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1. INTRODUCTION

LetD = {z € C : |z| < 1} denote the open unit disk of the complex plabend H (D)
denote the space of holomorphic functions on the unitBisBuppose> andy are holomorphic
functions defined o such thatp(D) C D. The generalized composition operatdéyM,, is
defined as

CpMy(f)(2) = ¥(p(2)) f(p(2)) forall f € H(D).

Forl < p < oo, the analytic Besov spadg, is the conformally invariant space of glle H (D)

whose derivativef’ belongs to the standard weighted Bergman sp#cg, while the minimal
spaceB; is the set of all analytic functions i, whose second derivative is integrable. The
spaced3, form a nested scale of conformally invariant spaces which are contained in the Bloch
spaceB and represent a natural generalization of the classical Dirichlet sPaee B, of

analytic functions irD. Besov spaces and their operators were studied extensively in the 80’s
and 90’s in[1/ 8, 14]. The work of this paper is motivated by the work of Choa and Qhno [4].
Our main objective in this article is to investigate boundedness, compactness and essential norm
estimate between Besov spaces apdpaces.

1.1. Mobius invariant spaces.For anya € D, let o, denote the Mbious transformation
o, : D — D defined by

a—z

1—az’

We denote the set of all Bbius transformations o by G. Moreover, the inverse aof,,, for
anyz € D, under function composition is, itself. Also, we have

1—|af?
/ J—
|0a(z)| - ‘1 _ C_IZ|2

and by simple calculatioh — |o,(2)* = (1 — |2|?)|0)(2)| for all a, z € D.

z € D.

ou(z) =

Letl < p < c0,q¢ > —1. Thenf is in the Besov type spade, , if

1

@) Iz, = ([ 1760 P =12 Fraae) <o

whered A(z) denotes the Lebesgue area measur®.on
Also, if we takel < p < oo andq = p — 2 in (L.1), then we get the analytic Besov spdte
That is, an analytic functiof is in the analytic Besov spads, if

(1.2) 1fll5, = (/D [ f )P =]z ) dA(Z)>; < 00,

Again, if p = 2 and—1 < ¢ < oo in (1.2), then we get the weighted Dirichlet spag and
for1 < p < 2andq = 0, we get the Dirichlet type spac&3’. Also, forl < p < o0, B,, IS
the Bergman spacd”?. We can see thdt f(0) | + || f|l,, iS @ norm onB, ,, that makes it a
Banach space. Moreover, we can observe thatf torbe inB, , or B,, it is necessary that the
derivative of f belong to the weighted Bergman spacisor A7 ,. Also, for1 < p < ¢ < oo,
we have the relatio?, C B,. The Besov spac#, is invariant under Mbius transformations,
ie.,if f € By,thenfoyp e B, forallp € G.

2. BOUNDEDNESS AND COMPACTNESS

In this section, we characterize boundedness and compactness\hf by using the Car-
leson measure technique.
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2.1. Carleson measures.Let I C 0D is an interval and/| denote the length of. The Car-
leson square based on | is defined5g$) = {z e D: 1— | [ [<z < 1, o € I}. 1f p>0and
1 IS a positive Borel measure dh Thenyu is anp—Carleson measure if there exists a positive
constantC such that
u(S(I)) < ClfP,

for any intervall C 0D. An 1-Carleson measure will be simply called a (classical) Carleson
measure. IfX is a subspace off (D),q > 0 andp is a positive Borel measure i, theny
is said to be aj—Carleson measure for the spakeor an (X, ¢)—Carleson measure X C
Li(du). The(X, q)—Carleson measures have been characterized for many important 3paces
of analytic functions iflD and they arise in many questions involving analytic function spaces.
In particular, they play a very important role in studying boundedness and compactness of
operators acting between them.

Let ¢ be a holomorphic mapping defined Brsuch thatp(D) C D. Letvy € B, be such that
P'(2)¢' (¢71(2))(1 — |2]?) € LY(D, d\), whered\(z) is a Mobius invariant measure defined by
d\(z) = (1 — |2*)"*dA(z). Then we define the following measures . , andy,, . , onD as

mdB)= [ WM I - R aAG
and
o) = [ M @I~ )0,

whereF is a measureable subset of the unit disk
If ¢ € A]_,, then we define the measurgonD as

wlB)= [ @) ) aAG).
e~ H(E)

The following lemma can be prove by using [9, Page 163 ] ahd [3, Lemma 2.1].
Lemma2.1.Suppose € H(D) suchthatp(D) C D. Takey € B, suchthat)’(z)¢’ (¢~ (2))(1—
|2|?) € LY(D,d\). Then

/thuzp,@/,q = /D W)l (0™ ()|l (p(2))|*(1 — [2]*)**d A(2)
and
[ o a= [ 1901 PRI 2Py 2dAG),
where h is any arbitrary measurable positive functiorbin
The following lemma, whose proof is omitted, will be used to prove next theorems .

Lemma 2.2. Takel < p,q < oo and lety € H (D) be such thatp(D) C D. Suppose) € B,
such thatC, My, : B, — B, is bounded. Thet/,M,, : B, — B, is compact(weakly compact)
if and only if whenever a bounded sequence{s&y} is in B, and converges to zero uniformly
on compact subsets B, then||C, M, (f,.)||s, — 0 (respectively{C,M(f,)} is a weak null
sequence imB,).

Now, we can prove the following theorem.

Theorem 2.3.Fix 1 < p < ¢ < oo. Suppose) € A , andy € B, such thatp(D) C D. If
v, is a vanishing g-Carleson measure 8y, thenC,M,, : B, — Al_, is bounded and also
compact.
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Proof. Let {f,} be a bounded sequence &), such that{f,} — 0 uniformly on compact

subsets ofD. Sincewv, is a vanishing;—Carleson measure fds,, the inclusion operator :

B, — Li(D,v,) is compact. AlsoB, C B,, we havernHLq(D vg) 0 as n — oo. So, by
» g

Lemmd 2.1, we have
1Mol , = [ 1D~ )2 aAC)

:/|fn|qdvq—>0asn—>oo.
D
Thus,C, M, : B, — Al_, is compacta

Theorem 2.4. Takel < p < ¢ < oo and lety,¢ € B, be such thatp(D) C D. If p1,
is a vanishing g-Carleson measure 8y, thenC,M,, : B, — B, is bounded if and onIy if
MyC,My : A 5 — Al ,is bounded.

Proof. Suppose”’, M, : B, — B, is bounded. Then, there exists a constant 0 such that
1CMy(lls, = Cliflls, forall f e By
Also, by Theorem 2]3, we can find a constant> 0 such that
|Co My (f)l[az_, < M||f][p, forall f € B,.
Letg € B,andf € A} , be such thay’ = f andg(0) =

Then
|[ My Co My ()] a2

q—2

= |l¢' (Vo) (fop)l[az_,
= |l¢'(op)(g'op) + @' (¥'op)(gop) — ¢'(1'op)(g0p)]| az_,
< [|((vop)(gow))[|az_, + |l¢' (¥ 0p)(gop)||as_,

= |CoMy(9)|IB, + [1CoMy (g)]| s,
< (C+ M)||gllB,

= (C+ M)[fllar_,

< Q.

HenceM,C M, : AY , — Al_, is bounded.
Conversely supposk/,, C. M¢ AZ_Q — Al_, is bounded. Again, by Theorem 2@, M, :
B, — Al_,is bounded. Lef € B, be such thaf(0) =

Then
1Co My ()5, = [I((Yop)(for))llas_,
= [|¢'(V'op)(fop) + ¢ (op)(f'op)l|az_,
< ||Co My ()l as_, + | My Co My ()] a2,
< 00.
|

The following theorem can be proved by using Theorem 2.4 and Theorem/1 of [7] so we omit
the proof.

Theorem 2.5. Takel < p < ¢ < oo and lety, ¢ € B, be such thatp(D) C D. If 11,y , ,iS @
vanishing g-Carleson measure 8, thenC,M,, : B, — B, is bounded if and only if

[ () o) <
su - , (2 0.
aeg 5 UL —az? Ho' g
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Theorem 2.6.Fix 1 < p < g < co. Lety, ¢ € B, be such thatp(D) C D. Supposer, .,
is a vanishing g-Carleson measure f8y. ThenC, M, : B, — B, is compact if and only if
MyC,My : Ay, — AL, is compact.

Proof. SupposeC,M,, : B, — B, is compact and lef f,} be a bounded sequence 4} ,
such thaf{ f,,} — 0 umformly on compact subsets Bf Consider the functiop,, € B,,n € N
such thaty/, = f, andg,(0) = 0. The sequencégn} also converges on compact subsets of
D asn — oo. Since,C, My, : B, — B, is compact, s¢|C,My(gn)||p, — 0 asn — oc. By
Theore . CoMy : B, — Ag_2 is compact s0/C, Mw(gn)llAh also converges to zero as
n — oo. Now

[[My Co My (fu)llas_, = |l (o) (froo)llas_,
= [|¢' (Vo) (gnop) + ¢'(V'0p) (gnow) — &' (¥ 00) (gnop) as_,
< ((¥00)(gn00)) I a2_, + [1¢' (¥ 00) (gn00)|[ a1,

= |CeMy(gn)lls, + |[CoMy(gn)llas_,
< (C+ M)llgnlls,
= (C+M)||full e,
Thus,M,C M, : AY , — Al ,is compact.
Conversely, suppose that,,C,M, : Ay , — Aj_, is compact. Again, by Theorefn 2.3,
C,My : B, — Al ,is compact. Ley, be the same sequence as in the direct part. Then, we

have
1Ce My (gn)ll, = [|((¥00)(9200)) || a2,

= |l¢'(¥'0)(gnow) + ¢ (Vo) (gr,00)|] a1,
< ||Co My (gn)llas_, + [[Miy Cp My (f)]| a2

— (0asn — oo.
HenceC,M,, : B, — B, is compacty
The following theorem can be proved using Theofem 2.6 and Corollary 1 of [7].

Theorem 2.7.Takel < p < ¢ < 0. Lety, ¢ € B, be such thap(D) C DandC,M, : B, —
B, is bounded. Also, suppose that the meagyye, , is a vanishing g-Carleson measure for
B,. ThenC, My, : B, — B, is compact if and only if

; / ) (2) =0
1m su P EEE—— 1, 2) = U.
|a‘*>1 p |1 _C_LZ’2 M¢790 qd

Theorem 2.8.Let]l < p < ¢ < 0. Lety,y € B, be such thatp(D) C D. Also, suppose
that the measurg,, , ,, is @ vanishing p- Carleson measure tBy. Then,C, M, : B, — B,

is bounded(compact) if and only if the measpre,, , is a bounded (respectlvely vanlshlng)
g-Carleson measure fads,,.

Proof. Let{ f,,} be a bounded sequencelip such that{ f,,} — 0asn — oo on compact subset
of D. Suppose that’,M,, : B, — B, is compact. Then, by using Theor-ZM 1 CoMy,
AP, — Al ,isalso compact Also by Theor'("sﬂ,Mw/ B, — Al_, is compact.
Therefore

I C My = [ DI I = |2y dAC)

= /D |fé(w)|qdﬂw,¢/,q(w) — 0 asn — oo.
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This means that the inclusion operatorB, — D, () is compact. Thusy,, ., is @ vanishing
g-Carleson measure fas,.

Conversely, suppose that, ,, , is a vanishing g-Carleson measure fgy. We will prove that
c,M, : B, — B, is compact. Lef f, } be a sequence as defined in direct part. Also, we have

((Yop)(fop)) = (W'op)p'(fop) + (Yop)@' (f'op).
So, by using Lemmja 2.1, we have

[ W DI eI = P 2dAR) = [ 1l

— 0asn — oo

and
/Iw NI (N fr ()71 = [2]*)2dA(z /If 2)|d iy, o

— 0asn — oo.
Thus,C,M, : B, — B, is compacty

3. THE ESSENTIAL NORM

Recall that the essential norm of a bounded linear opefatsrthe distance fromi" to the
compact operators, i.€/1'||c = inf{||T — K|| : where K is a compact operatorClearly T is
compact if and only if its essential norm is 0. In this section, we give estimate for the essential
norm of C,, M, on Besov spaces.

Lemma 3.1. [6] Take0 < r < 1 and denotéd, = {z € D : |z| < r}. Letu be a positive Borel
measure o). Take

n(S(1)) u(S(1))
, = Ssup and = sup ,
el S I Sup =
where/ run through arcs on the unit circle. Let. denote the restriction of the measuyreo

the setD/D,.. Further, if 11 is a Carleson measure for some Besov space, gp &d ||u, || <
M]||pl|,, whereM > 0 is a constant.

Lemma 3.2.[6] For0 < r < landl < p < oo, let

[z = sup / o (2)Pdi(z)

la|>r JD

Moreover, ifu is a Carleson measure for some Besov space, fthefl < K||ul||:, whereK is
an absolute constant.

[e.9]

Take f(z) = Zaszs be holomorphic orD. For a positive integen, define the operator

s=0
Rof(z) =3 .1 as2° andK, = I — R, wherel is the identity map.

By using [15, Theorem 5.3.7] and|[6, Proposition 3], we get the following generalization of
[5, Lemma 3.16. p—134] for the Besov space.

Lemma 3.3. If T"is a bounded linear operator of,,, then
Klimsup | TR,| < ||T. < hmmeTR I,

n—oo

for some constank” > 0.
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We will give the upper and the lower estimates for essential norm of the opéraldy, in
the following theorem.

Theorem 3.4.For 1 < p < oo, let 9,9 € B, be such thatp(D) C D. Suppose.,, ., IS
a vanishingp—Carleson measure and,,M,, is a bounded operator orf3,. Then there exist
absolute constants’, C, > 0 such that

i sup [(Co M), < 1|CLM < Cs lim sup(a) + Co lim sup ¥(a),

la]—1

L—af* \* L laP )
q;(@;/ﬂ)(m) dﬁ%,gp/,p and \Il(a)z/D m dﬂw’,w’,p‘

Proof. Upper estimate: By Lemnja 3.3, we have
[|Co M| < Tim meC My|[p, < lim inf sup [[(CoMyRn)fl[5,-

e I fllep <l

where

Consider

1(Co My Bn) fll, = [0 (0(0) (B f (PO + [[((Pop) (Rufor) |,

Now |1(¢(0)) (R, f(©(0)))] — |1(¢(0))| asn — oo which is bounded ag € B,,.
Therefore by Lemmia 2.1, we have

(Co MR I, = / () (B f(0(2))IP(1 — |2PPP2dA(2)
/ ()P (2) P (Ruf ) (p(2)P(L — 2P P2dA(2)
/ (o @)PL PR f) (o)L — 2P P2dA(2)

- / (R f Y (@) Py () + / (R ) (@) Pty ()
= Il + ]2.

The last condition follows by using Theor¢m[2.3 and Thedrerp 2.4. Now, we take the integral
[17

LIS @ P ) = [ 1R @) P g0

[ (Raf)' (@) [P dprys ().
Dy

Also, the measurg,, . , is a bounded p—Carleson measure, because the opéfatdy, is
bounded orB,,. Let K, =1 +log( —) be the kernel for evaluation at Using [5, page-133
], we have
| Bnf ()] < 1115, [ Bnds |5,
—k k

Take0 < r < 1 and| w |< r,z € D. Also, take the Taylor expanS|on B, = > 0,

Using this Taylor expansion, we get thak, K,,(z) [< >~ %-. Thus, for anye > 0, we can
find n large enough such that

/D | RpKu(2) 19 (1= | 2 [)172dA(2) < €.
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Therefore, for a fixed r, we have
sup / ’ (Rn)/(w) |p dﬂ¢/7¢/7p — 0 as n — OoQ.
Ifl5,<1 /D,

Let iy o denotes the restriction of measurg , , to the seD \ D,.. So by using Lemma
[3.7 and using [1], we have

/]D)\ID) | (Rnf),(CU) |p dﬂl/}'7go’7p,r(w) <K ||M1//,tp’,p7r||||(Rnf)/||%p
< K M|py o ollFIf I, < K My gopllr

whereK and )M are absolute constants afyd,, ., || is defined as in Lem 2.

By following the similar techniques as above, we can show that the intBgeslso bounded
by Ky My |1y, whereK,; and M, are absolute constants.
Therefore,

lim sup (CoMoRn) Iy < Yim K M gl + Jim Ky My gl
BpS

: (€ < KM [y pll7 + By My [y gl
Takingr — 1, we have

ICoMyll2 < K M lim frg g2+ Ko My lim g

= KM limsup/ | o (w 2 dptypr p(w) + Ky My limsup/ | o, (w) |? TR (%))
la]—1 la|—1 JD
= KM limsup/(ﬂ)pdu /(W)
|a|—1 D’l_awP ety
—lal?

1
+K; My limsup / (e
D

la|-1

= K M limsup ®(a) + K; M; limsup ¥(a)

la|=1 la|=1

which is the desired upper bound.

Now, we will prove the lower bound. Clearly, the sgt, : « € D} is bounded inB,.
Moreover,c, —a — 0 as|a| — 1 uniformly on compact subsets Bfas|o,(z) —a| = |z| 11 ‘Z';.

Let K is a compact operator afi,. Then||K (o, — a)||p, — 0 as|a| — 1. Thus,||Ko,||s, —
0 as|a| — 1. Therefore, by Lemma 3.2, we have

Jmn supl[(CoMy)oal 5, < [CoMy = Kll5, < [|Co Myl[2

This completes the prooi
Theorem 3.5.For 1 < p < ¢ < oo, letp,v € B, be such thatpy(D) C D. Supposer, .,

is a vanishing g-Carleson measure 8y and C,M,, is bounded froni, into B,. Then, there
exists an absolute constafit> 0 such that

1 — |a‘2 q . ) 1 — |CL‘2 q
lim sup T | dity g < || My CyMy||? < C\}f& sup g T3 | dity g

la|—1 |1 — aw|? |1 — aw|?

Proof. SinceCde, is bounded fronB, into B,, Therefore by Theorefn 2.4/, C, M, is also
bounded operator from; , into A7 ,. Now using Theorem 2 of[7], we have
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im sup [ (75 eene i - yaac)

la]—1 CLWP

< 14,0, < € i s [ (1290 ) (e @I - 2R)2aA)

la]—1 1 — aw|?
Therefore
hmsu/ 1_—|a|2qd <||MC’MH‘1<C’hmsu/ 1_—|a|2qd -
la|—1 & |1 — awl? oot a ¥ la—1 p 11— awl|? Hop ' q
|

4. GENERALIZED COMPOSITION OPERATORS BETWEEN S, SPACES

In this section, we will find estimates for the essential norm of generalized composition op-
erators. Let a positive measure on the disis defined ag.. Then we define the spa@k, (1) as
the space of all holomorphic functiorfse H (D) such thatf’ € LP(D, ;). Moreover, the norm
onD,(u) is defined as

(4.1) 111,00 (/ () Pduz ) |

Let1 < p < co. Then, H?(ID) denotes the Hardy space of the unit dizksee [5]. The space
of all those holomorphic functions di whose first derivative is in the Hardy spafé (D) is
denoted byS,. We define the5, norm of f as

(4.2) 1A lls, = LFO)] + (1],
We see thab), is a Banach space with this norm.
Let f € H?. Then, according to Fatou’s theorem, the radial lirfiite’?) = lirﬁ f(re?)

exists almost everywhere @D and f* € L?(0D, dp), wheredp(z) is the normalized measure
on 0D. We can denote this radial limit by also.

Letp : D — D andy € H(D) be such that)(2)¢'(p~1(2)) € H? Then, we define the
measure,,, , onD as

ool B) = | ()¢ (971 () [dp(2),
e~ L(E)NOD
whereE is a measurable subset of the closed unit Bisc

The proof of following theorem follows on similar lines as in Theorem 2.1 of [3].

Theorem 4.1.Letl < p,q < oo, ¢ € H(D) be such thatp(D) ¢ D andy € S,. Then
CoMy - S, — S, is bounded if and only if,,C, M, exists as a bounded operator frafy
into H<.

Moreover, if(p,q) # (1,00), then the operatoC,M,, : S, — S, is compact if and only if
MyC, My : H? — H?is compact.

By using Theorer 4|1 and Theorem 4[of [7], we can prove the following theorem.

Theorem 4.2. Letl < p,q < oo, ¢ € H(D) be such thatp(D) ¢ D andy € S,. Then
Cy,M,y : S, — S, is bounded if and only if

1—\a]2 q/p
—_ d , < 0.
wp [ ([p) doeale) <o
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Proof. Let C, M, : S, — S, be a bounded operator. Then, by Theoiem 44,C,M, :
H? — H1?is also bounded. Therefore by Theorem 4.0f [7], we have

—al? q/p
up [ (ﬂ) (@)1 (o (@) dp(w) < oo.

a€cD ’1 _C_l(UP

1_|a|2 a/p
_— d , < 00.
225/8D(u—w|2) H ) < 00
|

The proof of the next theorem follows from Theorém|4.1 and Theorem 5]of [7]. So we
omitted the proof.

Theorem 4.3.Letl < p,q < oo, ¢ € H(D) be such thatp(D) C D andy € S,. Suppose
CoMy - S, — S, is bounded . Then, there exists an absolute congtant0 such that

Thus,

1 — |CL|2 qa/p
lim sup/ (—) Aty g(W) < |[MpCyu Myl
oD

la|—1 11— awl?
1 — |gl2 q/p
< C lim sup/ (i) ity o (W)
oD

la|—1 |1 — aw|?
Similarly, the proof of next theorem can be done using Thegrefn 4.1 and Propositidn 2 of [7].

Theorem 4.4.Letl < p,q < oo, ¢ € H(D) be such thatp(D) ¢ D andy € S,. Then
Cy,M,y : S, — S, is bounded if and only if

27 d , ﬁ
/ (/ MW—»‘?(?) d < oo,
0 I(6) 1 — |wl
whereI'(0) is the Stolz angle af, which is defined for rea as the convex hull of the set
{eYu{z:|z| < \/1/2}.
5. HILBERT-SCHMIDT OPERATORS
In this section, we find the condition to formalize the relationship between generalized com-
position operators on Besov spaBge and Hilbert-Schmidt operators. We will also study some
examples based on this relationship which are already proveld¥@nd L2 in [4]. The proof

of the following theorem follows on similar lines as the proof of Theorem L df [11]. So, we will
omit the proof.

Theorem 5.1. Let ¢,y € B, be such thatp(D) € D. Then,C, M, : B, — B, is Hilbert-
Schmidt operator if and only if
20, 4 2
1 LGN

/ [W'(@(z))ﬁls@’(z)ﬁlog R

Example 5.1.Lety(z) = (1 — z)” where3 > 2 and lety(z) = 1 — /1 — 2. ThenC,M,, is
compact onBs.

(2) < oc.

Proof. We see thai maps the unit disk univalently into a non tangential region with vertex
at the point 1. So, fofz| < 1, we have

o 1—p(2)? =1 —p(2)] =1 — 2"/

o ¥(p(2) = (1—2)%;
o P(2) =0— 71—z (~1) =y(1—2)"!
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o V(2) =p(1 -2 ~-1)=—-p3(1 - 2)L.
Thereforey (p(2)) = —B(1—1+y/T—2)%! = —B(1—2)"F andy/(z) = 0— —L—(—1) =

1 1
2\1-z"

P2 (1= le(2))?)?

1 1 1 11— 2P i

. 2 8—1 [1—z]|

= 1— | + dA
/]D)[ﬁ | ? 22|1 2| o8 11— 2|12 (J1 = 2[¥/2)2 } =)

2 1 1
:/ﬂ){(%) (|1—z|ﬂ_210g—’1_zw2)+§|1—z|5_2]d14(z)

which is clearly compact a8 > 2. &

Example 5.2. Lety(z) = (1 — 2)?, where > 1 and letp(2) = Z31. Then, prove that, M,
is compact oni;.

Proof. We see thap maps the unit disk univalently into a non tangential region with vertex
at the point 1. Thus fofz| < 1, we have
. 1—|<p( )P~ 1= (2 )|—y1—ﬁ(zgl)y:|1;|
V(p(z)) = (1 - Z“)B = (%)
V'(z) = (1 —2)P7H(~1 )z—ﬂ( —2)7
Thereforey’(p(z2)) = —3 ( )ﬁ ! —6(17)5_1 andy/(z) =1

and so
N SR . Gl T P
/D[w ()P (ot o + Ty ]dA( )

62 1 1 |2ﬁ
_/ [22 |1_ |2(ﬁ 1)2 10g|1;z| + =P dA(z)

g1 262 1 1 11—z, 2}
= ———|l—2 log F=21dA(2)
. et = o gt

which is clearly compact as > 1. g
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