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1. INTRODUCTION

In the study of natural science system, one assumes that the system under consideration is
governed by principle causality. A more realistic model would include some of the past states
of the system. Stochastic functional differential equation gives a mathematical formulation
for such system. One of the special but important class of stochastic functional differential
equations is the stochastic differential delay equations.

So, we need an another class of stochastic equations depending on past and present values
but that involves derivatives with delays as well as the function itself. Such equations histor-
ically have been referred to agutral stochastic functional differential equations, or neutral
stochastic differential delay equatio(see, [3], [4], [5], [6], [7], [8], [9], [10], [12], [13]).

Such equations are more difficult to motivate but often arise in the study of two or more sim-
ple electrodynamics or oscillatory systems with some interconnections between them. More-
over, we can not ignore the effect of the science systems with time delay. For example, In
studying the collision problem in electrodynamics, Driver [2] considered the system of neutral

type
y(t) = fily(8),y(6(1)) + f2(y(t), y(6(2)))y(0(2)),
wherei(t) < t. Generally, a neutral functional differential equation has the form

%[y(t) — D(ye)] = f(ye, 1)

Taking into account stochastic perturbations, we are led to a neutral stochastic functional dif-
ferential equation

(1.1) dly(t) — D(ye)] = [y, t)dt + g(ye, 1)dB(t)

Neutral stochastic functional differential equations(NSDESs) are known to model problems
from several areas of science and engineering. For instance, in 2007, Mao [12] published the
stochastic differential equations and applications, in 2010, Li and Fu [11] considered the stabil-
ity analysis of stochastic functional differential equations with infinite delay and its application
to recurrent neural networks, in 2013, Wial. [14] considered the existence and uniqueness
of the solution to following neutral stochastic functional differential equations with infinite de-
lay. Also, Kim [8] considered the solution to following neutral stochastic functional differential
eqguations with infinite delay

1.2) dlz(t) — G(t,z)] = [(t, z)dt + g(t, z)dB(),

wherez, = {z(t+0) : —oo < 6 < 0}.

Motivated by [4], [8], [14], one of the objectives of this paper is to get one proof to existence
and uniqueness theorem for given NSDEs. The other objective of this paper is to estimate on
how fast the Picard iterations,(¢) convergence the unique solutiof¥) of the NSDEs.

2. PRELIMINARY

Let | - | denote Euclidean norm ik"™. If A is a vector or a matrix, its transpose is de-
noted by A”; if A is a matrix, its trace norm is represented By = ./trace(ATA). And
BC((—o0,0]; R?) denote the family of bounded continuo&$-value functionsy defined on
(—o0, 0] with norm ||| = sup_..g<o |0(8)]. M?*((—o0, T]; R?) denote the family of alR?-

valued measurablg;-adapted process(t) = ¢ (t,w), t € (—oo, T| such that f_TOO |(t)2dt <
Q.
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Let ¢, be a positive constant arif2, 7, P), throughout this paper unless otherwise specified,
be a complete probability space with a filtratig#; }.~., satisfying the usual conditions (i.e. it
is right continuous andr;, contains allP-null sets).

Let B(t) is am-dimensional Brownian motion defined on complete probability space, that is
B(t) = (By(t), Ba(t), ..., Bm(£))T.

For0 < t; < T < oo, we define two Borel measurable mappirfgs|t,, 7] x BC((—oc, 0]; RY) —
R?andg : [ty,T] x BC((—,0]; R*) — R¥>™ and a continuous mapping : [to,T] x
BC((—o00,0]; R?) — R4 with G(t,0) = 0.

With all the above preparation, consider the followifigimensional neutral SFDES:

(2.1) dlz(t) — G(t,x)] = f(t,xe)dt + g(t, x)dB(t), to <t <T,

wherez; = {z(t +0) : —oco < 6 < 0} can be considered asBC((—oo, 0]; R%)-value
stochastic process. The initial value of the system (2.1)

(2.2) Ty, =& = {£(0) : —00 < 0 <0}

is anF;,,measurableBC((—oo, 0]; R%)- value random variable such thae M?((—o0, 0]; R%).
To be more precise, we give the definition of the solution of the equdtion (2.1) with initial

data (2.2).

Definition 2.1. [14] R“-value stochastic processt) defined on—oco < ¢ < T is called the
solution of [2.1) with initial datd (2]2), if(¢) has the following properties:
(i) z(t) is continuous andx(t) }+,<:<r is F;-adapted;

(i) {f(t, )} € L ([to, T); RY) and{g(t, z,)} € L2([to, T]; R>™) ;
(iii)) z,, = &, foreachty <t < T,

(2.3) z(t) = &£(0) + G(t, z¢) — G(to, &) / f(s, ds+/ g(s,xs)dB(s) a.s.

Thex(t) is called as a unique solution, if any other solutigii) is indistinguishable with:(t),
that is
P{xz(t) =%(t), forany —oco <t <T} =1.

The following lemmas are known as special name for stochastic integrals which was appear
in [1], [12] and will play an important role in next section.

Lemma 2.1. (Stachurska’s inequalityfjl] Letu( ) and k( ) be nonnegative continuous func-
tions fort > «, and letu(t) < a f k(s)uP(s)ds, t € J = |, 3), wherea/b is
nondecreasing function arid< p < 1 Then

bt —1/(p-1)
u(t) < af(t) {1 —(p—1) {%} / k(s)bp(s)ds} :

Lemma 2.2. (Holder's inequality)[12] If © + . = 1 foranyp,q > 1, f € L?, andg € L% then
fge Lrand ] fg dx < (f,1f7 d&x)M/7(f; lg|” dx)"/2.

Lemma 2.3.(Moment inequality[12] If p > 2, g € M?([0, T|; R**™) such thatF fOT lg(s)[Pds <

oo, then
t P % 5, T
El s dB < T E P ds.
(| [ 1980 ) < (g=gy) 77 [ oy

In order to attain the solution of equatign (2.1) with initial d&ata](2.2), we propose the follow-
ing assumptions:
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(H1) (Holder condition) For any, ¢ € BC((—oo, 0]; R?) andt € [tq, T], we assume that
[f(t.0) = Ft)P VIg(t, ) — g(t, )P < Cllo — |

where(C' is a positive constant and< « < 1 is a constant.

(H2) (weakened linear growth condition) For any [ty, T, it follows that f(¢,0), g(¢,0) €
L? such that

[F(,0)* v ]g(t,0)]* < C1,
where( is a positive constant.

(H3) (contractive condition) Assuming that there exists a positive nuipeuch that) <
Cy < 1 and for anyyp, ¢y € BC((—o0,0]; RY) andt € [to, T, it follows that

G(t, ) = Gt ¥)| < Collp = vl

3. MAIN RESULTS

In order to obtain the existence of solutions to neutral SFDEg; let ¢ andy’(t) = £(0),

forty <t <T.Foreachm =1,2,..., sety; = ¢ and define the followmg Picard sequence
y"(t) —£(0)
t
GD =Gy~ Glle ) l/fS% pis + [ gls.g)aB(s)
to

Now we give the existence theorem to the solution of equation (2.1) with initial[dafa (2.2) by
approximate solutions by means of Picard sequence.

Theorem 3.1. Assume that (H1)-(H3) hold. Then, there exists a unique solution to the neu-
tral SFDEs [(2.1) with initial data[(2]2) and with;, > 1. Moreover, the solution belongs to
M?((—o0, T]; RY).

We prepare two lemmas in order to prove this theorem.

Lemma 3.2. Letu(t) anda(t) be continuous functions df, 7). Letk > 1 and0 < p < 1 be
constants. u(t) < k + ft'; a(s)uP(s)dsfort € I, then

u(t) < kexp ( /t: o(s) ds)

Proof. Fort € I, letk > 1 and define a function(t) = k + ft P(s)ds. Then,z(t) >
1,2(t) = k,u(t) < =(t), and

Z(t) = a(t)uP(t) < a(t)2P(t) < a(t)z(t).

As on/, we deduce that

forteI.

< a(t).

Integrating both sides fromy to ¢, wheret € I, and applying some change of variables yields

2(t) < kexp </t0ta(3) ds)

fort € I. Using inequalityu(t) < z(t), we get the required inequality.
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Lemma 3.3. Let the assumption (H1) and (H3) hold.ulft) is a solution of[(2.]1) with initial
data [2.2), then

E( swp_|a(t)?)

—oo<t<T

A+ aya 2 - ex —
< (o Bl + 0l — ) ) explnC(T 1)

whereC and () are positive constants, = 6(7 —to+4)/(1 —a)(1 — /o) with4E||£||*/(1 —
a)(1 —/a)+n(T —ty)Cy > 1. In particular, z(t) belong toM?((—oo, T]; RY).
Proof. For each numbet > 1, define the stopping time

T, =T Ninf{t € [to,T] : ||z(t)|| > n}.

Obviously, as: — oo, 7, T T a.s. Letx"(t) = z(t A 7,),t € (—o0,T]. Then, forty <t < T,
x™(t) satisfy the following equation

2"(t) = Gt x7') — Glto, ) + J"(1),

where

/ £ (5,2 T () s + / 95,2 Ty ) (5) AB(s).

to

Applying the elementary inequality: + )* < % + % whena,b > 0,0 < a < 1, and from
the condition (H3), we have

1 1
2O < —|G(ta]) - G(tmx?o)!? + =10

< Vallaf|* + \/—
Taking the expectation on both sides, one sees that

EB( sup |o"(s))

to<s<t

1
< n 2 2 n
< VaB(_swp_ i (5) )= Blel + g B( s 1076)7).

Noting thatsup_, <, [2"(s)[* < [[€]]* + supy,< < [27(5)[?, we get

B( sup_|o"(s))

—oo<s<t

<VaB( suwp |o"(s) )+

||€||2+—|J"( ).

Bl + =—E( s 176,

—oo<s<t 1— \/_ to<s<t
Consequently
E n 2
(Lo )
l+a—Va 2 1 n( )2
. < ———F+— .
5.2 < aovar I+ ey o e eF)

On the other hand, by the elementary inequdlity- b + ¢)? < 3a” + 3b* + 3¢, one can show

that
t s 2
[ 1sts.anpas] +| [Catamane }
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By Hoélder’s inequality and Lemma (2.3), one can show that

B( sup |77(s)P)

to<s<t

t t
< 3{13\]5“2 + (T —to)/ E|f(s,a™)|*ds +4/ E\g(s,x?)\zds}
to to
By the condition (H1) and (H2), one can show that
E( sup [7(5)?)

to<s<t
< 3EE]|? +6(T — tog +4)Cy(T — to) +6(T — to + 4)C/t E||z"|]**ds.
Substituting this into[ (3]2) yields that "’
E( swp_[a"(s))

—oo<s<t

4"‘05\/5 9 /t "%
< _
S T=ayi—yay el T —t)CutnC | Elai|™ds,

wheren = 6(T — ty +4)/(1 — a)(1 — y/a). Therefore, we have
E( swp_[a"(s))

—o0<s<t

< 4+ ay/a
T (1-a)(1-+a)
The Lemma (3.2) then yields that
B( s |o"(s)P)

—oo<s<t

t
E\|§|]2+7}(T—t0)C1+nC/ sup  E|a"(r)[2ds.

tg —oo<r<s

it ava 2 - ex -
< (o Bl + (T — )1 ) explnC(T 1)

with (4+a/Q)E|€]12/(1—a)(1—v/a)+n(T —ty)Cy > 1. Foralln = 0,1,2,..., we deduce
that

E< sup |x(s/\7’n)|2>

—oo<s<t

4+ ay/a 2 _ ox _
S((l—a)(l—\/&)EHﬂ' +n(T to)Cl) p(nC(T — to)).

Consequently the required inequality follows by letting- oco. 1

Proof of Theorem 3.1To check the uniqueness, Ie(tt) andx( ) be any two solutions of (2.1)
with initial data [2.2). By Lemma 3.3;(¢), Z(t) € M?((—o0, T]; R%). Note that

2(t) — T(t) = G(t,20) — G(t,T) + J(t),
whereJ (t ft (5,25) — f(5,@,)]ds + fti [9(s,z5) — g(s,7,)]dB(s). One then gets

o(t) ~ 7O < |Gt m) — Gt T + IO,

where( < o < 1. We derive that

1
[2(t) =2 < alle =Z|* + T—|(s)]"
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Therefore
1
E —%(s)]?) < aFE —z(s)|?) + E J(s)|?).
(5, () = ()P) < @B sup Jols) = T(s)P) + =y B s, 1)
Consequently

B( sup [r(5) 7)) < a2 sup ).

to<s<t to<s<t

On the other hand, one can show that

E( sup [7(5)7)

to<s<t

<2[ —tp) /|fsxs — st)]d3+4E/ |gsxs)—g(s,@)|2ds}

<2(T —ty+4)C /EHxS T, ds.

to
For anye > 0, by the condition (H1), this yields that

E( sup |J(s)|2) §5+2(T—t0+4)0/ E sup |a(r) —T(r)|* ds.

to<s<i to to<r<s

Therefore, by the Stachurska’s inequality and letting 0, we haveE sup, ., |J(s)|* = 0.
This implies that

E( sup |z(t) — z(t)\?) —0.
to<s<t
Hence, we get(t) = z(t) for ty <t < T a.s. The uniqueness has been proved.

Now we check the existence of the solution using the Picard sequiente (3.1). Obviously,
from the Picard iterations, we havé(t) € M?((—oo,T] : R?). Moreover, one can show the
boundedness of the sequeraé (t),n > 0} thatz"(t) € M?((—oo,T] : R?), in fact

a™(t) = G(t,x} ") — Glto, 2 ") + J"H(t),

where
JH / f(s, 2" Hds + /tg( 2" NdB(s).
to
Applying the elementary inequalify: + b)* < % + % whena,b > 0,0 < a < 1, we have
" () < —\G(t i) = G(to, €)1 + 1—|J”‘1(lf)\2
<Vl P+ g R T O,

where condition (H3) has also been used. Taking the expectation on both sides, one sees that

E( sup |x”(s)|2> —VaE sup |2"7(s)]?

to<s<t —oo<s<t
\/_ 2 1 1 2
3.3 < E + —E J" )
(3.3) 1/ €]l (tosigt| (s)] )
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On the other hand, by elementary inequality, Holder’s inequality and moment inequality, one
can show that

B( sup |77 (5)?)

to<s<t

<3[E||s||2 T—1) / F(s,a"")[2ds + AE / 9(s, |2ds}

Therefore, using the conditions (H1) and (H2), we have

t
B( sup |77 (5)?) §3E||§H2+6+6(J(T—t0+4)/ Bl ds,

tp<s<t to
wheres = 6(T — to + 4)(T — t,)C;. Substituting this into (3]3) yields that
E sup |z"(s)[?

to<s<t
6(T —to +4)C [
<y+VaE sup |z"7H(s)]* + ( 0t+4) / E sup |z" (r)[**ds.
to<s<t -« to to<r<s
wherey = £ 4 2-CLONVA B|[¢||2 4 2E6(T — to + 4)(T — to) E[|¢]|*. It also follows note

that for anyk > 1,

max E(Sup |x™™ (u)\za)

1<n<k
= max{ B||¢[[**, B(sup |o (u) ), ..., E(sup |+ ()[**) |
< max{ Bll¢*, E(sup | (w)*), ..., E(sup |o*~ (@)]**), E(sup |+ (u)**)}
< 2« n 2c
< BJl§|P* + max Bsup|+"(u)|).
Therefore, one can derive that

max E( sup \x”(s)P)

Isn<k \p<s<t

6(T —to+4)C [!
<y 4 S0 VE [ B((sup fa () ds,
(1-— a)(l —Va) Ji, 1505k <<

EHSH2 Ity )(Th) p)1¢||2>. By Lemma 3.2, we have

(I—va)(1-a)
6C(T —to+4)(T — to))
(1-Va)l-a)
with v, > 1. Sincek is arbitrary, for alln = 0,1, 2, ..., we deduce that
6C(T —to+ 4)(T — to))
1-va)(l-a) /7

which shows the boundedness of the sequédntét), n > 0}.
Next, we check that the sequeniee’(¢) } is Cauchy sequence. For all> 0 andt, <t < T,
we have

wherey, = f + v

maxE(su x"32>< ex(
ma B((sup () < 7iexp

E( sup [2"(5)?) < 7, exp(

to<s<t

() — 2n(t) = Glt,a}) — Gt )
" / Fls,a™) = fls, 2™ V)]ds + / (g5, 27) — g(s, "V )]dB(s).

to
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Using an elementary inequalify + v)? < éu + —v* and the condition (H3), we derive that

E( sup |2"(s) — x”(s)\2> < aE( sup |z"(s) — xnfl(s)‘z)

to<s<t to<s<t

2(T — 4 K
+ ( fo+ )CE/ sup |z"(r) — 2" H(r)[** ds.
t

11—« o to<r<s

This yields that

lim supE( sup |2"(s) — x”(s)P)

n—o00 to<s<t

2(T —to+ 4 !
< limsup ( 0+ )C/ E( sup |z"t(u) — x’L(u)]M) ds.
to

n—00 (]- - 01)2 to<u<s

Let Z(t) = limsup,, ., E(suptogsgt |zt (s) — x”(s)P), we get
%T—m+®0/t
Z(t) <e+ Z%(s) ds.
( ) (1 - 04)2 to ( )

By Stachurska’s inequality, we get(t) = 0. This shows the sequende™(t),n > 0} is a
Cauchy sequence ih%. Hence, as1 — oo,2"(t) — x(t), that is E|z" () —x(t)]* — 0.
Therefore, we obtain that(t) € M?((—oo, T]; R%). Now to show that:(¢) satisfy [2.8).

t

2

E uwﬂ>1@xmw+/w@ﬂww@%mw@

to

<4 0 [ \fts.a2) = JlosPs 48 [ laGo.02) = g(s. 0P 0
§2(T—t0+4)/ E( sup |2 (u )—x(u)\2a> ds.

to to<u<s

Noting that sequence™(t) is uniformly converge oi—oo, 7', it means that
E( sup |z"(u) — x(u)]2> — 0
to<u<s

asn — oo. Hence, taking limits on both sides in the Picard sequence, we obtain that

t t
o) = €0) + Glt,m) — Gltam) + [ f(s,z)ds+ [ gls.2)dBGs)
to to
The above expression demonstrates ifal is a solution of equatior (3.1) satisfying the initial
condition [2.2). So far, the existence of theorem is complete.

Remark 3.1. Using the weakened Hélder’s condition, in the Theorem 3.1, we have shown that
the Picard iterations™ (¢) converge to the unique solutiarit) of equation|[(2.]). In the next, we
should gives an estimate on the difference betwe¢n) andx(¢) under the weakened Holder’s
condition, and it clearly shows that one can use the Picard iteration procedure to obtain the
approximate solutions to equatiofs (2.1).
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