

A GENERALIZATION OF A PARTIAL *b*-METRIC AND FIXED POINT THEOREMS

SINGH PRAVIN AND SINGH VIRATH

Received 27 March, 2021; accepted 9 September, 2021; published 10 February, 2022.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KWAZULU-NATAL, PRIVATE BAG X54001, DURBAN, SOUTH AFRICA. singhp@ukzn.ac.za

singhp@ukzn.ac.za

ABSTRACT. The purpose of this paper is to introduce the concept of a Partial α , β *b*-metric as a generalization of a partial *b*-metric and prove theorems for some contractive type mapping.

Key words and phrases: textitb-metric; Partial textitb-metric space; Fixed point theorem.

2010 Mathematics Subject Classification. Primary 47H10, Secondary 54H25.

ISSN (electronic): 1449-5910

^{© 2022} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

The advancements in technology have lead researchers to extend and improve the concept of a metric space to accomodate the various applications like, modular metric, complex-valued metric, b-metric spaces and partial metric spaces. The concept of partial metric space was proposed by Matthews in 1992.

Matthews, introduced the notion of a partial metric space as a denotational semantics of dataflow network. The most important difference of a partial metric rather than a standard metric is the existing possibility of a non-zero self distance, [2]. The author further showed that the Banach contraction principle is valid in partial metric spaces. In 1993, Bakhtin, introduced the concept of *b*-metric space and proved the Banach contraction principle in the *b*-metric space,[1]. Shukla, introduced the partial *b*-metric and generalization of many results related to fixed point theories have been studied in these spaces, [3]. O'Neill generalized the concept of a partial metric space further by admitting negative distances. The partial metric defined by are dualistic partial metric,[5]. In a generalization by Heckmann, omitted the small self distance axiom and called the partial metric a weak partial metric,[6].

In 2014, Satish introduced the concept of a partial *b*-metric space and proved the fixed point theorem of the Banach contraction principle and Kannan type mapping in partial metric spaces, [4]. In the paper we shall focus on the very interesting generalization of metric spaces namely, partial metric spaces.

Definition 1.1. Let X be a non-empty set. A function $d : X \times X \to [0, \infty)$ is a partial *b*-metric on X [3], if there exists a real number $\alpha \ge 1$ such that the following conditions hold for all $x, y, z \in X$:

(i) $d(x, x) = d(x, y) = d(y, y) \iff x = y$ (ii) $d(x, x) \le d(x, y)$ (iii) d(x, y) = d(y, x)(iv) $d(x, y) \le \alpha [d(x, z) + d(z, y)] - d(z, z)$

The pair (X, d) is a called a partial *b*-metric space.

Example 1.1. Let $X = [0, \infty)$, p > 1 a constant such that $d(x, y) = [\max_{x,y \in X} \{x, y\}]^p + |x - y|^p$ for all $x, y, z \in X$. Then (X, d) is a partial b-metric space.

Definition 1.2. Let X be a non-empty set. A function $\rho : X \times X \to [0, \infty)$ is a generalized α, β partial *b*-metric on X if there exists real numbers $\alpha, \beta \ge 1$ such that the following conditions hold for all $x, y, z \in X$:

 $\begin{array}{ll} \text{(i)} & x=y \iff \rho(x,x)=\rho(x,y)=\rho(y,y)\\ \text{(ii)} & \rho(x,x) \leq \rho(x,y)\\ \text{(iii)} & \rho(x,y)=\rho(y,x)\\ \text{(iv)} & \rho(x,y) \leq \alpha\rho(x,z)+\beta\rho(z,y)-\rho(z,z) \end{array}$

The pair (X, ρ) is a called an α, β partial *b*-metric space. In an α, β *b*-metric space (X, ρ) , if $\rho(x, y) = 0$ for $x, y \in X$ then x = y but the converse may not be true. Every partial *b*-metric is an α, β partial *b*-metric with $\alpha = \beta$.

The following example justifies the generalization presented in definition 1.2.

Example 1.2. Let X = (1,3) and let $\rho: X \times X \to [0,\infty)$ be a function defined by

$$\rho(x,y) = e^{|x-y|} + \frac{1}{2},$$

To show that the example is a generalized α , β partial b-metric, we verify properties (i)-(iv) of definition 1.2.

Property (i): for $x, y \in X$ If x = y, we get

$$1 + \frac{1}{2} = e^{|x-y|} + \frac{1}{2}$$

since $e^0 = 1$. If $\frac{3}{2} = e^{|x-y|} + \frac{1}{2}$ then $e^{|x-y|} = 1$ which implies x = y.

 $\begin{array}{l} \textit{Property (ii): For } x,y \in X \\ \rho(x,x) = \frac{3}{2} \leq e^{|x-y|} + \frac{1}{2} \textit{ since } e^x \geq 1 \textit{ for all } x \geq 0. \end{array}$

Property (iii): For $x, y \in X$, since $e^{|x-y|} = e^{|y-x|}$ it follows that $\rho(x, y) = \rho(y, x)$ Property (iv): For $x, y, z \in X$,

$$\begin{split} \rho(x,y) &\leq e^{|x-z|+|z-y|} \\ &= e^{\frac{1}{3}|x-z|+\frac{2}{3}|z-y|}e^{\frac{2}{3}|x-z|+\frac{1}{3}|z-y|} + \frac{1}{2} \\ &\leq \sup_{x,y,z\in X} e^{\frac{1}{3}|x-z|+\frac{2}{3}|z-y|} \left(\frac{2}{3}e^{|x-z|} + \frac{1}{3}e^{|z-y|}\right) + \frac{1}{2} \\ &\leq \frac{2}{3}e^{2}e^{|x-z|} + \frac{1}{3}e^{2}e^{|z-y|} + \frac{1}{2} \\ &< \frac{2}{3}e^{2}e^{|x-z|} + \frac{1}{3}e^{2}e^{|z-y|} + \frac{2}{3}e^{2}\frac{1}{2} + \frac{1}{3}e^{2}\frac{1}{2} - \frac{3}{2} \end{split}$$

since $4 < e^2$, it follows that

$$\rho(x, y) \le \alpha \rho(x, z) + \beta \rho(z, y) - \rho(z, z),$$

where $\alpha = \frac{2}{3}e^2 \ge 1$ and $\beta = \frac{1}{3}e^2 \ge 1$. We conclude that (X, ρ) is an α, β partial b-metric space.

One introduces a topology τ on a generalized α, β partial *b*-metric space (X, ρ) whose base is the family of open balls $B_{\rho}(x, \epsilon)$ with centre $x \in X$ and radius $\epsilon > 0$ is given by $B_{\rho}(x, \epsilon) = \{y \in X : \rho(x, y) < \epsilon + \rho(x, x)\}$ and $\overline{B_{\rho}(x, \epsilon)} = \{y \in X : \rho(x, y) \le \epsilon + \rho(x, x)\}$

Definition 1.3. Let (X, ρ) be an α, β partial *b*-metric space, and let $\{x_n\}$ be a sequence in X and $x \in X$. Then:

- (i) The sequence $\{x_n\}$ converges to $x \in X$, if $\lim_{n\to\infty} \rho(x_n, x) = \rho(x, x)$.
- (ii) The sequence $\{x_n\}$ is a Cauchy in (X, ρ) , if $\lim_{n,m\to\infty} \rho(x_n, x_m)$ exists and is finite.
- (iii) The α, β partial *b* metric space (X, ρ) is complete, if every Cauchy sequence $\{x_n\}$ in X there exists $x \in X$ such that $\lim_{n,m\to\infty} \rho(x_n, x_m) = \lim_{n\to\infty} \rho(x_n, x) = \rho(x, x)$.

2. Fixed point theorem for generalized α, β partial *b*-metric spaces

The following theorem is an analog to the Banach contraction principle in α, β partial *b*-metric space.

Theorem 2.1. Let (X, ρ) be a complete α, β partial b-metric space and $T : X \to X$ a mapping such that

(2.1)
$$\rho(Tx, Ty) \le \lambda \rho(x, y)$$

for all $x, y \in X$, where $\lambda \in [0, 1)$, then T has a unique fixed point.

Proof. We begin the proof by showing that if fixed points of T exists, then it is unique. Let $x^*, x^{**} \in X$ be distinct fixed points of T. It follows from (2.1) that

$$\rho(x^*, x^{**}) = \rho(Tx^*, Tx^{**}) \le \lambda \rho(x^*, x^{**}) < \rho(x^*, x^{**})$$

a contradication. Therefore, we must have that $\rho(x^*, x^{**}) = 0$. Furthermore, if x^* is a fixed point and $\rho(x^*, x^*) > 0$ then from (2.1) we get

$$\rho(x^*, x^*) = \rho(Tx^*, Tx^*) \le \lambda \rho(x^*, x^*) < \rho(x^*, x^*)$$

a contradiction, thus $\rho(x^*, x^*) = 0$.

For the existence of a fixed point for $\lambda \in [0, 1)$, we choose $n_0 \in \mathbb{N}$ such that $\lambda^{n_0} < \frac{\epsilon}{2(\alpha+\beta)}$ for $0 < \epsilon < 1$. Let $(T^{n_0})^k x_0 = x_k$ for all $k \in \mathbb{N}$, where $x_0 \in X$ is arbitrary. For $x, y \in X$

$$\rho((T^{n_0})x,(T^{n_0})y) \le \lambda^{n_0}\rho(x,y)$$

For any $k \in \mathbb{N}$, we get

(2.2)
$$\rho(x_{k+1}, x_k) \le \lambda^{n_0} \rho(x_k, x_{k-1})$$

(2.3)
$$\leq (\lambda^{n_0})^{\kappa} \rho(x_1, x_0) \to 0$$

as $k \to \infty$. It follows that we can choose $x_m \in \mathbb{N}$ such that $\rho(x_{m+1}, x_m) < \frac{\epsilon}{2(\alpha+\beta)}$. We shall now show that $T^{n_0}\left(\overline{B_{\rho}(x_m, \frac{\epsilon}{2})}\right) \subset \overline{B_{\rho}(x_m, \frac{\epsilon}{2})}$.

Since $x_m \in B_{\rho}(x_m, \frac{\epsilon}{2})$ it follows that $B_{\rho}(x_m, \frac{\epsilon}{2}) \neq \emptyset$. Let $z \in B_{\rho}(x_m, \frac{\epsilon}{2})$ be arbitrary, then we get

$$\rho(T^{n_0}z, T^{n_0}x_m) \leq \lambda^{n_0}\rho(z, x_m)$$

$$\leq \frac{\epsilon}{2(\alpha+\beta)} \left[\frac{\epsilon}{2} + \rho(x_m, x_m)\right]$$

$$< \frac{\epsilon}{2(\alpha+\beta)} \left[1 + \rho(x_m, x_m)\right]$$

Therefore,

$$\rho(T^{n_0}z, x_m) \leq \alpha \rho(T^{n_0}z, T^{n_0}x_m) + \beta \rho(T^{n_0}x_m, x_m) - \rho(T^{n_0}x_m, T^{n_0}x_m) \\
\leq \alpha \frac{\epsilon}{2(\alpha+\beta)} \left[1 + \rho(x_m, x_m)\right] + \beta \frac{\epsilon}{2(\alpha+\beta)} \\
= \frac{\epsilon}{2} \left(\frac{\alpha}{\alpha+\beta} + \frac{\beta}{\alpha+\beta}\right) + \frac{\alpha\epsilon}{2(\alpha+\beta)} \rho(x_m, x_m) \\
< \frac{\epsilon}{2} + \rho(x_m, x_m)$$

thus $T^{n_0}z \in \overline{B_{\rho}(x_m, \frac{\epsilon}{2})}$.

For $x_m \in \overline{B_{\rho}(x_m, \frac{\epsilon}{2})}$ it follows that $T^{n_0}x_m \in \overline{B_{\rho}(x_m, \frac{\epsilon}{2})}$ and repeating the process we get $(T^{n_0})^n x_m \in \overline{B_{\rho}(x_m, \frac{\epsilon}{2})}$ for all $n \in \mathbb{N}$. Thus we obtain $\rho(x_n, x_k) < \frac{\epsilon}{2} + \rho(x_m, x_m)$ for all n, k > m and the sequence $\{x_n\}$ is a Cauchy sequence since $\rho(x_m, x_m) \leq \rho(x_{m+1}, x_m) < \frac{\epsilon}{2(\alpha+\beta)} < \frac{\epsilon}{2}$. By the completeness of X there exists $x^* \in X$ such that $\lim_{n\to\infty} \rho(x_n, x^*) = \rho(x^*, x^*)$. We shall show that x^* is a fixed point of T. For $n \in \mathbb{N}$ we get

$$\rho(x^*, Tx^*) \le \alpha \rho(x^*, x_{n+1}) + \beta \rho(x_{n+1}, Tx^*) - \rho(x_{n+1}, x_{n+1}) < \alpha \rho(x^*, x_{n+1}) + \beta \rho(Tx_n, Tx^*) \le \alpha \rho(x^*, x_{n+1}) + \beta \lambda \rho(x_n, x^*)$$

Thus we obtain that $\rho(x^*, Tx^*) = 0$. Thus x^* is a fixed point of T.

Theorem 2.2. Let (X, ρ) be a complete α, β partial b-metric space and let $T : X \to X$ be a mapping such that

(2.4)
$$\rho(Tx, Ty) \le \lambda \left[\rho(x, Tx) + \rho(y, Ty)\right]$$

for every $x, y \in X$, where $\lambda \in [0, \frac{1}{2})$, $\lambda \neq \frac{1}{\beta}$. Then T has a unique fixed point in X.

Proof. For the existence of a fixed point, let $x_0 \in X$, the sequence $\{x_n\}$ generated by the formula $x_n = Tx_{n-1} = T^n x_0$. Without loss of generality we may assume that $\rho(x_n, x_{n+1}) > 0$ for all $n \in \mathbb{N}$, otherwise x_n is a fixed point of T for at least one $n \ge 0$. For any $n \in \mathbb{N}$ it follows that

$$\rho(x_n, x_{n+1}) = \rho(Tx_{n-1}, Tx_n) \\ \leq \lambda \left[\rho(x_{n-1}, Tx_{n-1}) + \rho(x_n, Tx_n) \right] \\ = \lambda \left[\rho(x_{n-1}, x_n) + \rho(x_n, x_{n+1}) \right]$$

therefore it follows that

(2.5)
$$\rho(x_n, x_{n+1}) \le \left(\frac{\lambda}{1-\lambda}\right) \rho(x_{n-1}, x_n)$$

where $\frac{\lambda}{1-\lambda} < 1$ since $\lambda < \frac{1}{2}$. On repeating the process we obtain

(2.6)
$$\rho(x_n, x_{n+1}) \le \left(\frac{\lambda}{1-\lambda}\right)^n \rho(x_0, x_1).$$

therefore $\lim_{n\to\infty} \rho(x_n, x_{n+1}) = 0$. We shall now show that the sequence $\{x_n\}$ is a Cauchy sequence. For $n, m \in \mathbb{N}$

(2.7)

$$\rho(x_n, x_m) = \rho(Tx_{n-1}, Tx_{m-1}) \\
\leq \lambda[\rho(x_{n-1}, Tx_{n-1}) + \rho(x_{m-1}, Tx_{m-1})] \\
= \lambda[\rho(x_{n-1}, x_n) + \rho(x_{m-1}, x_m)]$$

since $\lim_{n\to\infty} \rho(x_n, x_{n+1}) = 0$. For every $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $\rho(x_{n-1}, x_n) < \frac{\epsilon}{2}$ and $\rho(x_{m-1}, x_m) < \frac{\epsilon}{2}$ for all $n, m \ge n_0$. It follows from inequality (2.7) that

(2.8)
$$\rho(x_n, x_m) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for all $n, m \ge n_0$. Thus $\{x_n\}$ is a Cauchy sequence and $\lim_{n,m\to\infty} \rho(x_n, x_m) = 0$. By the completeness of the X there exists $x^* \in X$ such that $\lim_{n\to\infty} \rho(x_n, x^*) = \lim_{n,m\to\infty} \rho(x_n, x_m) = \rho(x^*, x^*) = 0$. We shall show that x^* is a fixed point of T. For $n \in \mathbb{N}$

$$\rho(x^*, Tx^*) \le \alpha \rho(x^*, x_{n+1}) + \beta \rho(x_{n+1}, Tx^*) - \rho(x_{n+1}, x_{n+1})$$

$$\le \alpha \rho(x^*, x_{n+1}) + \beta \rho(Tx_n, Tx^*)$$

$$\le \alpha \rho(x^*, x_{n+1}) + \beta [\lambda \rho(x_n, Tx_n) + \rho(x^*, Tx^*)]$$

$$\rho(x^*, Tx^*)[1 - \beta\lambda] \le \alpha \rho(x^*, x_{n+1}) + \beta\lambda\rho(x_n, Tx_n)$$
$$\rho(x^*, Tx^*) \le \frac{\alpha}{1 - \beta\lambda}\rho(x^*, x_{n+1}) + \frac{\beta\lambda}{1 - \beta\lambda}\rho(x_n, Tx_n)$$

therefore it follows that $\rho(x^*, Tx^*) = 0$. Thus x^* is a fixed point of T.

We shall show that if x^* is a fixed point of T then $\rho(x^*, x^*) = 0$ From (2.4) it follows that

$$\rho(x^*, x^*) = \rho(Tx^*, Tx^*) \\
\leq \lambda [\rho(x^*, Tx^*) + \rho(x^*, Tx^*)] \\
= 2\lambda \rho(x^*, x^*) \\
< \rho(x^*, x^*)$$

a contradiction. Therefore it follows that $\rho(x^*, x^*) = 0$.

Suppose that $x^*, x^{**} \in X$ are distinct fixed points of T then $x^* = Tx^*$, $x^{**} = Tx^{**}$ and

$$\begin{aligned} \rho(x^*, x^{**}) &= \rho(Tx^*, Tx^{**}) \\ &\leq \lambda[\rho(x^*, Tx^*) + \rho(x^{**}, Tx^{**})] \\ &= \lambda[\rho(x^*, x^*) + \rho(x^{**}, x^{**})] \end{aligned}$$

It follows that $\rho(x^*, x^{**}) = 0$, i.e., $x^* = x^{**}$.

Theorem 2.3. Let (X, ρ) be a complete α, β partial b-metric space and let $T : X \to X$ be a mapping such that

(2.9)
$$\rho(Tx,Ty) \le \lambda \max_{x,y \in X} \left\{ \rho(x,y), \rho(x,Tx), \rho(y,Ty) \right\},$$

where $\lambda \in [0, \frac{1}{\beta})$, for all $x, y \in X$. Then T has a unique fixed point.

Proof. We begin by showing that, if fixed points of T exists, then it is unique. let x^*, x^{**} be two distinct fixed points of T then $Tx^* = x^*$ and $Tx^{**} = x^{**}$. It follows that from (2.9) that

$$\begin{split} \rho(x^*, x^{**}) &= \rho(Tx^*, Tx^{**}) \\ &\leq \lambda \max_{x^*, x^{**} \in X} \left\{ \rho(x^*, x^{**}), \rho(x^*, Tx^*), \rho(x^{**}, Tx^{**}) \right\} \\ &\leq \lambda \max_{x^*, x^{**} \in X} \left\{ \rho(x^*, x^{**}), \rho(x^*, x^*), \rho(x^{**}, x^{**}) \right\} \end{split}$$

From definition 1.2, property [(ii)]

$$\begin{split} \rho(x^*, x^{**}) &\leq \lambda \rho(x^*, x^{**}) \\ &< \rho(x^*, x^{**}) \end{split}$$

a contradiction, thus $\rho(x^*, x^{**}) = 0$. For the existence of the fixed point, let $x_0 \in X$ be arbitrary and define a sequence by $x_n = Tx_{n-1}$ for all $n \in \mathbb{N}$. From (2.9) we get

$$\rho(x_{n+1}, x_n) = \rho(Tx_n, Tx_{n-1})$$

$$\leq \lambda \max_{n \in \mathbb{N}} \{ \rho(x_n, x_{n-1}), \rho(x_n, Tx_n), \rho(x_{n-1}, Tx_{n-1}) \}$$

$$= \lambda \max_{n \in \mathbb{N}} \{ \rho(x_n, x_{n-1}), \rho(x_n, x_{n+1}), \rho(x_{n-1}, x_n) \}$$

$$= \lambda \max_{n \in \mathbb{N}} \{ \rho(x_n, x_{n-1}), \rho(x_n, x_{n+1}) \}$$

If $\max_{n \in \mathbb{N}} \{\rho(x_n, x_{n-1}), \rho(x_n, x_{n+1})\} = \rho(x_n, x_{n+1})$ then we obtain that $\rho(x_{n+1}, x_n) \leq \lambda \rho(x_{n+1}, x_n) < \rho(x_{n+1}, x_n)$, a contradiction thus we get that $\max_{n \in \mathbb{N}} \{\rho(x_n, x_{n-1}), \rho(x_n, x_{n+1})\} = \rho(x_n, x_{n-1})$ and we obtain that

$$\rho(x_{n+1}, x_n) \le \rho(x_n, x_{n-1}).$$

Repeating the process we get $\rho(x_{n+1}, x_n) \leq \lambda^n \rho(x_1, x_0)$ for all $n \geq 0$. For $m, n \in \mathbb{N}$, we have

$$\begin{split} \rho(x_{n}, x_{n+m}) \\ &\leq \alpha \rho(x_{n}, x_{n+1}) + \beta \rho(x_{n+1}, x_{n+m}) - \rho(x_{n+1}, x_{n+1}) \\ &\leq \alpha \rho(x_{n}, x_{n+1}) + \beta \alpha \rho(x_{n+1}, x_{n+2}) + \beta^{2} \rho(x_{n+2}, x_{n+m}) - \beta \rho(x_{n+2}, x_{n+2}) \\ &\leq \alpha \rho(x_{n}, x_{n+1}) + \alpha \beta \rho(x_{n+1}, x_{n+2}) + \dots + \alpha \beta^{m-2} \rho(x_{n+m-2}, x_{n+m-1}) \\ &+ \beta^{m-1} \rho(x_{n+m-1}, x_{n+m}) \\ &\leq \alpha \lambda^{n} \rho(x_{0}, x_{1}) + \alpha \beta \lambda^{n+1} \rho(x_{0}, x_{1}) + \dots + \alpha \beta^{m-2} \lambda^{n+m-2} \rho(x_{0}, x_{1}) \\ &+ \beta^{m-1} \lambda^{n+m-1} \rho(x_{0}, x_{1}) \\ &= \alpha \lambda^{n} \rho(x_{0}, x_{1}) \left[1 + \beta \lambda + \dots + \beta^{m-2} \lambda^{m-2} \right] + \beta^{m-1} \lambda^{n+m-1} \rho(x_{0}, x_{1}) \\ &= \lambda^{n} \left[\alpha \frac{1 - \beta^{m-1} \lambda^{m-1}}{1 - \beta \lambda} + \beta^{m-1} \lambda^{m-1} \right] \rho(x_{0}, x_{1}) \\ &= \frac{\lambda^{n}}{(1 - \beta \lambda)} \left[\alpha - \beta^{m-1} \lambda^{m-1} (\alpha + \beta \lambda - 1) \right] \rho(x_{0}, x_{1}) \\ &\leq \lambda^{n} \frac{\alpha}{(1 - \beta \lambda)} \rho(x_{0}, x_{1}). \end{split}$$

Since $\lambda \in [0, \frac{1}{\beta})$ and $\beta \ge 1$ implies that $\rho(x_n, x_{n+m}) \to 0$ as $n \to \infty$. It follows that the sequence $\{x_n\}$ is a Cauchy sequence in (X, ρ) . Since (X, ρ) is complete there exists $x^* \in X$ such that

(2.10)
$$\lim_{n \to \infty} \rho(x_n, x^*) = \rho(x^*, x^*) = 0.$$

We now show that x^* is a fixed point of the mapping T. For $n \in \mathbb{N}$

(2.11)

$$\rho(x^*, Tx^*) \leq \alpha \rho(x^*, x_{n+1}) + \beta \rho(x_{n+1}, Tx^*) - \rho(x_{n+1}, x_{n+1}) \\
\leq \alpha \rho(x^*, x_{n+1}) + \beta \rho(Tx_n, Tx^*) \\
\leq \alpha \rho(x^*, x_{n+1}) + \beta \lambda \rho(x_n, x^*)$$

Using (2.10) and taking $n \to \infty$, we obtain $\rho(x^*, Tx^*) = 0$. Thus x^* is a fixed point of T.

7

3. CONCLUSION

In this paper, we have presented an α , β partial *b*-metric and proved some fixed point results for this new class of generalized metric. The generalization may bring a wider applications of fixed point results. We have shown that for partial *b*-metric spaces the contractive mappings that have fixed points have fixed points in the generalized α , β partial *b*-metric space.

REFERENCES

- [1] I.A BAKHTIN, The contraction mapping principle in quasimetric spaces, *Funct. Anal. Unianowsk Gos Ped. Inst.*, **30**, (1989), pp. 26–37.
- [2] S.G MATTHEWS, Partial metric topology, *Proc 8th Summer Conference on General Toplogy and Application Ann. New York Acad. Sci.*, **728**, (1994), pp. 183–197.
- [3] S.SHUKLA, Partial *b*-metric spaces and fixed point theorems, *Mediternran Journal of Mathematics*, **25**, (2013), pp. 703–711.
- [4] S. SATISH, Partial *b*-metric spaces and fixed point theorems, *Mediter. J. Math.*, **11**, no. 2,(2014), pp. 703–711.
- [5] S.J. O'NEILL, Partial metrics, valuations and domain theory, *Proc 11th Summer Conference on General Topology and Applications Ann. New York Acad. Sci*, **806**, (1996), pp. 304–315.
- [6] R. HECKMANN, Approximation of metric spaces by partial metric spaces, *Appl. Categ. Struct.*, **7**, (1999), pp. 71–83.