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1. I NTRODUCTION

In the study of natural science system, one assumes that the system under consideration is
governed by principle causality. A more realistic model would include some of the past states
of the system. Stochastic functional differential equation gives a mathematical formulation
for such system. One of the special but important class of stochastic functional differential
equations is the stochastic differential delay equations.

So, we need an another class of stochastic equations depending on past and present values
but that involves derivatives with delays as well as the function itself. Such equations histor-
ically have been referred to asneutral stochastic functional differential equations, or neutral
stochastic differential delay equations(see, [3], [4], [5], [6], [7], [8], [9], [10], [12], [13]).

Such equations are more difficult to motivate but often arise in the study of two or more sim-
ple electrodynamics or oscillatory systems with some interconnections between them. More-
over, we can not ignore the effect of the science systems with time delay. For example, In
studying the collision problem in electrodynamics, Driver [2] considered the system of neutral
type

ẏ(t) = f1(y(t), y(δ(t))) + f2(y(t), y(δ(t)))ẏ(δ(t)),

whereδ(t) ≤ t. Generally, a neutral functional differential equation has the form

d

dt
[y(t)−D(yt)] = f(yt, t).

Taking into account stochastic perturbations, we are led to a neutral stochastic functional dif-
ferential equation

d[y(t)−D(yt)] = f(yt, t)dt+ g(yt, t)dB(t)(1.1)

Neutral stochastic functional differential equations(NSDEs) are known to model problems
from several areas of science and engineering. For instance, in 2007, Mao [12] published the
stochastic differential equations and applications, in 2010, Li and Fu [11] considered the stabil-
ity analysis of stochastic functional differential equations with infinite delay and its application
to recurrent neural networks, in 2013, Weiet al. [14] considered the existence and uniqueness
of the solution to following neutral stochastic functional differential equations with infinite de-
lay. Also, Kim [8] considered the solution to following neutral stochastic functional differential
equations with infinite delay

d[x(t)−G(t, xt)] = f(t, xt)dt+ g(t, xt)dB(t),(1.2)

wherext = {x(t+ θ) : −∞ < θ ≤ 0}.
Motivated by [4], [8], [14], one of the objectives of this paper is to get one proof to existence

and uniqueness theorem for given NSDEs. The other objective of this paper is to estimate on
how fast the Picard iterationsxn(t) convergence the unique solutionx(t) of the NSDEs.

2. PRELIMINARY

Let | · | denote Euclidean norm inRn. If A is a vector or a matrix, its transpose is de-
noted byAT ; if A is a matrix, its trace norm is represented by|A| =

√
trace(ATA). And

BC((−∞, 0];Rd) denote the family of bounded continuousRd-value functionsϕ defined on
(−∞, 0] with norm‖ϕ‖ = sup−∞<θ≤0 |ϕ(θ)|.M2((−∞, T ];Rd) denote the family of allRd-

valued measurableFt-adapted processψ(t) = ψ(t, w), t ∈ (−∞, T ] such thatE
∫ T

−∞ |ψ(t)|2dt <
∞.
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Let t0 be a positive constant and(Ω,F , P ), throughout this paper unless otherwise specified,
be a complete probability space with a filtration{Ft}t≥t0 satisfying the usual conditions (i.e. it
is right continuous andFt0 contains allP -null sets).

LetB(t) is am-dimensional Brownian motion defined on complete probability space, that is
B(t) = (B1(t), B2(t), ..., Bm(t))T .

For0 ≤ t0 ≤ T <∞,we define two Borel measurable mappingsf : [t0, T ]×BC((−∞, 0];Rd) →
Rd and g : [t0, T ] × BC((−∞, 0];Rd) → Rd×m and a continuous mappingG : [t0, T ] ×
BC((−∞, 0];Rd) → Rd with G(t, 0) = 0.

With all the above preparation, consider the followingd-dimensional neutral SFDEs:

(2.1) d[x(t)−G(t, xt)] = f(t, xt)dt+ g(t, xt)dB(t), t0 ≤ t ≤ T,

wherext = {x(t + θ) : −∞ < θ ≤ 0} can be considered as aBC((−∞, 0];Rd)-value
stochastic process. The initial value of the system (2.1)

xt0 = ξ = {ξ(θ) : −∞ < θ ≤ 0}(2.2)

is anFt0measurable,BC((−∞, 0];Rd)- value random variable such thatξ ∈M2((−∞, 0];Rd).
To be more precise, we give the definition of the solution of the equation (2.1) with initial

data (2.2).

Definition 2.1. [14] Rd-value stochastic processx(t) defined on−∞ < t ≤ T is called the
solution of (2.1) with initial data (2.2), ifx(t) has the following properties:
(i) x(t) is continuous and{x(t)}t0≤t≤T isFt-adapted;
(ii) {f(t, xt)} ∈ L1([t0, T ];Rd) and{g(t, xt)} ∈ L2([t0, T ];Rd×m) ;
(iii) xt0 = ξ, for eacht0 ≤ t ≤ T,

(2.3) x(t) = ξ(0) +G(t, xt)−G(t0, ξ) +

∫ t

t0

f(s, xs)ds+

∫ t

t0

g(s, xs)dB(s) a.s.

Thex(t) is called as a unique solution, if any other solutionx(t) is indistinguishable withx(t),
that is

P{x(t) = x(t), forany −∞ < t ≤ T} = 1.

The following lemmas are known as special name for stochastic integrals which was appear
in [1], [12] and will play an important role in next section.

Lemma 2.1. (Stachurska’s inequality)[1] Let u(t) andk(t) be nonnegative continuous func-
tions for t ≥ α, and letu(t) ≤ a(t) + b(t)

∫ t

α
k(s)up(s)ds, t ∈ J = [α, β), wherea/b is

nondecreasing function and0 < p < 1. Then

u(t) ≤ a(t)

{
1− (p− 1)

[
a(t)

b(t)

]p−1 ∫ t

α

k(s)bp(s)ds

}−1/(p−1)

.

Lemma 2.2. (Hölder’s inequality)[12] If 1
p
+ 1

q
= 1 for anyp, q > 1, f ∈ Lp, andg ∈ Lq, then

fg ∈ L1 and
∫ b

a
fg dx ≤ (

∫ b

a
|f |p dx)1/p(

∫ b

a
|g|q dx)1/q.

Lemma 2.3. (Moment inequality)[12] If p ≥ 2, g ∈M2([0, T ];Rd×m) such thatE
∫ T

0
|g(s)|p ds <

∞, then

E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

g(s) dB(s)

∣∣∣∣p) ≤
(

p3

2(p− 1)

) p
2

T
p−2
2 E

∫ T

0

|g(s)|p ds.

In order to attain the solution of equation (2.1) with initial data (2.2), we propose the follow-
ing assumptions:
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(H1) (Hölder condition) For anyϕ, ψ ∈ BC((−∞, 0];Rd) andt ∈ [t0, T ], we assume that

|f(t, ϕ)− f(t, ψ)|2 ∨ |g(t, ϕ)− g(t, ψ)|2 ≤ C‖ϕ− ψ‖2α

whereC is a positive constant and0 < α ≤ 1 is a constant.

(H2) (weakened linear growth condition) For anyt ∈ [t0, T ], it follows thatf(t, 0), g(t, 0) ∈
L2 such that

|f(t, 0)|2 ∨ |g(t, 0)|2 ≤ C1,

whereC1 is a positive constant.

(H3) (contractive condition) Assuming that there exists a positive numberC0 such that0 <
C0 < 1 and for anyϕ, ψ ∈ BC((−∞, 0];Rd) andt ∈ [t0, T ], it follows that

|G(t, ϕ)−G(t, ψ)| ≤ C0‖ϕ− ψ‖.

3. M AIN RESULTS

In order to obtain the existence of solutions to neutral SFDEs, lety0
t0

= ξ andy0(t) = ξ(0),
for t0 ≤ t ≤ T. For eachn = 1, 2, . . . , setyn

t0
= ξ and define the following Picard sequence

yn(t)− ξ(0)

= G(t, yn−1
t )−G(t0, y

n−1
t0

) +

∫ t

t0

f(s, yn−1
s )ds+

∫ t

t0

g(s, yn−1
s )dB(s).(3.1)

Now we give the existence theorem to the solution of equation (2.1) with initial data (2.2) by
approximate solutions by means of Picard sequence.

Theorem 3.1. Assume that (H1)-(H3) hold. Then, there exists a unique solution to the neu-
tral SFDEs (2.1) with initial data (2.2) and withγ1 ≥ 1. Moreover, the solution belongs to
M2((−∞, T ];Rd).

We prepare two lemmas in order to prove this theorem.

Lemma 3.2. Letu(t) anda(t) be continuous functions on[0, T ]. Let k ≥ 1 and0 < p ≤ 1 be
constants. Ifu(t) ≤ k +

∫ t

t0
a(s)up(s) ds for t ∈ I, then

u(t) ≤ k exp

(∫ t

t0

a(s) ds

)
for t ∈ I.

Proof. For t ∈ I, let k ≥ 1 and define a functionz(t) = k +
∫ t

t0
a(s)up(s) ds. Then,z(t) ≥

1, z(t0) = k, u(t) ≤ z(t), and

z′(t) = a(t)up(t) ≤ a(t)zp(t) ≤ a(t)z(t).

As onI, we deduce that

z′(t)

z(t)
≤ a(t).

Integrating both sides fromt0 to t, wheret ∈ I, and applying some change of variables yields

z(t) ≤ k exp

(∫ t

t0

a(s) ds

)
for t ∈ I. Using inequalityu(t) ≤ z(t), we get the required inequality.
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Lemma 3.3. Let the assumption (H1) and (H3) hold. Ifx(t) is a solution of (2.1) with initial
data (2.2), then

E
(

sup
−∞<t≤T

|x(t)|2
)

≤
(

4 + α
√
α

(1− α)(1−
√
α)
E‖ξ‖2 + η(T − t0)C1

)
exp(ηC(T − t0)),

whereC andC1 are positive constants,η = 6(T − t0 +4)/(1−α)(1−
√
α) with 4E‖ξ‖2/(1−

α)(1−
√
α) + η(T − t0)C1 ≥ 1. In particular,x(t) belong toM2((−∞, T ];Rd).

Proof. For each numbern ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : ‖x(t)‖ ≥ n}.
Obviously, asn →∞, τn ↑ T a.s. Letxn(t) = x(t ∧ τn), t ∈ (−∞, T ]. Then, fort0 ≤ t ≤ T,
xn(t) satisfy the following equation

xn(t) = G(t, xn
t )−G(t0, x

n
t0
) + Jn(t),

where

Jn(t) = ξ(0) +

∫ t

t0

f(s, xn
s )I[t0,τn](s) ds+

∫ t

t0

g(s, xn
s )I[t0,τn](s) dB(s).

Applying the elementary inequality(a + b)2 ≤ a2

α
+ b2

1−α
whena, b > 0, 0 < α < 1, and from

the condition (H3), we have

|xn(t)|2 ≤ 1

α
|G(t, xn

t )−G(t0, x
n
t0
)|2 +

1

1− α
|Jn(t)|2

≤
√
α‖xn

t ‖2 +
α

1−
√
α
‖ξ‖2 +

1

1− α
|Jn(t)|2.

Taking the expectation on both sides, one sees that

E
(

sup
t0<s≤t

|xn(s)|2
)

≤
√
αE

(
sup

−∞<s≤t
|xn(s)|2

)
+

α

1−
√
α
E‖ξ‖2 +

1

1− α
E

(
sup

t0≤s≤t
|Jn(s)|2

)
.

Noting thatsup−∞<s≤t |xn(s)|2 ≤ ‖ξ‖2 + supt0≤s≤t |xn(s)|2, we get

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤
√
αE

(
sup

−∞<s≤t
|xn(s)|2

)
+

α

1−
√
α
E‖ξ‖2 +

1

1− α
E

(
sup

t0≤s≤t
|Jn(s)|2

)
.

Consequently

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤ 1 + α−
√
α

(1−
√
α)2

E‖ξ‖2 +
1

(1− α)(1−
√
α)
E

(
sup

t0≤s≤t
|Jn(s)|2

)
.(3.2)

On the other hand, by the elementary inequality(a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, one can show
that

|Jn(s)|2 ≤ 3

[
E‖ξ‖2 +

∣∣∣∣∫ t

t0

|f(s, xn
s )|2ds

∣∣∣∣2 +

∣∣∣∣∫ s

t0

g(r, xn
r ) dB(r)

∣∣∣∣2].
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By Hölder’s inequality and Lemma (2.3), one can show that

E
(

sup
t0≤s≤t

|Jn(s)|2
)

≤ 3

[
E‖ξ‖2 + (T − t0)

∫ t

t0

E|f(s, xn
s )|2ds+ 4

∫ t

t0

E|g(s, xn
s )|2 ds

]
.

By the condition (H1) and (H2), one can show that

E
(

sup
t0≤s≤t

|Jn(s)|2
)

≤ 3E‖ξ‖2 + 6(T − t0 + 4)C1(T − t0) + 6(T − t0 + 4)C

∫ t

t0

E‖xn
s‖2αds.

Substituting this into (3.2) yields that

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤ 4 + α
√
α

(1− α)(1−
√
α)
E‖ξ‖2 + η(T − t0)C1 + ηC

∫ t

t0

E‖xn
s‖2αds,

whereη = 6(T − t0 + 4)/(1− α)(1−
√
α). Therefore, we have

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤ 4 + α
√
α

(1− α)(1−
√
α)
E‖ξ‖2 + η(T − t0)C1 + ηC

∫ t

t0

sup
−∞<r≤s

E|xn(r)|2αds.

The Lemma (3.2) then yields that

E
(

sup
−∞<s≤t

|xn(s)|2
)

≤
(

4 + α
√
α

(1− α)(1−
√
α)
E‖ξ‖2 + η(T − t0)C1

)
exp(ηC(T − t0))

with (4+α
√
α)E‖ξ‖2/(1−α)(1−

√
α)+η(T − t0)C1 ≥ 1. For alln = 0, 1, 2, . . . , we deduce

that

E
(

sup
−∞<s≤t

|x(s ∧ τn)|2
)

≤
(

4 + α
√
α

(1− α)(1−
√
α)
E‖ξ‖2 + η(T − t0)C1

)
exp(ηC(T − t0)).

Consequently the required inequality follows by lettingn→∞.

Proof of Theorem 3.1.To check the uniqueness, letx(t) andx(t) be any two solutions of (2.1)
with initial data (2.2). By Lemma 3.3,x(t), x(t) ∈M2((−∞, T ];Rd). Note that

x(t)− x(t) = G(t, xt)−G(t, xt) + J(t),

whereJ(t) =
∫ t

t0
[f(s, xs)− f(s, xs)]ds+

∫ t

t0
[g(s, xs)− g(s, xs)]dB(s). One then gets

|x(t)− x(t)|2 ≤ 1

α
|G(t, xt)−G(t, xt)|2 +

1

1− α
|J(t)|2,

where0 < α < 1. We derive that

|x(t)− x(t)|2 ≤ α‖xt − xt‖2 +
1

1− α
|J(s)|2.
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Therefore

E
(

sup
t0≤s≤t

|x(s)− x(s)|2
)
≤ αE

(
sup

t0≤s≤t
|x(s)− x(s)|2

)
+

1

(1− α)
E

(
sup

t0≤s≤t
|J(s)|2

)
.

Consequently

E
(

sup
t0≤s≤t

|x(s)− x(s)|2
)
≤ 1

(1− α)2
E

(
sup

t0≤s≤t
|J(s)|2

)
.

On the other hand, one can show that

E
(

sup
t0≤s≤t

|J(s)|2
)

≤ 2

[
(T − t0)E

∫ t

t0

|f(s, xs)− f(s, xs)|2ds+ 4E

∫ t

t0

|g(s, xs)− g(s, xs)|2 ds

]
≤ 2(T − t0 + 4)C

∫ t

t0

E‖xs − xs‖2α ds.

For anyε > 0, by the condition (H1), this yields that

E
(

sup
t0≤s≤t

|J(s)|2
)
≤ ε+ 2(T − t0 + 4)C

∫ t

t0

E sup
t0<r≤s

|x(r)− x(r)|2α ds.

Therefore, by the Stachurska’s inequality and lettingε → 0, we haveE supt0≤s≤t |J(s)|2 = 0.
This implies that

E
(

sup
t0<s≤t

|x(t)− x(t)|2
)

= 0.

Hence, we getx(t) = x(t) for t0 ≤ t ≤ T a.s. The uniqueness has been proved.
Now we check the existence of the solution using the Picard sequence (3.1). Obviously,

from the Picard iterations, we havex0(t) ∈ M2((−∞, T ] : Rd). Moreover, one can show the
boundedness of the sequence{xn(t), n ≥ 0} thatxn(t) ∈M2((−∞, T ] : Rd), in fact

xn(t) = G(t, xn−1
t )−G(t0, x

n−1
t0

) + Jn−1(t),

where

Jn−1(t) = ξ(0) +

∫ t

t0

f(s, xn−1
s )ds+

∫ t

t0

g(s, xn−1
s )dB(s).

Applying the elementary inequality(a+ b)2 ≤ a2

α
+ b2

1−α
whena, b > 0, 0 < α < 1, we have

|xn(t)|2 ≤ 1

α
|G(t, xn−1

t )−G(t0, ξ)|2 +
1

1− α
|Jn−1(t)|2

≤
√
α‖xn−1

t ‖2 +
α

1−
√
α
‖ξ‖2 +

1

1− α
|Jn−1(t)|2,

where condition (H3) has also been used. Taking the expectation on both sides, one sees that

E
(

sup
t0≤s≤t

|xn(s)|2
)
−
√
αE sup

−∞<s≤t
|xn−1(s)|2

≤
√
α

1−
√
α
E‖ξ‖2 +

1

1− α
E

(
sup

t0≤s≤t
|Jn−1(s)|2

)
.(3.3)
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On the other hand, by elementary inequality, Hölder’s inequality and moment inequality, one
can show that

E
(

sup
t0≤s≤t

|Jn−1(s)|2
)

≤ 3

[
E‖ξ‖2 + (T − t0)E

∫ t

t0

|f(s, xn−1
s )|2ds+ 4E

∫ t

t0

|g(s, xn−1
s )|2 ds

]
.

Therefore, using the conditions (H1) and (H2), we have

E
(

sup
t0≤s≤t

|Jn−1(s)|2
)
≤ 3E‖ξ‖2 + β + 6C(T − t0 + 4)

∫ t

t0

E‖xn−1
s ‖2 ds,

whereβ = 6(T − t0 + 4)(T − t0)C1. Substituting this into (3.3) yields that

E sup
t0≤s≤t

|xn(s)|2

≤ γ +
√
αE sup

t0≤s≤t
|xn−1(s)|2 +

6(T − t0 + 4)C

1− α

∫ t

t0

E sup
t0≤r≤s

|xn−1(r)|2αds.

whereγ = β
1−α

+ 3−(2+α)
√

α
(1−

√
α)(1−α)

E‖ξ‖2 + C
(1−α)

6(T − t0 + 4)(T − t0)E‖ξ‖2α. It also follows note
that for anyk ≥ 1,

max
1≤n≤k

E
(
sup |xn−1(u)|2α

)
= max

{
E‖ξ‖2α, E(sup |x1(u)|2α), . . . , E(sup |xk−1(u)|2α)

}
≤ max

{
E‖ξ‖2α, E(sup |x1(u)|2α), . . . , E(sup |xk−1(u)|2α), E(sup |xk(u)|2α)

}
≤ E‖ξ‖2α + max

1≤n≤k
E(sup |xn(u)|2α).

Therefore, one can derive that

max
1≤n≤k

E
(

sup
t0≤s≤t

|xn(s)|2
)

≤ γ1 +
6(T − t0 + 4)C

(1− α)(1−
√
α)

∫ t

t0

max
1≤n≤k

E
(

sup
t0≤r≤s

|xn(r)|2α
)
ds,

whereγ1 = γ
1−
√

α
+

√
α

(1−
√

α)
E‖ξ‖2 + 6C(T−t0+4)(T−t0)

(1−
√

α)(1−α)
E‖ξ‖2α. By Lemma 3.2, we have

max
1≤n≤k

E
(

sup
t0≤s≤t

|xn(s)|2
)
≤ γ1 exp

(6C(T − t0 + 4)(T − t0)

(1−
√
α)(1− α)

)
with γ1 ≥ 1. Sincek is arbitrary, for alln = 0, 1, 2, . . . , we deduce that

E
(

sup
t0≤s≤t

|xn(s)|2
)
≤ γ1 exp

(6C(T − t0 + 4)(T − t0)

(1−
√
α)(1− α)

)
,

which shows the boundedness of the sequence{xn(t), n ≥ 0}.
Next, we check that the sequence{xn(t)} is Cauchy sequence. For alln ≥ 0 andt0 ≤ t ≤ T,

we have

xn+1(t)− xn(t) = G(t, xn
t )−G(t, xn−1

t )

+

∫ t

t0

[f(s, xn
s )− f(s, xn−1

s )]ds+

∫ t

t0

[g(s, xn
s )− g(s, xn−1

s )]dB(s).
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Using an elementary inequality(u+ v)2 ≤ 1
α
u2 + 1

1−α
v2 and the condition (H3), we derive that

E
(

sup
t0<s≤t

|xn+1(s)− xn(s)|2
)
≤ αE

(
sup

t0<s≤t
|xn(s)− xn−1(s)|2

)
+

2(T − t0 + 4)C

1− α
E

∫ t

t0

sup
t0≤r≤s

|xn(r)− xn−1(r)|2α ds.

This yields that

lim sup
n→∞

E
(

sup
t0<s≤t

|xn+1(s)− xn(s)|2
)

≤ lim sup
n→∞

2(T − t0 + 4)C

(1− α)2

∫ t

t0

E
(

sup
t0≤u≤s

|xn+1(u)− xn(u)|2α
)
ds.

LetZ(t) = lim supn→∞E
(
supt0≤s≤t |xn+1(s)− xn(s)|2

)
, we get

Z(t) ≤ ε+
2(T − t0 + 4)C

(1− α)2

∫ t

t0

Zα(s) ds.

By Stachurska’s inequality, we getZ(t) = 0. This shows the sequence{xn(t), n ≥ 0} is a
Cauchy sequence inL2. Hence, asn → ∞, xn(t) → x(t), that isE|xn(t) − x(t)|2 → 0.
Therefore, we obtain thatx(t) ∈M2((−∞, T ];Rd). Now to show thatx(t) satisfy (2.3).

E

∣∣∣∣∫ t

t0

[f(s, xn
s )− f(s, xs)]ds+

∫ t

t0

[g(s, xn
s )− g(s, xs)] dB(s)

∣∣∣∣2
≤ 2

[
(T − t0)E

∫ t

t0

|f(s, xn
s )− f(s, xs)|2ds+ 4E

∫ t

t0

|g(s, xn
s )− g(s, xs)|2 ds

]
≤ 2(T − t0 + 4)

∫ t

t0

E
(

sup
t0≤u≤s

|xn(u)− x(u)|2α
)

ds.

Noting that sequencexn(t) is uniformly converge on(−∞, T ], it means that

E
(

sup
t0≤u≤s

|xn(u)− x(u)|2
)
→ 0

asn→∞. Hence, taking limits on both sides in the Picard sequence, we obtain that

x(t) = ξ(0) +G(t, xt)−G(t0, xt0) +

∫ t

t0

f(s, xs)ds+

∫ t

t0

g(s, xs)dB(s).

The above expression demonstrates thatx(t) is a solution of equation (2.1) satisfying the initial
condition (2.2). So far, the existence of theorem is complete.

Remark 3.1. Using the weakened Hölder’s condition, in the Theorem 3.1, we have shown that
the Picard iterationsxn(t) converge to the unique solutionx(t) of equation (2.1). In the next, we
should gives an estimate on the difference betweenxn(t) andx(t) under the weakened Hölder’s
condition, and it clearly shows that one can use the Picard iteration procedure to obtain the
approximate solutions to equations (2.1).
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