ff,  pV(LI) =V, 1) +pV(f, 1)

In particular, every function of bounded variation is locally integrable. The left and right limit
of a BV function f in ¢ will be denoted, respectively,(c¢™) and f(cT).

We find useful here to adopt the following sum notation that is quite common in the field of
Discrete Calculus: ifi < b are natural numbers we set

SR =3 Ak,

a<k<b

Moreover, we setf]’ = f(b) — f(a).

3. A EULER-MACLAURIN TYPE FORMULA FOR BV FUNCTIONS AND ITS
CONSEQUENCES

3.1. A Euler-Maclaurin type formula.

Theorem 3.1(Euler-Maclaurin type formula for BV functions)eta,bin Zandf : [a,0] — R
be a function of bounded variation. Then

b 1. . 1
3.1) S ) = [ sle)de = 515+ Ry RIS SV a.b)

a<k<b

Proof. Assume first thajf is monotonic increasing. On every interyal k + 1] (k € Z) con-
tained in[a, b] one has
flk) < f(t) < f(k+1) Vt € [k, k+ 1],

from which it follows that
k+1 k+1 k+1

foy = [ pydt< [ fwydr< [ fk+1)dt = i+ ).
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Summing the terms of the foregoing inequalitieskasries between andb — 1, one obtains

IGE / fde< S FE) + £) — fla).

a<k<b a<k<b

Subtracting the terré(f(b) — f(a)) from the members of the preceding inequalities one finds

> ) = U0~ fa) < [ re)it= 50 - fa)

a<k<b

< 370+ 500 - (@)

a<k<b

from which the conclusion follows.
If fis of bounded variation, lef;, f, be as in[(2.1): since

b 1 1 ,
Z fi(k) = / fi(z) dx — 5 [fz]z + Ri, R < §pv(fi, [a,0]) (i=1,2)
a<k<b a
by subtracting term by term we get
b 1.
Z f(k?):/ f(l’)dl‘—§[f]a+R, R:Rl—Rz,
a<k<b a

so that
RIS Rl + |Ral < 50V, [a,b]) + 5 0V (s [a,8]) = 5 V(S la, b)),

proving the claimg

Remark 3.1. If f is monotonic ofa, b] thenpV (f,[a,b]) = |f(b) — f(a)|, the remainder term

, 1 . ,
R can be thus estimated b%f(b) — f(a)|: this fact is well known as a consequence of the
Euler-Maclaurin formula wherf is monotonic or of clas§ [1].

Corollary 3.2 (The approximation formula for finite sumd)et f : [0, +0o[— R be of bounded
variation. For everyN > n the followingapproximation formulaholds:

> 0= X £+ [ o= ) e ),

(3.2) 0<k<N 0<k<n

10, N)| < 5 DV 1, N)) < 5 V(S [, +oo))

N —

Proof. It is enough to remark that

ST ofk) = D0 fk)y= Y flk)

0<k<N 0<k<n n<k<N

and to apply|[(3]1) witlu = n andb = N. 1
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3.2. A generalization of the integral criterion for the convergence of a seriesLet f :
[0, +00[— R be locally integrable. We set

v = Z f(k)—/onf(x)dx VYn € N.

0<k<n

Notice that, iff is of bounded variation, thef{oc) := lim f(z) exists and is finite.

r——+00

Theorem 3.3(The Euler constant)Let f : [0, +oo[— R be of bounded variation. The Euler
constant off defined byy/ := lim ~/ exists and is finite, and the followiregtimateof ~/

n—-+o0o
holds:

B3) A =rl S am), Ml < oVt el

2
Proof. Givenn, N € N with N > n, by Theoren 3]1 we have
N
1
(3.4) W= 2 fk)— [ fla)de=—Z[f]] +R(nN),
n<lk<N n

with | R(n, N)| < 2 pV (7, [n, N]).
Since the IimitleiIE f(N) anleiIE pV(f,[0, N]) = pV(f,[0,+oc]) are both finite, and

pV(f,[n,N]) =pV(f,[0,N]) —pV(f,[0,n]), it follows from the necessary part of the Cauchy
convergence criterion that

lim —% £ + R(n, N) = 0.

The sufficiency part of the very same criterion thus implies that the Iit'nit v/ exists and is
finite. Passing to the limit irj (3/4) we get

V= Y S [ f@)ds = (o) = flm) + =il

n<k<N

wheres;(n) := Nhlf R(n, N) is dominated by% pV(f, [n,+ocl). n

An immediate consequence of Theorenj 3.3 is the following generalization of the well known

integral criterion for the convergence of the serE f (k) for bounded and monotonic func-

. k=0
tions.

Corollary 3.4 (Integral criterion for series and approximation of its sutmgt f : [0, +00[— R
be of bounded variation.
—+00

(1) The seriesZ f (k) and the generalized integr (x) dz have the same behavior:
0

k=0
both are either convergent or divergent.
(2) Assume that the serieg f(k) converges. For every € N the followingapproxima-

] k=0
tion holds:
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Sk = Y iR [ e~ 1T+ an),
(3.5 k=0 0<k<n n

1
e1(m)| < 5 PV (S, In, +00]).
Proof. 1. We know from Theorein 3.3 that

vt :JLHQO ( Z f(k) —/Onf(x) dx) e R.

0<k<n
n

Thusz f(k) and the limit lim f(x) dx have the same behavior. Sinfex) belongs to
k=0

n—-+00 0

neN
n —+o0
R, the value of lirf f(x) dz coincides with that of (x) dx: the conclusion follows.
" neN. J0 0
2. It follows from (3.2) that for everyw > n we have
N
1
(36) > 0= X f0+ [ o= 3 + e ),
0<k<N 0<k<n n

. 1 1 : :
with |e1(n, N)| < §pV(f, [n, N]) < §pV(f, [n, +00[). From Point 1. we know thaf is

integrable in a generalized sense [6n+-oo[. Passing to the limit forV — +oc in (3.6) we
deduce that,(n) := Nhlf e1(n, N) is finite, whence the validity 0.5)

Remark 3.2. The approximation formuld (3.5) was established, for a wider class of functions
and with an explicit form of the reminder, in![5],/[6, 4.1.5] by means of Fourier analysis meth-
ods.

3.3. Asymptotic formulas.

Theorem 3.5(Asymptotic formulas) Let f : [0, +oo[— R be a function.
(1) If fis of bounded variation, then for evenye N

> 0 =af+ [ fa)der ), IS @] < oV oD,

0<k<n

(2) If fis monotonic and unbounded then for everg N we have

S fh) = / " f(@)de +O(f(n)) n— +oo:

0<k<n
Proof. 1. From [3.B) we obtain
v =" +ein),

[f]5° — &1(n) and sincde; (n)]| < %pV(f, [n, +00[), the following estimate

n

DO | —

wheres! (n) =
holds
S 1w —&an)

&4 n)] = \ < V(. [, 450 :

the conclusion follows.
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2. It follows from Theoren 3]1, together with Remark|3.1, that for every N

S 0 = [ fw)de = 5(0) = 50) + Rl

0<k<n

with |R(n)| < %|f(n) — f(0)|. Since lim f(n) = +oo, then

n—-+o00

f(n) = f(0) =O(f(n))  n— +oo,

Whence—%(f(n) — f(0)) + R(n) = O(f(n)) for n — +oo: the conclusion followsy

4. THE EULER-MACLAURIN FORMULA FOR BV FUNCTIONS: A MORE MEASURE
THEORETIC LOOK

4.1. Variation and point variation. A function of locally bounded variation (i.e. of bounded
variation on every bounded intervaf): R — R provides a finite signed measuyze on the
o—algebra of Borel subsets of any subintervaRobn which f is bounded, in particular on any
bounded interval. Denoting bf(z~) (resp. f(z™)) the left (resp. right) limit off at a pointz,
the measures of bounded intervals with end-paintsd are:

pr(le,dl) = f(d7) = f(c*), up(le.d]) = f(d) = f(c7),

/’Lf([qd[) = f(di) - f(ci)7 :uf(]cu d]) = f<d+> - f(CJr)v
and forc = d we havey,({c}) = f(c") — f(c7), the jump of f atc. As for every signed
measure théotal variation measurey | of the Borel sett” is

|ty (E) = sup {Z s (Ap)| : Ag, ..., An C E disjoint and Bore} .
k=1

When E'is an interval one can prove that the same supremum is obtaingd.if. , A,, range
only over subintervals of’, so that, if& is an interval

|iy| (E) =sup {Z g (e )|+ ) s ({ze})| s o € By g < - < xm}

- sup{Z\f(xk) — @)+ S @)~ S| e e B <o < m}
k=1 k=0

If, moreover,E is open bounded thejp|(£) coincides with thevariation V(f, £) of f on E
[8], given by

vir.B) =sw{ [ f@oa) v o e cip), lol <1}
E
If f:R — Rislocally BV itis convenient to introduce the function

pp(a) = 1f(@") = f(@)| +|f(2) = flaT)] = [f@") = f(@7)] VzeR
Notice thatp,(r) equals twice the distance froff{z) to the interval whose end-points are

fla™), f(a™).
Here is how the pointwise variation of a BV function on a boundpdninterval is related to
its variation.
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Proposition 4.1. Let f : R — R be locally of bounded variation. Then for every bounded open
interval £

PV(f, E) = |ug(E) + > pyl)

zel

Proof. Givene > 0 we can findry < z; < - -+ < z,, In E such that
PV(f,E) —e <> |f(wn) = flzea)l;
k=1

now for everyk € {0,...,m} we pickz}, x}; € E such that
Ty < Toy T < T Tpo1 < Th_q < T, < T

for everyk = 1,...,m. Consider now the sdt}, zx, z} : k = 0,...,m}; by the triangular
inequality we get

PV(f,E) —e <> |f(ar) = fze)]

m

<D () = FE 1 @) = Flal) + ) 1 (eh) = flagy)]

<pV(f, E);

taking limits in the preceding inequality a§ increases ta;, andx; decreases to, we get

m

PV(f, E) —e <> (If(xn) = flap)|+ 1f @) = fla)) + ) fp) = flaly)]

<pV(f, E),

which immediately yields

pV(f,E) —e < (Z () = F) + D If () — f(x;)l) +Y " pyla)
k=1
<pV(f, E);

taking suprema ofizy, . . ., z,,, } this easily gives

PV(f.E) —e < |ug|(E)+ ) pslx) < pV(f,E),

zeFE

and ends the proog

Remark 4.1. Notice that the claim of Propositipn 4.1 does not hold, in general ;s not open.
It is easy to see that for@mpactnterval[a, b] (a < b) we have

pV(f,[a, b)) = pV(f,]a, b)) + |f(a) = f(a®)| + [f(b) = f(b7)]
= [psl(a ) + D ppl@) +1f(a) = fla™)] +[£(B) = f(b7)].

z€]a,b|

This proves actually thatV ( f, I) and|u|(I) coincide for every bounded intervaif and only
if fis continuous; thugV (f, I) gives rise to a measure if and onlyfifis continuous.
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4.2. The Euler-Mac Laurin formula. Let f € BV,.(R). Themid-value modificatiorf,,, for
f is the function defined by
)+ f(at
fula) = LED D)

The following version of the integration by parts formula for BV functions will be used in the
sequel.

Lemma 4.2 (Integration by parts for BV functions)f f, ¢ : R — R are locally of bounded
variation then, for every < b:

(4.1) /[ ) i) = 907 07) —g(a ) S = [ gl ),
Proof. By following the lines of the proof of [9, Theorem 3.36] one gets

/[ b[g(l“_) dpy(x) = g(b) f(07) —g(a™)f(a”) - (@) dpy(),

[a,b]
/[ b[g(x*) dpg(x) = g(b”) f(07) —g(a™)f(a”) - . (x7) dpy().
The result is obtained by summing up term by term the members of the above equalities, and
dividing by 2. g

The following Euler-Maclaurin formula for the sumg fm(k) holds: differently from the

a<k<b
classical one, the sums involve the mid-value modificatiorf,aflue to its possible disconti-

nuities. The first Bernoulli polynomiaB, () = = — —, restricted td0, 1], is involved in the

first-order Euler-Maclaurin formula for smooth functions [1, Theorem 12.27]; we will use here
the mid-value modification of its extension by periodicity: R — R defined by

5.(@) = {Bl(:p ~[a]) ifz¢z,

0 otherwise

Theorem 4.3(First-order Euler-Maclaurin formula for BV functionshAssume that : R — R
is locally of bounded variation. Then, for any< b in Z,

b
@2) Y )= [ fde= 5000 = f@ )+ [ Bi(a)dugla)

a<k<b Ja,b

Proof. The proof of Theorern 413 goes formally as that of the classical first-order Euler-Maclaurin

formula. Clearlyg, is locally of bounded variation; plainlbzﬁ1 =)\ — Z 0., Where); is the
nez

Lebesgue measure. Singe, )., = ,, applying formula[(4 ]1) witly = 3, we get
[61(9:) dpg(x) = 5,(07) f(b7) = Bola™) fla™) = | finl(x) dpg, (2)

[a,b]

_ SO = fla) "
— 5 —/a f(z)dz + [aﬁb[fm(x)d<z5k) (z)

kEZ

_ f(b_);f(a_) _/a fl)de+ > fulk),

a<k<b

[a,b
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which we can rewrite

> gty = [ sy = ELZIED 4 ) o),

a<k<b [a,b]

since, (a) = 0, we get [ b[ﬁl(w) dpg(x) = | b[ﬁl(w) dpg(x).

Theorenj 4.8 yields an alternative proof of (3.1).

Alternative proof of Theorefn 3.To deduce[@l) from the preceding theorem we rewrite

/ flo _/ <“)+R,
- Lo 107) — f(a)
Ri= [ st o3I = 3 I+ - T
= [ e+ 5 3 () = ) + () — )+
+5((f@) = @) + (F0) = £67)
so that
(43) Rl < P dug(@)| + 5 S (5 — PO+ 178 — FH)]) +

+2(1fa) — £+ 1£0) ~ F00)).

Now, since/ |3, (x)| d|p ;| () lacks the contribution of the jumps gfon the integers and

Jabl
181 < 1/2,

/] b[|ﬁl<x>|d|uf|< 2) < eyl (Ja, B\Z)

5zl (Ja. b)) Z |f(ET) — f(&7).

a<k<b

It follows from (4.3) and Propositidn 4.1, taking account of Remark 4.1, that
R < 5 (gl b) + 3 0y8)) + 5 (1F(@) = Fla™)] +17(0) ~ £67))

a<k<b

< SV, Jasb) + 5 (170) = SO0 +15(a) = f(@]) = 5 oV (. o8,

proving the claimg

=N
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