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ABSTRACT. In this work, we seek the approximate solution of linear integral equations by trun-
cation Euler series approximation. After substituting the Euler expansions for the given functions
of the equation and the unknown one, the equation reduces to a linear system, the solution of this
latter gives the Euler coefficients and thereafter the solution of the equation. The convergence
and the error analysis of this method are discussed. Finally, we compare our numerical results
by others.
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1. I NTRODUCTION

The integral equation arises naturally in many physical applications related to wave prop-
agation and vibration phenomena. It is often used to describe the acoustic cavity problem,
the scattering of a wave and the radiation wave. Numerical solution of integral equations of
Fredholm and Volterra have been investigated by many authors [1, 3, 4]. For methods that use
quadrature rule, collocation and interpolation, degenerate kernels, Chebyshev series, Haar se-
ries and so on [5, 7, 8]. In this paper, we consider the Euler series approximation for the solution
of such integral equations, certainly this technical leads us to the best approximations

(1.1) ϕ(s)−
∫

Ω

k(s, t)ϕ(t)dt = f(s), s ∈ Ω

where the functionsf(s), andk(s, t) are given and continuous functions inΩ andΩ × Ω re-
spectively, the functionϕ(t) is to be determined as continuous function inΩ.Depending on
the domainΩ = [a, t] or [a, b] the equation(1.1) describes the Volterra integral equation or
Fredholm integral equation, respectively.

The equation(1.1) can be put in the form of a linear functional equation

ϕ(s)− Aϕ(s) = f(s), s ∈ Ω,

with the linear mappingA given by

Aϕ(s) =

∫
Ω

k(s, t)ϕ(t)dt.

For the solution of the equation(1.1) in the complete function spaces, usually take itC(Ω),
we choose a sequence of finite dimensional subspacesVn, n ≥ 1, havingn basis functions
{E1, E2, ..., En} with dimension ofVn = n.

Seeking the approximate functionϕn ∈ Vn of the functionϕ given by

(1.2) ϕn(s) =
n∑

k=1

αkEk(s),

where the expression(refe2) describes the truncated Euler series of the solution of the equa-
tion (1.1), with the functions{Ek}0≤k≤n represent the Euler polynomials and{αk}0≤k≤nthe
coefficients to be determined. In other words, we can write

rn(s) = ϕn(s)− Anϕ(s)− f(s),

rn(s) = ϕn(s)−
∫

Ω

k(s, t)ϕn(t)dt− f(s),

=
n∑

k=1

αkEk(s)−
n∑

k=1

αk

∫
Ω

k(s, t)Ek(t)dt− f(s)

=
n∑

k=1

αk

(
Ek(s)−

∫
Ω

k(s, t)Ek(t)dt

)
− f(s), s ∈ Ω.

2. SOLUTION WITH COLLOCATION METHODS

Choose a selection of distinct pointss1, s2, .....sn ∈ Ω and require

(2.1) rn(sj) = 0, j = 1, 2, ..., n.

AJMAA, Vol. 14, No. 2, Art. 11, pp. 1-7, 2017 AJMAA

http://ajmaa.org


EULER SERIESSOLUTIONS FORL INEAR INTEGRAL EQUATIONS 3

The condition(2.1) leads us to determine the coefficients{α1, α2, ..., αn} solution of the
linear system

(2.2)
n∑

k=1

αk

(
Ek(sj)−

∫
Ω

k(sj, t)Ek(t)dt

)
= f(sj), j = 1, 2, ..., n.

Define the matrices

E = (Ekj) = Ek(sj)

and

K = (Kkj) =

∫
Ω

k(sj, t)Ek(t)dt.

If the det(E −K) 6= 0, we can ensure that, there exists a solution of the linear system(2.2)
and consequently the approximate solutionϕn(s) as a linear combination

ϕn(s) =
n∑

k=1

αkEk(s),

for which

ϕn(sj)−
∫

Ω

k(sj, t)ϕn(t)dt = f(sj), j = 1, 2, ..., n.

In fact, The linear system may be written in matrix

(2.3) (E −K)α = F,

whereα = (α1, α2, ..., αn)T andF = (f(s1), f(s2), ..., f(sn))T . For the determinant of the
system(2.3) is different from zerodet(E −K) 6= 0, then it has a unique solution

α = (α1, α2, ..., αn)T = (E −K)−1F.

The corresponding approximate solution

ϕn(s) =
n∑

k=1

αkEk(s),

has the property that its residualrn(s)vanishes at the selected nodessj.

Euler polynomials
The nth Euler polynomialsEn(t) is defined byE0(t) = 1 and the following recursion

En(t) = 2tn −
n∑

k=0

(
n
k

)
Ek(t).

Noting that, the Euler polynomialEn(t) is polynomials with rational coefficients

E0(t) = 1

E1(t) = t− 1

2
E2(t) = t2 − t

E3(t) = t3 − 3

2
t2 +

1

4

E4(t) = t4 − 2t3 +
2

3
t

E5(t) = t5 − 5

2
t4 +

5

3
t2 − 1

2
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and also admits the equalities

En(t + s) =
n∑

k=0

(
n
k

)
Ek(t)s

n−k and En(t + 1) + En(t) = 2tn .

3. ERROR ANALYSIS

Theorem 3.1.LetA : C(Ω) → C(Ω) be compact operator and the equation

(3.1) (I − A)ϕ = f,

admit a unique solution. Assume that the projectionsPn :C(Ω) → Vn satisfy to‖PnA− A‖ →
0, n →∞. Then, for sufficiently largen, the approximate equation

(3.2) ϕn − PnAϕn = Pnf,

has a unique solution for allf ∈ C(Ω) and there holds an error estimate

(3.3) ‖ϕ− ϕn‖ ≤ M ‖ϕ− Pnϕ‖ ,

with some positive constantM depending onA.

Proof. As it is known for all sufficiently largen the inverse operators(I − PnA)−1 exist and
are uniformly bounded. To verify the error bound, we apply the projection operatorPn to the
equation(3.1) and get

Pnϕ− PnAϕ = Pnf,

or again
ϕ− PnAϕ = Pnf + ϕ− Pnϕ.

Subtracting this from(3.2) we find

(I − PnA)(ϕ− ϕn) = (I − Pn)ϕ.

Hence the estimate(3.3) follows.

4. I LLUSTRATING EXAMPLES

Example 4.1.Consider the linear integral equation of Volterra

ϕ(s)−
∫ s

0

(t− s)ϕ(t)dt = 1, 0 ≤ x, t ≤ 1,

where the functionf(s) is chosen so that the exact solution is given by

ϕ(t) = cos(t).

The approximate solutionϕn(t) of ϕ(t) is obtained by the truncated Euler series method.

Values of t Exact solϕ Approx solϕn Error Error [5]
0.000 1.000e+000 1.000e+000 0.000e+000 0.0e+00
0.200 9.800e-001 9.800e-001 2.070e-009 1.8e-04
0.400 9.210e-001 9.210e-001 8.116e-009 8.3e-04
0.600 8.253e-001 8.253e-001 1.765e-008 2.3e-03
0.800 6.967e-001 6.967e-001 2.990e-008 7.8e-03
1.000 5.403e-001 5.403e-001 4.384e-008 5.7e-03

Table 4.1: We present the exact and the approximate solutions of the equation in the Example 4.1 in some arbitrary
points, the error forN = 10 is calculated and compared with the ones treated in[5].
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Example 4.2.Consider the linear integral equation of Volterra

ϕ(s)−
∫ s

0

(t− s)ϕ(t)dt = 1− t− t2

2
, 0 ≤ x, t ≤ 1,

where the functionf(s) is chosen so that the exact solution is given by

ϕ(t) = 1− sinh(x).

The approximate solutionϕn(t) of ϕ(t) is obtained by the truncated Euler series method.

Values of t Exact solϕ Approx solϕn Error Error [2]
0.000 0.000e+000 0.000e+000 0.000e+000 0.0e+00
0.200 7.986e-001 7.986e-001 2.809e-008 2.2e-05
0.400 5.892e-001 5.892e-001 5.815e-008 8.3e-05
0.600 3.633e-001 3.633e-001 9.226e-008 1.7e-04
0.800 1.118e-001 1.118e-001 1.327e-007 2.9e-04
1.000 -1.752e-001 -1.752e-001 1.823e-007 3.6e-04

Table 4.2: We present the exact and the approximate solutions of the equation in the Example 4.2 in some arbitrary
points, the error forN = 10 is calculated and compared with the ones treated in[2].

Example 4.3.Consider the linear integral equation of Fredholm

ϕ(s)−
∫ π

0

(cos s− cos t)ϕ(t)dt = sin t, 0 ≤ x, t ≤ π,

where the functionf(s) is chosen so that the exact solution is given by

ϕ(t) = sin t +
4

2− π2
cos t +

2π

2− π2
.

The approximate solutionϕn(t) of ϕ(t) is obtained by the truncated Euler series method.

Values of t Exact solϕ Approx solϕn Error Error [3]
0.000 -1.306e+000 -1.306e+000 1.758e-004 5.2e-001
0.785 -4.507e-001 -4.508e-001 1.558e-004 2.1e-002
1.570 2.015e-001 2.014e-001 1.074e-004 3.6e-001
2.355 2.681e-001 2.680e-001 5.908e-005 1.1e-001
3.140 -2.901e-001 -2.901e-001 3.904e-005 7.5e-001

Table 4.3: We present the exact and the approximate solutions of the equation in the Example 4.3 in some arbitrary
points, the error forN = 8 is calculated and compared with the ones treated in[3].

Example 4.4.Consider the linear integral equation of Fredholm

ϕ(s)−
∫ 1

0

(
√

t +
√

s)ϕ(t)dt = 1 + s, 0 ≤ x, t ≤ 1,

where the functionf(s) is chosen so that the exact solution is given by

ϕ(t) = −129

70
− 141

35

√
s + s.

The approximate solutionϕn(t) of ϕ(t) is obtained by the truncated Euler series method.
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Values of t Exact solϕ Approx solϕn Error Error [3]
0.000 -1.842e+000 -1.851e+000 8.932e-003 6.9e-001
0.250 -3.607e+000 -3.620e+000 1.341e-002 8.2e-002
0.500 -4.191e+000 -4.207e+000 1.597e-002 3.7e-002
0.750 -4.581e+000 -4.599e+000 1.754e-002 6.4e-002
1.000 -4.871e+000 -4.890e+000 1.883e-002 9.5e-002

Table 4.4: We present the exact and the approximate solutions of the equation in the Example 4.4 in some arbitrary
points, the error forN = 10 is calculated and compared with the ones treated in[3].

Example 4.5.Consider the linear integral equation of Volterra

ϕ(s)−
∫ s

0

(
−16s + 0.1s(s2 − 3t2

)
ϕ(t)dt = 1 + 16s2 + s3 + 4s5 + 0.025s7, 0 ≤ x, t ≤ 1,

where the functionf(s) is chosen so that the exact solution is given by

ϕ(t) = 1 + t3.

The approximate solutionϕn(t) of ϕ(t) is obtained by the truncated Euler series method.

Values of t Exact solϕ Approx solϕn Error Error [9]
0.000 1.000e+000 1.000e+000 4.884e-015 8.03e-002
0.200 1.008e+000 1.008e+000 7.142e-008 8.03e-002
0.400 1.064e+000 1.064e+000 3.613e-007 8.03e-002
0.600 1.216e+000 1.215e+000 7.083e-007 8.03e-002
0.800 1.512e+000 1.511e+000 9.874e-007 8.03e-002
1.000 2.000e+000 1.999e+000 1.252e-006 8.03e-002

Table 4.5: We present the exact and the approximate solutions of the equation in the Example 4.5 in some arbitrary
points, the error forN = 10 is calculated and compared with the ones treated in[9].

Example 4.6.Consider the linear integral equation of Volterra

ϕ(s)−
∫ s

0

(s− t) ϕ(t)dt = 1 + s, 0 ≤ x, t ≤ 1,

where the functionf(s) is chosen so that the exact solution is given by

ϕ(t) = exp(t).

The approximate solutionϕn(t) of ϕ(t) is obtained by the truncated Euler series method.

5. CONCLUSION

A numerical method for solving linear integral equations, based on the truncated Euler series
of the solution is presented. If the residualrn(sj) = 0 for all j = 1, 2, ..., n then the approxi-
mate solutionϕn(s) will be measurably close to the solutionϕ(s) on the entire intervalΩ. The
efficiency of this method is tested by solving some examples for which the exact solution is
known. This allows us to estimate the exactness with our numerical results and compare those
with another results treated by other authors [2, 3, 5, 9].
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Values of t Exact solϕ Approx solϕn Error Error [9]
0.000 1.000e+000 1.000e+000 2.220e-016 5.49e-006
0.200 1.221e+000 1.221e+000 3.815e-007 5.49e-006
0.400 1.491e+000 1.491e+000 7.923e-007 5.49e-006
0.600 1.822e+000 1.822e+000 1.344e-006 5.49e-006
0.800 2.225e+000 2.225e+000 2.081e-006 5.49e-006
1.000 2.718e+000 2.718e+000 2.990e-006 5.49e-006

Table 4.6: We present the exact and the approximate solutions of the equation in the Example 4.6 in some arbitrary
points, the error forN = 10 is calculated.
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