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1. INTRODUCTION

In this paper, we study the second order advanced non-canonical difference equation
(LD A(p(O)Au(l)) + q(O)u(o(€)) = 0, £ € N(bo),

where /(, is a positive integer and N(¢y) = {{o, 0o + 1, ..., },
(Hy) {p(¢)} and {q(¢)} are positive real sequences with

1
12 D(te) =Y — < oc;
( ) ( 0) ézgop(g) < )

(Hy) {o(¢)} is amonotone increasing sequence of integers with o(¢) > ¢+1 forall ¢ € N(¢).

By a solution of (I.1I), we mean a nontrivial sequence {u(¢)} that satisfies (I.1)) for all ¢ €
N(4). A solution {u(f)} of is called oscillatory if it is neither eventually negative nor
eventually positive, otherwise, it is said to be nonoscillatory. Equation is said to be
oscillatory if all its solutions are oscillatory.

In recent years, many criteria have been reported in the literature on the oscillation of (1.1)
for the retarded case. See for example [11, 2,13, 7,110, 11,21} 16, 14,15, 18 19]] and the references
therein. However for the equation (I.1)) with D(¢y) = oo, few oscillation results available in
the literature, see for example [2, 8}, 4, 16, [17, 22, [23]].

From the review of literature, we see that very few results are available for the oscillation of
(I.1) when (1.2) holds, see [3, 12,13, 9, [10]. Therefore, our aim in this paper is to contribute
to the underdeveloped oscillation theory of second-order advanced non-canonical difference
equations. Furthermore, the results obtained in this paper improve and complement those in
[12,[7, 13,19, [10].

2. MAIN RESULTS

It follows from Lemma 2.1 in [20] that the set of positive solutions of (I.I)) has the following
structure.

Lemma 2.1. Let {u(l)} be an eventually positive solution of (I.1). Then {u({)} satisfies one
of the following conditions :

(S1) p(OAU(E) > 0, Ap(0) Au(0)) < 0;
(5.) p(O)Au(f) <0, A(p(£)Au(l)) <0
forall ¢ > {1 € N(¢).

Lemma 2.2. If

(2.1) > D(a(£))g(t) = oo,
=t
then the positive solution {u({)} of satisfies (S) and,

(i) limy_oo u(f) = 0;
(ii) u(¢) + p(£) D(O) Au(t) > 0;
(iii) {%} is eventually increasing.
Proof. The proof is similar to Lemma 2.2 of [7] since (2.1) implies that > ,°, D(¢ + 1)q(¢) =
oo and so the details are omitted.
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Lemma 2.3. Let (2.1)) holds. Assume that there exists a 6 > 0 such that
@2 win{p(ODIC+ )D(O)a(0)p(¢ + D) DE+2)a(0)} 2 5
eventually. If {u(0)} is a positive solution of (1.1), then
(i) {géﬂ} is decreasing;
m)mmﬁmDag—o
(iii) {Dl‘—‘s(ﬁ)} is increasing.

Proof. Let us assume that {u(¢)} is an eventually positive solution of (T.1I). Then (2.1]) implies
that {u(()} satisfies (S,) for ¢ > ¢, € N({,). From Lemma [2.2{iii), we have

D(a(0)) D(a(0))
u(o(l)) > mu(€+ 1) > D) u(l).
Summing up (I.1) from ¢; to ¢ — 1, we have
-1
—p(O)Au(l) = —p(tr)Au(t) + Y q(s)ulo(s))
s={1
— D(o(s
> —p(t)du(ty) +u(t) Z 5
which in view of (2.2)) yields
—
1
= —p(l1)Au(ly) + du(¥) 4 A <m)
1
= —p(l1)Au(ly) + du(l ( Di+1) DG 11 )>
ou(l)
(2.3) > DU+ 1)
where we have used u(¢) — 0 as £ — oo. Hence
u(f) DO () Au(t) — u(O)A(D(0))
o4 2(5w) - Bamin

By Mean-value theorem, we have
—5D°(¢0)
p(O)D(¢+1)
Using (2.5)) in (2.4) and, in view of (2.3), we see that
A ( u(l) ) < D¢+ 1)p(£)Au(€) 4+ du(¥) <o
D)) — p(£)DI+L(0 + 1) -

That is, D§()) is decreasing, and therefore there exists lim,_,, Dé((z) M > 0.
We claim that M = 0. Indeed, if M > 0, then u(¢) > M D°({) > 0 eventually. Now define

the companion sequence

(2.5) A (D°(0)) >

v(6) = (p(O)D(O) Au(t) + u(0)) D (0).
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In view of Lemma[2.2] it is obvious that v(¢) > 0 and
Av(l) = ApE)Au())D' (0 + 1) + p(O) Au(f)A(D*°(£))
(2.6) +D7 (04 D) Au(l) +u(f)A(D(0)).

By Mean-value theorem, we have

14 —1-9)
@) AD) 2 — =D (),
and
-5 L —1-6
(2.8) A(D(0)) < p(@D (0+1).

Using (2.7) and 2.8)) in (2.6), we get
Av(l) < —q(Ou(o(0))D' (L4 1) + 5Au(()D° (£ + 1) + 5wD*1*5(£ +1)

p({)
—q(O)D(a(0))u(l) 15 = u(l) 1
< D 4+ 1)+ 0Au(l)D°(L+1)+0—=D (+1
o (€+1) +68u(O D5+ 1)+ 355D +1)
—5u(t)D(e + 1) S sull) 1 s
< +0Au()D°(l+ 1)+ —=D " °(L+1
PODTC+ ) O+ 0D
2.9 = sAu(0)D~ (6 +1).
Since u(¢) > M D°(¢) > M D’(¢ + 1) and using (2.3)), we obtain from (2.9) that
~Mé®
Av(l) < ———— < 0.
"< B
Summing up the last inequality from ¢; to / — 1, we obtain
-1
1
v(ty) > M > Mé? / —dt
“ 2 P61 Z bt 1
Die)
= Mé&*In——=
0% In D) — 00 as { — oo
which is a contradiction. Thus
tim O g
oo DO(0)
Finally, we prove (iii). Equation (I.T]) can be written in the equivalent form
(2.10) A(D)p(0)Au(l) +u(l)) + D+ 1)g(0)u(a(€)) = 0.

ut)

Summing up (2.10) from ¢ to co and taking into account the fact that 7 7

(2.2), we obtain
DOROAUO +u(l) = Y Dls+ Naleulo(s) = 3 T

is increasing and

2 () Dio(5))
Su(l) & R "
> D) 2w~ 1O
that 1s,
@11 DOp(O)Au(l) + (1= d)u() > 0.
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Now

u(f) ) _ DO Au(l) — u(OA(D'(0))

(2.12) A (D15(€) D=5(()D1=3(0 + 1)

By Mean-value theorem, we get

(2.13) — A(D'(0) =

Using (2.13)) in (2.12) and, in view of (2.11)), we obtain

u(f) D(O)p(0)Au(f) + (1 — 8)u(?)
2 (pieg) 2 2 B@nomEry 2

The proof of the lemma is complete. 1

Based on Lemma[2.3](i) and (iii), we immediately obtain the following oscillatory criteria for

(L.1).
Theorem 2.4. Assume that 2.1) and 2.2) hold. If

1
(2.14) 0> 3,

then (L)) is oscillatory.

If § < 1, then one can improve the results given in Lemma Since D(/) is decreasing,
there exists a constant 5 > 1 such that

D(¢)
> f3,
D(o(0))
we introduce the constant ; > § as
)
2.1 = )
(2.15) by =

Lemma 2.5. Assume that 2.1) and 2.2) hold. If {u(¢)} is a positive solution of (L)), then
(2.16) du(l) + D(0)p(€)Au(l) <0,

forall 0 > 0, € N({p).

Proof. Let {u(¢)} be an eventually positive solution of (I.I). From (2.I) of Lemmal[2.1] we see
that u(¢) satisfies (S,) for all £ > ¢; € N(¢y). Summing up (I.1) from ¢; to ¢ — 1 and using the
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fact that {];‘5(—2)} is decreasing, and {Diﬁ(—%} is increasing, we obtain

PO > —p(t)Au(t) + 3 LU i)

2 D3 (o(s)
) Sasuls)
> —p()Au(l) + Y =TI (o(s))
s={1
< Bq(s)u(s)D(a(s)) D (s
> —p(t)du(e) + Y 2L )gﬁ(f);fsiw =
s={1
53%u(l) <=  D(s+1)
= A TS 2 DG+ )
S (0) L D)
> —P(&)Au(fl) + 5@5(25) (s11) tg—té
s=0, D(s+1
= —pltdult) - P DO o
Since g@) — 0 as ¢ — oo, we get

~D(Op(0)Au(t) > Syu(l)
which completes the proof of the lemma. 1
Next, we present another criteria for the oscillation of (I.T).
Theorem 2.6. Assume that 2.1), (2.2)) and 2.15)) hold. If
(2.17) 0+01>1
then (L)) is oscillatory.

Proof. Assume that (I.I) has an eventually positive solution {u(¢)}. Condition (2.I) implies

that {u(¢)} satisfies condition (S,). From Lemma [2.3| we see that (2.11]) implies
(1= 8)u(t) > —D(Op(0) Mu(0)
and from (2.16), we have
(1 —0)u(l) > o1u(?).
That is,
51 +0 < 17
which contradicts (2.17). The proof of the theorem is complete. 1
Theorem 2.7. Assume that 2.2) holds. If

o(l)—1
(2.18) lim inf D(o(s))q(s) >

then (L)) is oscillatory.
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Proof. Assume that {u(¢)} is a positive solution (I.I)). First note that (2.18) along with (1.2))
imply (2.1I). To see this, it suffices to note that

(2.19) > " D(a(t))q(t) =

t=to
is necessary for (2.18) to be valid. Then from (2.19) and D being decreasing, (2.1)) immediately
follows. By Lemmal[2.1] {u(¢)} satisfies condition (S.) for all ¢ > ¢;. Moreover from (2.2), we

have (2.T1).
Now, from (I.1) and (2.TT)), we see that w(¢) = —p(¢)(Au(¥¢)) is a positive solution of the

first order advanced difference inequality

l
(2.20) Aw(l) — lq(—)(sD(a(E))w(U(f)) > 0.
However, it is well-known (see, e.g., [Theorem 2.1,[3]]]) that condition (2.18)) implies oscillation
of (2.20). This is a contradiction and this completes the proof of the theorem. §

Corollary 2.8. Assume that (2.2) holds. If 0({) = { + T where T > 2 is an integer such that

4+7—1 -
. T—1
(2.21) zlggo inf ;1 D(s+1)q(s) > ( . )

then (1.1) is oscillatory.

Proof. The proof follows by applying Theorem 6.1.7 of [2] instead of Theorem 2.1 of [3]. This
completes the proof of the corollary. §

Our final oscillation result obtained without using condition (2.2).

Theorem 2.9. If

-1 o(l)—1
lim sup { D(o() Y qls) + D2 Dls + Lya(s)
s=Lg s=/{
(2.22) 3 (s)D(o(s)) p >1
s=o (L)

then (1.1)) is oscillatory.

Proof. Assume that {u(¢)} is a positive solution of (I.1). It follows from (2.22)) that there exists
a constant M > 0 such that

-1 o(£)—1
Jim D(a(0) Y qls) + D(a(s))q(s)
s={g s=/{
(2.23) +m > D(s)q(s)D(o(s)) p > M.
s=o (L)

We claim that (2.23) implies (2.1). Indeed, if not, then },°, D(c(£))q(¢) < oo, which means
that there exists an integer ¢, > ¢; € N(¢;) such that

(2.24) S Dle(0)a(t) < L.

6
=Ly
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That is, for ¢ > ¢,

VAN
S
Q
—~
=
'Q
—~
V2
~—
+
S
-8
NP
=Y
—~
»
~—

IN
S
2
=
(]
=8
N
+

Hence, for ¢ > 0,

On the other hand, for ¢ > ¢,

o0

1 o
O 3" D(s+1)a(s)D(o(s)) < D D(o(s))a(s) <

s=o (L) s=o (L)

Considering the above inequalities, we see that

{—00
Szfl sS=

-1 o(f)—1
lim sup {DW)) S a5+ Y Dlo(s))als)

! S M
*W&%D(S + 1>q<s>D<a<s>>} <

which contradicts (2.23) and therefore (2.1) holds. Thus {u(¢)} satisfies the conditions of

Lemma|2.2] Simple computation shows that (I.1) can be rewritten as follows:
A(D)p(£)Au(l) +u(l)) + Dl + 1)g(L)u(o(¢)) = 0.

Summing up the last equation from ¢ to oo, we have

(2.25) D(O)p(O)Au(l) + u(l) > Y " D(s + 1)q(s)u(o(s)).

s={

On the other hand, summing (I.1]) from ¢; to ¢ — 1, we get

.26) —p(OAU0) = Y gls)ulo(s))
Combining (2.26)) in (2.25)), we obtain
u(f) > D(¢) i a(s)u(o(s)) + ) D(s+ Da(s)u(o(s)).
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Therefore
-1 a(8)—1
u(@(6) = D(a(0)) Y als)ula(s)) + D(a(0)) Y a(s)u(o(s))
s=l1 s={
+ Y D(s+ 1)g(s)u(o(s)).
s=o (L)
Since {u(¢)} is decreasing and {%} is increasing, we obtain that
-1 o(l)—1
1= 10 > TDee) Y ats) + Y ao)D(o(s)
U(U(E)) s={1 s={

1 o0
+ BT z_; D(s + 1)q(S)D(0(S))} :

Taking lim sup as £ — oo on both sides of the last inequality we get a contradiction. This
completes the proof of the theorem. §

3. EXAMPLES
In this section, we provide two examples to illustrate the importance of the main results.

Example 3.1. Consider the second-order noncanonical advanced difference equation
3.1 AL+ 1)Au(l)) +yu(20) =0, £ > 2.

Here p({) = (({+1), q(¢) =~ > 0,0(¢) = 2(. Now D({) = ; and condition (Z:I)) holds. By
taking § = 7, we see that (2.2)) holds. By Theorem 2.4} equation (3.)) is oscillatory if 7 > 1.
By simple calculation, we see that § = 2 and
5= L /2,
2—9
By taking v = 3/4, we have

33 3
=285—+ — > 1.
0+ 01 85+8>

Therefore by Theorem 2.6] equation (3:1) is oscillatory for y > 2.
Note that the equation (3.1]) was considered in [9] and it was shown that (3.1)) is oscillatory

if v > 2; in [13] it is shown that (3.1)) is oscillatory if v = 2 and in [12], it is shown that (3.1))
is oscillatory if v > 1. Therefore Theorem [2.6]improves Theorem 4 in [9]], Theorem 3.3 in [13]
and Theorem 2.4 in [12].

Example 3.2. Consider again the equation (3.1). For this equation (2.1)) holds. The condition
(2.22) becomes

: g Yo 5
lim {— —9) 4+ 2 —}:— 1.
fim sup q o5 (6=2)+ 5+ 1

Hence, by Theorem 2.9} equation (3:1) is oscillatory if > 7.
Note that, Theorem [2.9/improves Theorem 4 in [9] and Theorem 3.3 in [13]].

4. CONCLUSION

In this paper we have established some new oscillation criteria which have improved some of
the results already reported, and this is illustrated through two examples.
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