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2 L. L EINDLER

1. I NTRODUCTION

A sequencec := {cn} of nonnegative numbers tending to zero is called of rest bounded
variation, and briefly denoted byc ∈ RBVS, if it has the property

(1.1)
∞∑

n=m

|cn − cn+1| ≤ K(c)cm

for all natural numbersm, whereK(c) is a constant depending only onc.
In view of (1.1) it is clear that ifc ∈ RBVS then it is alsoalmost monotonic, that is, for all

n ≥ m

(1.2) cn ≤ K(c)cm

stays, but (1.2) does not imply (1.1) ifK(c) > 1. If c satisfies (1.2) we writec ∈ AMS. If
K(c) = 1, we denotec ∈ MS.

Now we generalize the definition (1.1) with a view to broaden the class ofRBVS. Our
definition is the following.

Definition 1.3. Let γ := {γn} be a fixed sequence of positive numbers. We say that a nonneg-
ative null-sequencec belongs to the classγRBVS if

(1.4)
∞∑

n=m

|cn − cn+1| ≤ K(c)γm, (cn → 0),

holds for allm ∈ N. The notationc ∈ γRBVS will denote the property(1.4). We mention that
the conditionsγn ≥ γn+1 andc ∈ γRBVS jointly do not even imply thatc ∈ RBVS.

In order to emphasize the requirementcn ≥ 0 it would be more precise to use the notation
γRBVS+ instead ofγRBVS, but for the simplicity we use the latter one.

It is clear that (1.4) implies thatcn ≤ K(c)γm (n ≥ m), but it does not exhibit thatc ∈ AMS,
see our Remark 2.14. Furthermore if oneck = 0, then (1.4) does not imply that all of the terms
with indexn > k are zero, too, while (1.1) claims this. By all means (1.4) gives much greater
freedom for the sequencec than (1.1) does, consequently, in general,γRBVS is a larger class
thanRBVS; they are identical only ifγn = Kcn.

In the sequel the capital lettersK,K1, . . . andK(·) will denote positive constants which are
either absolute constants or constants depending on certain sequence, and not necessarily the
same at each occurrences.

Originally we have intended to generalize the theorems having conditions with sequences
belonging to the classesMS, AMS or RBVS to the classesγRBVS with suitable sequencesγ,
but it turned out that the plenty of rope of the sequencesc ∈ γRBVS does not make it possible.
We can verify generalization of this type only for the sufficient part of the known theorems. See
e.g. the papers [8] and [9], where we considered theorems pertaining to the space of continuous
functions.

In the present paper we verify generalization of some theorems relating to the spacesLp,
p ≥ 1.

Among others we generalize the following theorems, and the sufficient part of some other
results.

Theorem 1.5.Letλ := {λn} ∈ MS be such that for a fixedp (1 < p < ∞)

(1.6)
∞∑

n=1

np−2λp
n < ∞.
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INTEGRABILITY OF SINE AND COSINE SERIES 3

If ϕ is the sum of either of the series

(1.7)
∞∑

n=1

λn cos nx or
∞∑

n=1

λn sin nx,

then

(1.8) ωp(ϕ, n−1) ≤ K1n
−1

{n−1∑
ν=1

ν2p−2λp
ν

}1/p

+ K2

{ ∞∑
ν=n

νp−2λp
ν

}1/p

,

whereωp(f, δ) denotes the modulus of continuity off in Lp.

This is a sharp result of S. ALJANČIĆ [1] which is improved in [7] such that the condition
λ ∈ MS is replaced byλ ∈ RBVS.

Theorem 1.9([6]). Letb := {bn} ∈ RBVS.

(1) If 0 < γ ≤ 1 and

(1.10)
∞∑

n=1

nγ−1bn < ∞,

thenx−γg(x) ∈ L(0, π), whereg(x) :=
∞∑

n=1

bn sin nx.

(2) If 0 < γ < 1 and (1.10)holds, thenx−γf(x) ∈ L(0, π), wheref(x) :=
∞∑

n=1

bn cos nx.

(3) If (1.10)is convergent forγ = 0, then bothg(x) andf(x) are integrable.

We note that Theorem 1.9 with classical quasi-monotoneb (bn+1 ≤ bn(1 + α
n
)) was proved

by S.M. SHAH [10]. For further similar theorems we refer to the well-known monograph of
R.P. BOAS, JR. [4].

2. THEOREMS

Our results read as follows.

Theorem 2.1.Let1 < p < ∞ andλ := {λn} ∈ γRBVS with the additional condition

(2.2)
∞∑

n=1

np−2γp
n < ∞.

If ϕ is the sum is either of the series(1.7), then

(2.3) ωp(ϕ, n−1) ≤ K1n
−1

(n−1∑
ν=1

ν2p−2γp
ν

)1/p

+ K2

( ∞∑
ν=n

νp−2γp
ν

)1/p

.

It is clear that ifγn = λn and{λn} ∈ MS or {λn} ∈ RBVS, then Theorem 2.1 as special
case reduces to Theorem 1.5 or Theorem 1 of [7], respectively.

Theorem 2.4. Theorem 1.9 can be improved such that the conditionsb := {bn} ∈ RBVS and
(1.10)are replaced by the assumptionb ∈ γRBVS with the additional condition

(2.5)
∞∑

n=1

nγ−1γn < ∞.

Next we establish sufficient conditions forx−γϕ(x) to belong toLp := Lp(0, π).

AJMAA, Vol. 1, No. 1, Art. 4, pp. 1-9, 2004 AJMAA

http://ajmaa.org


4 L. L EINDLER

Theorem 2.6. If 1 < p < ∞, (1/p) − 1 < γ < 1/p, andλ ∈ γRBVS with the additional
condition

(2.7)
∞∑

n=1

npγ+p−2γp
n < ∞,

thenx−γϕ(x) ∈ Lp, whereϕ is the sum of either of(1.7).

Theorem 2.8. If 1 < p < ∞ andλ ∈ γRBVS with the additional condition

(2.9)
∞∑

n=1

n2p−2γp
n < ∞,

then

(2.10) ωp(ϕ, h) = O(h),

whereϕ is the sum of either of the series of(1.7).

Corollary 2.11. If 1 < p < ∞ andλ ∈ γRBVS with γn = O(n−2+1/p), then

(2.12) ωp(ϕ, h) = O(h| log h|1/p),

whereϕ is the sum of either of(1.7).

Observation 2.13. If we consider only one fixed coefficient sequenceλ then clearly the best

way to choose the sequenceγ with the termsγn :=
∞∑

k=n

|λk − λk+1| (in Theorem 2.4γn :=

∞∑
k=n

|bn − bk+1|).

Remark 2.14. The classesAMS andγRBVS are not comparable.
(1) There exists a sequencec := {cn} which belongs toAMS, but does not tocRBVS ≡

RBVS.
(2) There exists a sequenced := {dn} which belongs toγRBVS, but does not toAMS.

3. L EMMAS

Lemma 3.1 ([3]). Let g(x) andf(x) denote the functions defined in Theorem 1.9. Ifbn → 0
and

∞∑
n=2

|bn−1 − bn+1|nγ < ∞,

thenx−γg(x) ∈ L if 0 < γ ≤ 1, andx−γf(x) ∈ L if 0 < γ < 1.
Furthermore, if

∞∑
n=2

|bn−1 − bn+1| log n < ∞,

then bothg andf are integrable.

The following lemma can be found implicitely in [4, p. 37] (see also [2]).

Lemma 3.2. If ϕ(x) is the sum of either of(1.7), λn ≥ 0, 1 < p < ∞, and(1/p)−1 < γ < 1/p,
then

(3.3)
∞∑

n=1

np+pγ−2
( ∞∑

k=n

|λk − λk+2|
)p

< ∞

implies thatx−γϕ(x) ∈ Lp.
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Lemma 3.4 ([5], Theorem 1). If p ≥ 1 andαn ≥ 0, then for any sequence{κm} of positive
numbers

(3.5)
∞∑

m=1

κm

( m∑
k=1

αk

)p

≤ pp

∞∑
m=1

κ1−p
m

( ∞∑
k=m

κk

)p

αp
m

and

(3.6)
∞∑

m=1

κm

( ∞∑
k=m

αk

)p

≤ pp

∞∑
m=1

κ1−p
m

( m∑
k=1

κk

)p

αp
m

hold.

Lemma 3.7. If λk ≥ 0 then∣∣∣ n∑
k=m

λk cos kx sin
x

2

∣∣∣ ≤ 1

2

(
λm +

n−1∑
k=m

|λk − λk+1|+ λn

)
.

The assertion is trivial using Abel rearrangement.

Lemma 3.8. If c := {cn} ∈ γRBVS then there exists a nonincreasing sequenceγ∗ := {γ∗n}
such thatc ∈ γ∗RBVS also holds and for alln γ∗n ≤ γn.

Proof. Let γ∗1 := γ1 andγ∗n := min(γ∗n−1, γn) for n ≥ 2. It is obvious thatγ∗n ≤ γn, further-
more (1.4) holds withγ∗1, too.

Let us assume that (1.4) is verified form ≥ 1 with γ∗m in place ofγm. If γm+1 ≤ γ∗m then
γ∗m+1 = γm+1 thus (1.4) clearly stays withγ∗m+1 as well. Ifγm+1 > γ∗m thenγ∗m+1 = γ∗m and
then the following inequalities

∞∑
n=m+1

|cn − cn+1| ≤
∞∑

n=m

|cn − cn+1| ≤ K(c)γ∗m = K(c)γ∗m+1

convey the inequality (1.4) withγ∗m+1 in place ofγm+1.
The proof is complete.

4. PROOFS

First we verify Theorem 2.6 because its result will be used in the proof of Theorem 2.1.

Proof of Theorem 2.6.The conditionsλ ∈ γRBVS and (2.7) imply that (3.3) holds, thus
Lemma 3.2 conveys thatx−γϕ(x) ∈ Lp, and this completes the proof.

Proof of Theorem 2.1.The special caseγ = 0 of Theorem 2.6 shows that the conditionsλ ∈
γRBVS and (2.2) imply thatϕ ∈ Lp. We verify (2.3) only for cosine series, the sine case runs
similarly. We assume thath = π/2n. It is clear that

ωp(ϕ, h) ≤ K sup
0<t≤h

((∫ π/n

0

|ϕ(x± t)− ϕ(x)|p dx
)1/p

+
(∫ π

π/n

|ϕ(x± t)− ϕ(x)|p dx
)1/p

)
= K sup

0<t≤h
(I1 + I2), say.
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By Minkowski’s inequality

1

2
I1 ≤

(∫ π/n

0

∣∣∣n−1∑
ν=1

λν sin
1

2
νt sin ν

(
x± t

2

)∣∣∣p dx
)1/p

+
(∫ π/n

0

∣∣∣ ∞∑
ν=n

λν

(
cos ν(x± t)− cos νx

)∣∣∣p dx
)1/p

=: I11 + I12.

Since

I11 ≤ t

(∫ π/n

0

(n−1∑
ν=1

νλν

)p

dx

)1/p

,

and if we apply Hölder’s inequality to
n−1∑
ν=1

νλν , we obtain that

I11 ≤ Kn−1
(n−1∑

ν=1

ν2p−2λp
ν

)1/p

.

As in [1] we get that

I12 ≤ K
( ∞∑

m=n

∫ 3π/2m

3π/2(m+1)

∣∣∣ ∞∑
ν=n

λν cos νx
∣∣∣p dx

)1/p

.

Here using Lemma 3.7 andλ ∈ γRBVS, we get that∣∣∣ ∞∑
ν=n

λν cos νx
∣∣∣ ≤ m∑

ν=n

λν + K(m + 1)γm+1.

Thus

(4.1) Ip
12 ≤ K1

∞∑
m=n

m−2
( m∑

ν=n

γν

)p

+ K2

∞∑
m=n

mp−2γp
m.

Now using (3.5) withκm = m−2 and

αk :=

{
0 if k < n,

γk if k ≥ n,

we obtain that
∞∑

m=1

m−2
( m∑

k=1

αk

)p

≤ K
∞∑

m=1

mp−2αp
m.

This inequality shows that the first sum in (4.1) is majorized by the second one. Consequently

I12 ≤ K
( ∞∑

m=n

mp−2γp
m

)1/p

.

If Dν(x) denotes the Dirichlet kernel, an Abel transformation combined with Minkowski’s in-
equality gives

I2 ≤
(∫ π

π/n

∣∣∣ n∑
ν=1

∆λν

(
Dν(x± t)−Dν(x)

)∣∣∣p dx
)1/p

+
(∫ π

π/n

∣∣∣ ∞∑
ν=n+1

∆λν

(
Dν(x± t)−Dν(t)

)∣∣∣p dx
)1/p

=: I21 + I22.
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Following the discussing of the proof of Theorem 1.5 given in [1] we obtain that

Ip
21 ≤ K

n−1∑
m=1

∫ π/m

π/(m+1)

∣∣∣∆λν

(
Dν(x± t)−Dν(x)

)∣∣∣p dx

≤ K1t
p

(n−1∑
m=1

m−2
( m∑

ν=1

ν2|∆λν |
)p

+
n−1∑
m=1

mp−2
( n∑

ν=m+1

ν|∆λν |
)p

)
.

(4.2)

In the following steps we shall assume that the sequenceγ is nonincreasing, by Lemma 3.8
we can do this without loss of generality. Sinceλ ∈ γRBVS we clearly get that

m∑
ν=1

ν2|∆λν | ≤
log m∑
k=1

2k∑
ν=2k−1

ν2|∆λν | ≤ K

log m∑
k=1

22kγ2k−1

≤ 4K

log m∑
k=1

2k

2k∑
ν=2k−1

γν ≤ 8K
m∑

ν=1

νγν ,

and similarly
n∑

ν=m+1

ν|∆λν | ≤ K1

( n∑
ν=m+1

γν + mγm

)
.

These inequalities and (4.2) imply that

Ip
21 ≤ Ktp

( n−1∑
m=1

m−2
( m∑

ν=1

νγν

)p

+
n−1∑
m=1

mp−2
( n∑

ν=m

γν

)p

+
n−1∑
m=1

m2p−2γp
m

)
.

(4.3)

We estimate the first sum in (4.3) using the assertion (3.5) of Lemma 3.4 withκm = m−2, plus
αk = kγk for k < n andαk = 0 for k ≥ n, thus we can see that it is majorized by the third
sum multiplied byK. The same holds for the second sum if we use (3.6) withκm = mp−2,
furthermore withαk = γk for k < n andαk = 0 for k ≥ n. Thus, in view oft ≤ h = π/2n,
we obtain that

I21 ≤ Kn−1
(n−1∑

ν=1

ν2p−2γp
ν

)1/p

.

Since

I22 ≤ 2

(∫ π+π/2n

π/2n

( ∞∑
ν=n+1

|∆λν ||Dν(x)|
)p

dx

)1/p

≤ Kγn

(∫ ∞

π/2n

x−p dx
)1/p

≤ K1n
1−1/pγn,

and

γn ≤ Kn1/p−2
(n−1∑

ν=1

ν2p−2γp
ν

)1/p

clearly holds, namely we assumed thatγn is nonincreasing, thus we have that

I22 ≤ Kn−1
(n−1∑

ν=1

ν2p−2γp
ν

)1/p
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8 L. L EINDLER

holds.
Lastly, collecting our partial estimates, we see that (2.3) is verified, and herewith the proof of

Theorem 2.1 is finished.

Proof of Theorem 2.4.Sinceb ∈ γRBVS thusbn → 0, furthermore (2.5) implies that
∞∑

n=1

nγ−1

∞∑
k=n

|bk − bk+1| < ∞,

therefore ifγ > 0 then
∞∑

k=1

|bk − bk+1|kγ < ∞,

and ifγ = 0 then
∞∑

k=2

|bk − bk+1| log k < ∞

also hold. Thus, by Lemma 3.1, we immediately obtain all the assertions of Theorem 2.4.

Proof of Theorem 2.8.To the proof we shall use Theorem 2.1. By (2.9) the first term in (2.3) is
clearlyO(1/n), and the second one is alsoO(1/n), namely (2.9) and the obvious inequality

∞∑
ν=n

νp−2γp
ν =

∞∑
ν=n

ν−pν2p−2γp
ν ≤ Kn−p

verify this. Hence (2.10) plainly follows.

Proof of Corollary 2.11.The assumptions of Corollary 2.11 imply that the condition (2.2) holds,
therefore Theorem 2.1 can be applied again. An easy calculation gives that in (2.3) the first term
is O(n−1 log n) and the second oneO(n−1), whence (2.12) obviously follows.

Proof of Remark 2.14.First we verify the assertion (1). Letc := {cn}, where

cn := 2−m + (−1)n2−m−1, if 2m ≤ n < 2m+1.

It is clear that (1.2) withK(c) = 8 holds, thusc ∈ AMS. Since

2m+1∑
n=2m

|cn − cn+1| ≥
1

2
for anym,

thus (1.1) does not hold, consequentlyc 6∈ RBVS ≡ cRBVS.
To prove the statement (2) we define the following sequenced := {dn}: Let d1 = d2 = 1

and forn ≥ 3

dn :=

{
2−m if 2m < n < 2m+1,

m2−m if n = 2m+1,
m = 1, 2, . . .

Furthermore we define the sequenceγ := {γn} as follows:

γ1 = γ2 = 1, andγn := m2−m, if 2m < n ≤ 2m+1, m = 1, 2, . . .

Then it is easy to see thatd does not belong toAMS, namelysupn dn+1/dn = ∞, but (1.4)
holds withK(d) = 8, thusd ∈ γRBVS.

The proof is complete.
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