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ABSTRACT. Some integrability theorems or only their sufficient part are generalized such that

the coefficients of the sine and cosine series belong to a new class of sequences being wider than
the class of sequences of rest bounded variation, which itself is a generalization of the monotone
decreasing sequences, but a subclass of the almost monotone decreasing sequences. It is also
verified that the new class of sequences and the class of almost monotone decreasing sequences
are not comparable.
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2 L. LEINDLER

1. INTRODUCTION

A sequences := {¢,} of nonnegative numbers tending to zero is called of rest bounded
variation, and briefly denoted iy RBVS, if it has the property

(11) Z ’Cn - cn—i—1| S K(C)Cm

for all natural numbers:, whereK (c) is a constant depending only en
In view of (1.1) it is clear that it € RBVS then it is alscalmost monotonicthat is, for all
n>m

(1.2) cn < K(c)ep

stays, but[(1]J2) does not imply (1.1) & (c) > 1. If c satisfies[(1]2) we write € AMS. If
K(c) = 1, we denote: € MS.

Now we generalize the definitiof (1.1) with a view to broaden the clas3R¥S. Our
definition is the following.

Definition 1.3. Lety := {~,,} be a fixed sequence of positive numbers. We say that a nonneg-
ative null-sequence belongs to the clasgsRBVS if

[e.9]

(1.4) 3 lew — ot K (€)Y, (cn — 0),
holds for allm € N. The notatiorc € yRBV'S will denote the propert{1.4). We mention that
the conditionsy,, > v,.,; andc € vyRBVS jointly do not even imply that € RBVS.

In order to emphasize the requiremept> 0 it would be more precise to use the notation
vRBVS, instead olyRBVS, but for the simplicity we use the latter one.

Itis clear that[(1.]4) implies that, < K(c)~y,, (n > m), butit does not exhibit that € AMS,
see our Remark 2.114. Furthermore if ape= 0, then [1.4) does not imply that all of the terms
with indexn > k are zero, too, whilg (1}1) claims this. By all means]|(1.4) gives much greater
freedom for the sequeneethan [1.1) does, consequently, in genesd@BVS is a larger class
thanRBVS; they are identical only ify, = Kc¢,.

In the sequel the capital lettef§, K7, ... and K (-) will denote positive constants which are
either absolute constants or constants depending on certain sequence, and not necessarily the
same at each occurrences.

Originally we have intended to generalize the theorems having conditions with sequences
belonging to the class@dS, AMS or RBVS to the classe§yRBVS with suitable sequenceg
but it turned out that the plenty of rope of the sequercesyRBVS does not make it possible.

We can verify generalization of this type only for the sufficient part of the known theorems. See
e.g. the paper$ [8] andl[9], where we considered theorems pertaining to the space of continuous
functions.

In the present paper we verify generalization of some theorems relating to the ¢paces
p=>1

Among others we generalize the following theorems, and the sufficient part of some other
results.

Theorem 1.5.Let A\ := {)\,,} € MS be such that for a fixed (1 < p < o0)

o

(1.6) an’z/\ﬁ < 0.

n=1
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If © is the sum of either of the series

a.7) Z)\n cosnx Of Z)‘" sinnz,
n=1 n=1
then
(1.8) wplip,n™Y) < Kyn™ {Z;ﬂp S s

v=n

wherew,(f, §) denotes the modulus of continuity foin L?.

This is a sharp result of S.1AANCIC [1] which is improved in[[7] such that the condition
A € MS is replaced byA € RBVS.

Theorem 1.9([6]). Letb := {b,} € RBVS.
Q) Ifo<y<land

(1.10) > b, < oo,

n=1
thenz=7g(z) € L(0,7), whereg(x) := >_ b, sinnz.
n=1

(2) If 0 < v < 1and(T.1I0)holds, then:=" f(x) € L(0, ), wheref(x) := Z b, cos nz.
(3) If (1.10)is convergent fory = 0, then bothy(x) and f(x) are mtegrable

We note that Theorefn 1.9 with classical quasi-monotorig, ;, < b,(1 + 2)) was proved
by S.M. $HaH [10]. For further similar theorems we refer to the well-known monograph of
R.P. BoAs, JR. [4].
2. THEOREMS
Our results read as follows.

Theorem 2.1.Let1 < p < co andX := {\,} € vyRBVS with the additional condition

(2.2) Zn”‘%ﬁ < 00.
n=1

If » is the sum is either of the seri¢k.7), then

(2.3) wp(p,n™) < Kyn™ <Z V2P 271,)1 + Ky <§: i/p_27§> 1/p.

It is clear that ify,, = )\, and{\,} € MS or {\,} € RBVS, then Theorer 2|1 as special
case reduces to Theorém]|1.5 or Theorem Llof [7], respectively.

Theorem 2.4. Theorenj 1J9 can be improved such that the condittens {b,} € RBVS and
(L.10)are replaced by the assumptibne yRBVS with the additional condition

o0

(2.5) Zn”‘lvn < 00.

n=1

Next we establish sufficient conditions fer”p(x) to belong toL? := L?(0, ).
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Theorem 2.6.1f 1 < p < o0, (1/p) =1 < v < 1/p, and X € vRBVS with the additional
condition

(2.7) Zn’””‘%ﬁ < 00,
n=1

thenz=7p(x) € LP, wherey is the sum of either of.7).
Theorem 2.8.1f 1 < p < o0 and A € vRBVS with the additional condition

(2.9) ZnQp_27Z < 00,
n=1
then

wherey is the sum of either of the series @.7).

Corollary 2.11. If 1 < p < oo andX € yRBVS withy, = O(n~271/7), then
(2.12) wy(ip, h) = O(h|log h|''7),

wherey is the sum of either of1.7).

way to choose the sequengewith the termsy,, := > [\ — \¢11| (in Theore

k=n

Observation 2.13.If we consider only one fixed coefficient sequekdben clearly the best
{2k

/]
B n -

kE |br, — bit1])-

Remark 2.14. The classeaMS and~vRBVS are not comparable.

(1) There exists a sequence= {¢,} which belongs taAMS, but does not teRBVS
RBVS.
(2) There exists a sequende= {d,,} which belongs teyRBVS, but does not taAMS.

3. LEMMAS

Lemma 3.1([3]). Letg(z) and f(z) denote the functions defined in Theofenj 1.9, It~ 0
and

o0
Z |bn—1 = byy1|n” < oo,
n=2

thenz=7g(z) e Lif0 <y <1l,andz"f(z) € Lif0 <~ < 1.
Furthermore, if

Z |bn—1 - bn+1| logn < 00,
n=2

then bothg and f are integrable.
The following lemma can be found implicitely inl[4, p. 37] (see also [2]).

Lemma 3.2.If ¢(z) is the sum of either ofL.7), A, > 0,1 < p < oo, and(1/p)—1 <~y < 1/p,
then

[e.e]

(3.3) Z nP P2 (i A — )\k+2‘)p <0
k=n

n=1

implies thatz7¢(z) € LP.

AJMAA Vol. 1, No. 1, Art. 4, pp. 1-9, 2004 AIJMAA


http://ajmaa.org

INTEGRABILITY OF SINE AND COSINE SERIES 5

Lemma 3.4([5], Theorem 1) If p > 1 and«,, > 0, then for any sequendgx,,} of positive
numbers

(35) S () <o S (S e,
and m=1 k=1 m=1 k=m

(3.6) i ﬁm(i ak) <P Z Ky (i /ik) of
ho|d m=1 k=m k=1

Lemma 3.7.If A, > 0 then

n n—1
T 1
Lz 1 _ '
‘k:EmAk cos kx sin 2‘ < 2()\m+kém]/\k pyet +)\n)

The assertion is trivial using Abel rearrangement.

Lemma 3.8.If c := {¢,} € YRBVS then there exists a nonincreasing sequefite= {~:}
such thatc € v*RBVS also holds and for alh v < ~,,.

Proof. Let v} := v, and~} := min(y}_,,,) forn > 2. Itis obvious thaty’ < ~,, further-
more [1.4) holds with/, too.
Let us assume thgt (1.4) is verified for > 1 with ~7, in place ofy,,. If v,,., < 77, then

Vi1 = Yme1 thus [1.4) clearly stays withy;, ., as well. If~,. ., > 7 theny; ., =~ and
then the following inequalities

[e's) [e's)
Z |Cn - Cn-l—ll S Z |Cn - Cn—s—1| S K(C)W:n = K(C)Vin—l-l
n=m-+1 n=m

convey the inequality (114) with; . , in place ofy,, ;.
The proof is completeg

4. PROOFS
First we verify Theorer 2|6 because its result will be used in the proof of Th¢orem 2.1.

Proof of Theorerh 2]6The conditionsA € vRBVS and [2.7) imply that[(3]3) holds, thus
Lemmd 3.2 conveys that ¢ (x) € L?, and this completes the prog.

Proof of Theorer 2]1The special case = 0 of Theoreni 2.6 shows that the conditiohse
~vRBVS and [2.2) imply thatp € LP. We verify (2.3) only for cosine series, the sine case runs
similarly. We assume thdt = 7/2n. Itis clear that

e < K s ([t k0) - ot an)

0<t<h

([ bt o)) = K . sy

w/n 0<t<h
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By Minkowski’s inequality

%hﬁ(/oﬂ/ng
+(/0”/”§;

v=n

I < t(/oﬂ/n (nzi V)\V>pdx) 1/7”

v=1

1 t\|P 1/p
A, sin §Vt sin y(x + 5) da:)

p 1/p
d:):) =:I11 + Lo,

A (cosv(z £ ) — cosvz)

Since

n—1
and if we apply Holder's inequality t§ ~ v\, we obtain that
v=1

n—1

1/
]11 S K?’L_l <Z l/2p_2/\1;) p.

v=1

As in [1] we get that

[12§K(§:/ ikycosux
m=n 3

7 /2(m+1) v—n

3w /2m

P 1/p
d;z:) .

Here using Lemmpg 3.7 amd € yRBVS, we get that

‘Z )\Vcosyx’ < Z)\V +K(m+ 1)y,

Thus
(e.) m p (o)
(4.1) <Ky m™ (Z 7,,> + RS mrn

Now using [3.b) with,,, = m~2 and
{o if k< n,
A = .
ve IFk>n,

we obtain that

m

o (D) < 3wl
m=1 k=1 m=1
This inequality shows that the first sum jn (4.1) is majorized by the second one. Consequently

> 1/p
I < K(Z mp_%fn) :

If D,(x) denotes the Dirichlet kernel, an Abel transformation combined with Minkowski’s in-
equality gives

< (/: zn:my(py(x L)~ D, () pdm>1/p

/n' =1

(L.,
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Following the discussing of the proof of Theorgm|1.5 given in [1] we obtain that

Igl S K Z/ (m+1)
n—1 n
< Kltp(z m? (Z V2|A/\V|)p + Z mp_2< Z V|A/\l,|>p).
m=1 v=1 m=1

v=m+1

p

dz

AN, (D, (z £t) — D,())

4.2)

In the following steps we shall assume that the sequenisenonincreasing, by Lemnja 3.8
we can do this without loss of generality. Sinkec vYRBVS we clearly get that

logm log m
Zy2|AA|<Zg: Z 2|AA|<K§:2 Vo1
k=1 p—9k—1
logm
<4Kg22k Z 7V§8KZV%,,
y—ok—1

and similarly

n

Z v|AN,| §K1< Zn: %,—|—m7m>.

v=m+1 v=m-+1

These inequalities and (4.2) imply that
n—1 m
B < Kt? ( Z m=2 (Z w,,>p
P n—1
S (3 ) s )
m=1

v=m

(4.3)

We estimate the first sum ifi (4.3) using the asserfion (3.5) of Lemma 3.4cwith m~2, plus
a = kv, for k < nanda, = 0 for £ > n, thus we can see that it is majorized by the third
sum multiplied byK. The same holds for the second sum if we (3.6) wijth= mP=2,
furthermore withoy, = ~, for k < n anday, = 0 for & > n. Thus, in view oft < h = 7/2n,

we obtain that
n—1 l/p
Iy < Kn_l(z Vzp_ZVZ;) :
v=1

Since
T+m/2n o p 1/p
mea( [ (3 1andinl) )
7r/2n v=n+1
&0 1/p
< Kv, (/ P d:v) < Klnl’l/pfyn,
w/2n
and

n—1

v, < Knl/p—2 (Z 2p— 271/)1/]3

v=1
clearly holds, namely we assumed thatis nonincreasing, thus we have that

n—1 1/
Iy < Kn™* (Z V2p727€> ’
v=1
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holds.
Lastly, collecting our partial estimates, we see thai (2.3) is verified, and herewith the proof of
Theorenj 2.1 is finished

Proof of Theorer 2]4Sinceb € yRBVS thusb,, — 0, furthermore[(2.5) implies that

oo oo

—1
E n’ E b, — bry1| < 00,
n=1 k=n

therefore ify > 0 then

> b = b [K7 < oo,

k=1
and ify = 0 then

Z|bk — by1|logk < oo
=2

also hold. Thus, by Lemnja 3.1, we immediately obtain all the assertions of Theorem 2.4.

Proof of Theorem 2|8To the proof we shall use Theor¢m2.1. By (2.9) the first termin (2.3) is
clearlyO(1/n), and the second one is al&g1/n), namely [(2.D) and the obvious inequality

[e.e] o

p—2_.p __ —p,,2p—2_.p —p
E VP oAb = E v Pyl < Kn
v=n rv=n

verify this. Hence[(2.70) plainly followss

Proof of Corollary{2.11L.The assumptions of Corolldry 2]11 imply that the conditjon|(2.2) holds,
therefore Theorein 2.1 can be applied again. An easy calculation gives fhaf in (2.3) the first term
is O(n~'logn) and the second or@(n '), whence[(Z.1]2) obviously follows

Proof of Remark 2.14First we verify the assertion (1). Let:= {c, }, where
Cp =274 (=1)"27 i 2™ <p < 2mH

It is clear that[(1.R) withK'(c) = 8 holds, thus: € AMS. Since

2m+1

Z lcn — Cnga] >

n=2m

thus [1.1) does not hold, consequently RBVS = cRBVS.
To prove the statement (2) we define the following sequehece {d,}: Letd; = dy = 1
and forn > 3

for anym,

DO | —

9-m if 9m < < 2L,
dn-:{ " m=1,2,...

m2™™ if n = 2mH,
Furthermore we define the sequence= {~,,} as follows:
Y1=7 =1, andy,:=m2""if2" <n<2" m=12 ..

Then it is easy to see thdtdoes not belong t&\MS, namelysup,, d,,1/d,, = oo, but (1.4)
holds with K'(d) = 8, thusd € YyRBVS.
The proof is completeg
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