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2 B.-N. GUO AND F. QI

1. I NTRODUCTION

Recall [2, 14] that a positive functionf is called logarithmically completely monotonic on an
intervalI if f has derivatives of all orders onI and its logarithmln f satisfies

(1.1) (−1)k[ln f(x)](k) ≥ 0

for all k ∈ N on I. For more detailed information, please refer to [2, 3, 4, 9, 10, 13, 17, 18] and
the related references therein.

It is well-known that the classical Euler’s gamma functionΓ(x) plays a central role in the
theory of special functions and has much extensive applications in many branches, for example,
statistics, physics, engineering, and other mathematical sciences. The logarithmic derivative of
Γ(x), denoted byψ(x) = Γ′(x)

Γ(x)
, is called the psi or digamma function, andψ(i)(x) for i ∈ N are

known as the polygamma or multigamma functions.
For real numbersα andβ with α 6= β, (α, β) 6= (0, 1) and(α, β) 6= (1, 0) and fort ∈ R, let

(1.2) qα,β(t) =


e−αt − e−βt

1− e−t
, t 6= 0,

β − α, t = 0.

From necessary and sufficient conditions such that the functionqα,β(t) is monotonic, which
were established in [5, 11, 12] and related references therein, the following logarithmically
complete monotonicity was obtained.

Lemma 1 ([5, 7, 8, 15, 16]). Let a, b and c be real numbers andρ = min{a, b, c}. Then the
function

(1.3) Ha,b,c(x) = (x+ c)b−a Γ(x+ a)

Γ(x+ b)

is logarithmically completely monotonic in(−ρ,∞) if and only if

(1.4) (a, b, c) ∈ D1(a− c, b− c) , {(a, b, c) : (b− a)(1− a− b+ 2c) ≥ 0}
∩ {(a, b, c) : (b− a)(|a− b| − a− b+ 2c) ≥ 0}

\ {(a, b, c) : a = c+ 1 = b+ 1} \ {(a, b, c) : b = c+ 1 = a+ 1},
so isHb,a,c(x) in (−ρ,∞) if and only if

(1.5) (a, b, c) ∈ D2(a− c, b− c) , {(a, b, c) : (b− a)(1− a− b+ 2c) ≤ 0}
∩ {(a, b, c) : (b− a)(|a− b| − a− b+ 2c) ≤ 0}

\ {(a, b, c) : b = c+ 1 = a+ 1} \ {(a, b, c) : a = c+ 1 = b+ 1}.

Remark1. The domainsD1(α, β) andD2(α, β) defined by (1.4) and (1.5) can be described
respectively by Figure 1 and Figure 2 below.

The first aim of this short note is to deduce a double inequality for the divided differences of
the polygamma functions from Lemma 1 as follows.

Theorem 1. Let b > a ≥ 0 andk ∈ N. Then the double inequality

(1.6)
(k − 1)!

(x+ α)k
≤

(−1)k−1
[
ψ(k−1)(x+ b)− ψ(k−1)(x+ a)

]
b− a

≤ (k − 1)!

(x+ β)k

for x ∈ (−a,∞) holds ifα ≥ max
{
a, a+b−1

2

}
and0 ≤ β ≤ min

{
a, a+b−1

2

}
.

The second aim of this short note is to show some identities of the psi and polygamma func-
tions by using Theorem 1.

AJMAA, Vol. 5, No. 2, Art. 18, pp. 1-7, 2009 AJMAA

http://ajmaa.org


A DOUBLE INEQUALITY AND IDENTITIES OF PSI AND POLYGAMMA FUNCTIONS 3

-α

1O

6β

1

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` ` ` ` ` ` ` `

` ` ` `

�
�

�
�

�
�

�
�

�
�

�
��

β = α

β = 1− α

β = α− 1

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@` ` ` ` ` ` ` `

` ` ` ` ` ` ` `
` `β = α+ 1

Figure 1: The(α, β)-domainD1(α, β)
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Figure 2: The(α, β)-domainD2(α, β)

AJMAA, Vol. 5, No. 2, Art. 18, pp. 1-7, 2009 AJMAA

http://ajmaa.org
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Theorem 2. For v > 1 andα > 1, let v0 > 1 denote the real root of equationvα − v − 1 = 0,
then

(1.7) vk
0

[
ψ(k−1)(vα

0 )− ψ(k−1)(v0)
]

= (−1)k−1(k − 1)!.

For 0 < v < 1 andα < 0, let v0 < 1 be the real root of equationvα − v − 1 = 0, then identity
(1.7) is also valid.

Corollary 1. Letk ∈ N. then the following identities of polygamma functions are valid:

(1.8) ψ(k−1)

(√5 + 1

2

)2
− ψ(k−1)

(√
5 + 1

2

)
= (−1)k−1(k − 1)!

(√
5 − 1

2

)k

,

(1.9) ψ(k−1)

( 3
√

9−
√

69 +
3
√

9 +
√

69
3
√

18

)3
− ψ(k−1)

(
3
√

9−
√

69 +
3
√

9 +
√

69
3
√

18

)

= (−1)k−1(k − 1)!

(
3
√

18
3
√

9−
√

69 +
3
√

9 +
√

69

)k

,

(1.10) ψ(k−1)

1

8

(√
a− b+

2√
b− a

+
√
b− a

)4


− ψ(k−1)

(
1

2

√
a− b+

2√
b− a

+

√
b− a

2

)

= (−1)k−12k(k − 1)!

(√
a− b+

2√
b− a

+
√
b− a

)−k

,

wherea = 4 3

√
2

3(9+
√

849 )
andb = 3

√
9+
√

849
18

.

Remark2. In an e-mail to the second author on 24 November 2007, Dr. Abdolhossein Hoorfar
at the University of Tehran pointed out that the identities in Theorem 2 and Corollary 1 are
special cases of the following recurrence formula

(1.11) ψ(n)(z + 1)− ψ(n)(z) = (−1)nn!z−n−1

listed in [1, p. 260, 6.4.6]. This shows us that Lemma 1 and Theorem 1 above are generalizations
of formula (1.11).

2. PROOFS OF THEOREMS

Proof of Theorem 1.From the logarithmically complete monotonicity of the functionHa,b,c(x)
in Lemma 1, it follows that

(2.1) 0 ≤ (−1)k[lnHa,b,c(x)]
(k)

= (−1)k

[
ψ(k−1)(x+ a)− ψ(k−1)(x+ b) +

(−1)k−1(b− a)(k − 1)!

(x+ c)k

]
for (a, b, c) ∈ D1(a, b, c), then the left-hand side inequality in (1.6) is deduced straightforwardly
by standard arguments.
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The right-hand side inequality in (1.6) can be deduced from(−1)k[lnHb,a,c(x)]
(k) ≥ 0 for

(a, b, c) ∈ D2(a, b, c).

Proof of Theorem 2.Inequality (1.6) in Theorem 1 can be rearranged as

(2.2)
(k − 1)!

[max{v, (u+ v − 1)/2}]k
≤

(−1)k−1
[
ψ(k−1)(u)− ψ(k−1)(v)

]
u− v

=
(−1)k−1

u− v

∫ u

v

ψ(k)(t) d t ≤ (k − 1)!

[min{v, (u+ v − 1)/2}]k

for u > v > 0.
For0 < v < 1 andα < 0, since the functionfα(v) = vα − v − 1 satisfying

(2.3) lim
v→1+

fα(v) = −1 and lim
v→0+

fα(v) = ∞,

the equationvα − v − 1 = 0 must have at least one rootv0 less than1. Lettingu = vα > 1 > v
and taking limitv → v0 in (2.2) leads to (2.13). Hence, identity (1.7) is proved for0 < v < 1
andα < 0.

Proof of Corollary 1.Substitutingu = v2 for v > 1 in (2.2) yields

(2.4)
(k − 1)!(v2 − v)

[max{v, (v2 + v − 1)/2}]k
≤ (−1)k−1

[
ψ(k−1)(v2)− ψ(k−1)(v)

]
≤ (k − 1)!(v2 − v)

[min{v, (v2 + v − 1)/2}]k
.

Since equationv2 − v − 1 = 0 has a unique root
√

5+1
2

greater than1, then, if1 < v ≤
√

5+1
2

,

(2.5) (k − 1)!

(
1

vk−2
− 1

vk−1

)
≤ (−1)k−1

[
ψ(k−1)(v2)− ψ(k−1)(v)

]
≤ (k − 1)!2kv(v − 1)

(v2 + v − 1)k
;

if v ≥
√

5+1
2

, the above inequality reverses. Takingv →
√

5+1
2

in (2.4) or (2.5) yields identity
(1.8).

It is easy to see that equationv3 − v − 1 = 0 has a unique real root

(2.6)
3

√
1

2
− 1

6

√
23

3
+

3

√
1

2
+

1

6

√
23

3
=

3
√

9−
√

69 +
3
√

9 +
√

69
3
√

2 3
√

9
= 1.324 · · · .

Substitutingu = v3 for v > 1 in (2.2) yields

(2.7)
(k − 1)!(v3 − v)

[max{v, (v3 + v − 1)/2}]k
≤ (−1)k−1

[
ψ(k−1)(v3)− ψ(k−1)(v)

]
≤ (k − 1)!(v3 − v)

[min{v, (v3 + v − 1)/2}]k
.

If 1 < v ≤
3
√

9−
√

69 +
3
√

9+
√

69
3√2 3√9

,

(2.8) (k − 1)!

(
1

vk−3
− 1

vk−1

)
≤ (−1)k−1

[
ψ(k−1)(v3)− ψ(k−1)(v)

]
≤ (k − 1)!2kv(v2 − 1)

(v3 + v − 1)k
;

if v ≥
3
√

9−
√

69 +
3
√

9+
√

69
3√2 3√9

, the above inequality reverses. Identity (1.9) follows from taking

v →
3
√

9−
√

69 +
3
√

9+
√

69
3√2 3√9

in (2.7) or (2.8).
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It is not difficult to see that the quartic equationv4 − v − 1 = 0 has a unique real root

(2.9)
1

2

√√√√√√4 3

√
2

3
(
9 +

√
849

) − 3

√
9 +

√
849

18
+

2√
3

√
9+
√

849
18

− 4 3

√
2

3(9+
√

849 )

+
1

2

√√√√ 3

√
9 +

√
849

18
− 4 3

√
2

3
(
9 +

√
849

) = 1.220 · · ·

Replacingu by v4 for v > 1 in (2.2) gives

(2.10)
(k − 1)!(v4 − v)

[max{v, (v4 + v − 1)/2}]k
≤ (−1)k−1

[
ψ(k−1)(v4)− ψ(k−1)(v)

]
≤ (k − 1)!(v4 − v)

[min{v, (v4 + v − 1)/2}]k
.

If 1 < v ≤ 1
2

√
a− b+ 2√

b−a
+ 1

2

√
b− a , then

(2.11) (k − 1)!

(
1

vk−4
− 1

vk−1

)
≤ (−1)k−1

[
ψ(k−1)(v4)− ψ(k−1)(v)

]
≤ (k − 1)!2kv(v3 − 1)

(v4 + v − 1)k
;

if v ≥ 1
2

√
a− b+ 2√

b−a
+ 1

2

√
b− a , the above inequality reverses. Identity (1.10) follows

from takingv → 1
2

√
a− b+ 2√

b−a
+ 1

2

√
b− a in (2.10) or (2.11).

Forv > 1 andα > 1, since the functionfα(v) = vα − v − 1 satisfying

(2.12) lim
v→1+

fα(v) = −1 and lim
v→∞

fα(v) = ∞,

the equationvα−v−1 = 0 must have at least one rootv0 greater than1. Lettingu = vα > v > 1
and taking limitv → v0 in (2.2) leads to

(2.13) ψ(k−1)(vα
0 )− ψ(k−1)(v0) =

(−1)k−1(k − 1)!

vk
0

.

Identity (1.7) is proved forv > 1 andα > 1.
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