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ABSTRACT. In this work, we seek the approximate solution of linear integral equations by trun-
cation Euler series approximation. After substituting the Euler expansions for the given functions
of the equation and the unknown one, the equation reduces to a linear system, the solution of this
latter gives the Euler coefficients and thereafter the solution of the equation. The convergence
and the error analysis of this method are discussed. Finally, we compare our numerical results
by others.
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1. INTRODUCTION

The integral equation arises naturally in many physical applications related to wave prop-
agation and vibration phenomena. It is often used to describe the acoustic cavity problem,
the scattering of a wave and the radiation wave. Numerical solution of integral equations of
Fredholm and \olterra have been investigated by many authidrs[[1, 3, 4]. For methods that use
guadrature rule, collocation and interpolation, degenerate kernels, Chebyshev series, Haar se-
ries and so ori 5%,/ 7, 8]. In this paper, we consider the Euler series approximation for the solution
of such integral equations, certainly this technical leads us to the best approximations

(1.1) o(s) — /Q k(s,t)p(t)dt = f(s), se€

where the functiong(s), andk(s, t) are given and continuous functions@hand() x € re-
spectively, the functionp(t) is to be determined as continuous function(irDepending on
the domainQ? = [a, ] or [a,b] the equation(1.1]) describes the Volterra integral equation or
Fredholm integral equation, respectively.

The equatior{l.1)) can be put in the form of a linear functional equation

p(s) — Ap(s) = f(s), seq,
with the linear mapping! given by
Ap(s) = [ k(s dt.
¢(s) = [ ks gty

For the solution of the equatidfi.1)) in the complete function spaces, usually tak€'(f2),
we choose a sequence of finite dimensional subspégces > 1, havingn basis functions
{F1, Es, ..., E,} with dimension ofV}, = n.

Seeking the approximate functign, € V,, of the functiony given by

1.2) Pn(s) = ZakEk(S)

where the expressidme fe2) describes the truncated Euler series of the solution of the equa-
tion (1.1]), with the functions{ E} }o<x<, represent the Euler polynomials afid; }o<r<,the
coefficients to be determined. In other words, we can write

ra(s) = (s) — Anp(s (s)
n = k n dt — )
7 (8) (s) /Q s, 1)@, (t)dt — f(s)

— ZakEk Zak/ (s,t)Ex(t)dt — f(s)
_ ;ak (Ek(s)—/ﬂk(s,t)Ek(t)dt> ~H(s), seq.

2. SOLUTION WITH COLLOCATION METHODS
Choose a selection of distinct points s, .....s, € Q2 and require
(2.1) ro(s;) =0, j=1,2..,n
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The condition(2.1)) leads us to determine the coefficiefts,, as, ..., «,} solution of the
linear system

(22) E 873 (Ek<S]) o / k(S]7t)Ek(t)dt> = f(sj)> j = 1727 ey 10
k=1 Q
Define the matrices

E = (Ey;) = Ex(s))
and

K = (Ky) :/Qk(sj,t)Ek(t)dt.

If the det(E — K') # 0, we can ensure that, there exists a solution of the linear sy&ein
and consequently the approximate solutjgiis) as a linear combination

s) = Z arEr(s)
k=1
for which
eulss) = [ R pn)dt = (5. 5 =12m
In fact, The linear system may be written in matrix
(2.3) (E—K)a=F,

wherea = (ay, g, ...,a,)T andF = (f(s1), f(s2), ..., f(s,))T. For the determinant of the
system(2.3) is different from zeralet(F — K) # 0, then it has a unique solution

a=(a, ag, ....,a,) = (E—K)'F.
The corresponding approximate solution

s) = Z arEr(s)
k=1
has the property that its residual(s)vanishes at the selected nodes

Euler polynomials
The nth Euler polynomial&,(¢) is defined byF,(¢) = 1 and the following recursion

E,(t) = 2t" — zn: ( . ) Ex(b).

k=0
Noting that, the Euler polynomidl,,(¢) is polynomials with rational coefficients
Eo(t) = 1
1
t) = t—=
Ey(t) :
Ex(t) = t*—t
3 1
E — 3 Y42 -
3(1) t Zt +4
2
Ey(t) = t* =28 + 5t
5 5 1
Es(t) = ¢ — —tt+ -2 — =
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and also admits the equalities
E.(t+s) = Z ( Z ) Ey(t)s" % and E,(t + 1) + E,(t) = 2t™.
k=0
3. ERROR ANALYSIS

Theorem 3.1.Let A : C(Q2) — C(Q2) be compact operator and the equation

(3.1) (I—=Ap=f,
admit a unique solution. Assume that the projectiBhsC(2) — V,, satisfy to|| P, A — A|| —
0, n — oo. Then, for sufficiently large, the approximate equation

has a unique solution for alf € C'(Q2) and there holds an error estimate
(3.3) I = @nll < Ml = Pugl],
with some positive constai depending oM.

Proof. As it is known for all sufficiently large: the inverse operatord — P, A)~! exist and
are uniformly bounded. To verify the error bound, we apply the projection opePattw the

equation(3.1)) and get
Pngp_PnAQOZPnfa

or again
w—P,Ap=P,f +¢p— P,p.
Subtracting this from3.2)) we find

Hence the estimat.3)) follows. n
4. ILLUSTRATING EXAMPLES

Example 4.1. Consider the linear integral equation of Volterra
o(s) —/ (=SBt =1, 0<zt<1,
0
where the functiorf (s) is chosen so that the exact solution is given by

@(t) = cos(t).
The approximate solutiop,, () of ¢(¢) is obtained by the truncated Euler series method.

Values of ¢ | Exact sokp | Approx soly,, | Error Error |5]
0.000 1.000e+00Q 1.000e+000 | 0.000e+00Q 0.0e+00
0.200 9.800e-001| 9.800e-001 | 2.070e-009| 1.8e-04
0.400 9.210e-001] 9.210e-001 | 8.116e-009| 8.3e-04
0.600 8.253e-001| 8.253e-001 | 1.765e-008| 2.3e-03
0.800 6.967e-001| 6.967e-001 | 2.990e-008| 7.8e-03
1.000 5.403e-001| 5.403e-001 | 4.384e-008| 5.7e-03

Table 4.1: We present the exact and the approximate solutions of the equation in the Example 4.1 in some arbitrary
points, the error forV = 10 is calculated and compared with the ones treatefbin
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Example 4.2. Consider the linear integral equation of Volterra
2

o) = [ (t=shottitr=1-1-5, o<me<
0
where the functiorf (s) is chosen so that the exact solution is given by
©(t) = 1 — sinh(x).
The approximate solutiop,, () of p(¢) is obtained by the truncated Euler series method.

Values of t | Exact solp | Approx solyp,, | Error Error [2]
0.000 0.000e+00Q 0.000e+000 | 0.000e+000 0.0e+00
0.200 7.986e-001| 7.986e-001 | 2.809e-008| 2.2e-05
0.400 5.892e-001| 5.892e-001 | 5.815e-008| 8.3e-05
0.600 3.633e-001 3.633e-001 | 9.226e-008| 1.7e-04
0.800 1.118e-001| 1.118e-001 | 1.327e-007| 2.9e-04
1.000 -1.752e-001 -1.752e-001 | 1.823e-007| 3.6e-04

Table 4.2: We present the exact and the approximate solutions of the equation in the Example 4.2 in some arbitrary
points, the error forV = 10 is calculated and compared with the ones treatef2jn

Example 4.3. Consider the linear integral equation of Fredholm
o(s) — / (coss —cost)p(t)dt =sint, 0<ux,t<m,
0
where the functiorf(s) is chosen so that the exact solution is given by
2w
cost +

2 — 2 2 — 72

The approximate solutiop,, () of p(¢) is obtained by the truncated Euler series method.

©(t) =sint +

Values of ¢ | Exact sokp | Approx soly,, | Error Error [3]
0.000 -1.306e+00Q -1.306e+000 | 1.758e-004 5.2e-001
0.785 -4.507e-001| -4.508e-001 | 1.558e-004 2.1e-002
1.570 2.015e-001 | 2.014e-001 | 1.074e-004 3.6e-001
2.355 2.681e-001 | 2.680e-001 | 5.908e-005 1.1e-001
3.140 -2.901e-001| -2.901e-001 | 3.904e-005 7.5e-001

Table 4.3: We present the exact and the approximate solutions of the equation in the Example 4.3 in some arbitrary
points, the error forV = 8 is calculated and compared with the ones treatefBin

Example 4.4. Consider the linear integral equation of Fredholm

©(s) —/01(\/%+\/§)¢(t)dt: 14+s, 0<a,t<l,

where the functiorf (s) is chosen so that the exact solution is given by
129 141
P =—7g — g Vet

The approximate solutiop,, (t) of ¢(t) is obtained by the truncated Euler series method.
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Values of t | Exact sokp | Approx soly,, | Error Error [3]
0.000 -1.842e+000Q -1.851e+000 | 8.932e-003 6.9e-001
0.250 -3.607e+000Q -3.620e+000 | 1.341e-002 8.2e-002
0.500 -4.191e+000 -4.207e+000 | 1.597e-002 3.7e-002
0.750 -4.581e+000 -4.599e+000 | 1.754e-002 6.4e-002
1.000 -4.871e+000Q -4.890e+000 | 1.883e-002 9.5e-002

Table 4.4: We present the exact and the approximate solutions of the equation in the Example 4.4 in some arbitrary
points, the error forV = 10 is calculated and compared with the ones treatef8in

Example 4.5. Consider the linear integral equation of Volterra

o(s) — / (=165 4+ 0.1s(s* — 3t*) p(t)dt = 1+ 165° + s° + 45° + 0.025s", 0 <z, t <1,
0

where the functiorf(s) is chosen so that the exact solution is given by
o(t) =1+
The approximate solutiop,, (t) of ¢(t) is obtained by the truncated Euler series method.

Values of t | Exact solp | Approx soly,, | Error Error [9]

0.000 1.000e+000 1.000e+000 | 4.884e-015 8.03e-002
0.200 1.008e+000Q 1.008e+000 | 7.142e-008 8.03e-002
0.400 1.064e+000 1.064e+000 | 3.613e-007 8.03e-002
0.600 1.216e+000 1.215e+000 | 7.083e-007 8.03e-002
0.800 1.512e+000 1.511e+000 | 9.874e-007 8.03e-002
1.000 2.000e+000 1.999e+000 | 1.252e-006 8.03e-002

Table 4.5: We present the exact and the approximate solutions of the equation in the Example 4.5 in some arbitrary
points, the error forN = 10 is calculated and compared with the ones treateffin

Example 4.6. Consider the linear integral equation of Volterra

o)~ [ (=Dt =145 0<ni<l,
0
where the functiorf(s) is chosen so that the exact solution is given by

p(t) = exp(t).
The approximate solutiop,, () of ¢(¢) is obtained by the truncated Euler series method.

5. CONCLUSION

A numerical method for solving linear integral equations, based on the truncated Euler series
of the solution is presented. If the residug(s;) = 0 for all j = 1,2,...,n then the approxi-
mate solutionp,, (s) will be measurably close to the solutigiis) on the entire interval). The
efficiency of this method is tested by solving some examples for which the exact solution is
known. This allows us to estimate the exactness with our numerical results and compare those
with another results treated by other authors [2) 3] 5, 9].
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Values of t | Exact solp | Approx soly,, | Error Error [9]

0.000 1.000e+000 1.000e+000 | 2.220e-016 5.49e-006
0.200 1.221e+000 1.221e+000 | 3.815e-007 5.49e-006
0.400 1.491e+000 1.491e+000 | 7.923e-007 5.49e-006
0.600 1.822e+000 1.822e+000 | 1.344e-006 5.49e-006
0.800 2.225e+000 2.225e+000 | 2.081e-006 5.49e-006
1.000 2.718e+000 2.718e+000 | 2.990e-006 5.49e-006

Table 4.6: We present the exact and the approximate solutions of the equation in the Example 4.6 in some arbitrary
points, the error forN = 10 is calculated.
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