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2 M. M USLIKH AND A. K ILICMAN AND S. H. SAPAR AND N. BACHOK

1. I NTRODUCTION

In 1976 [1] J. Caristi introduced the fixed point theorem in the metric space which was one of
the generalizations of the Banach’s fixed point theorem. The method performed out is different
the generalizations introduced by the other researchers, namely his mapping involves a real-
valued function with metric space domains. Today the mappings is called Caristi type mapping.
Many mathematicians regard Caristi’s theorem is similar to Ekeland’s variational principles [5]
which do not highlight the existence of a fixed point.

Development the Caristi’s fixed point theorem has been carried out by researchers through
a variety of different ways such as combines the Banach fixed point theorem to that Caristi’s
fixed point theorem [4]. In 1996, Kada-Suzuki and Takahashi used thew-distance function to
characterize the Caristi type mapping [8]. In 2019, Muslikh et al. used the absolute derivative
to characterize the Caristi type mapping for two mappings [13]. Further, there exist several
results involving set-valued mapping into Caristi type conditions, see [10, 11, 19]. Related to
set-valued mappings, Muslikh et al. also introduced the absolute derivative of the set-valued
mappings, see [14]. In this article we develop the Caristi’s fixed point theorem which involve
by utilizing the absolute derivative of Caristi type mappings.

Let (X, d) be a complete metric space andK ⊂ X. Caristi’s fixed point theorem states
that each mappingf : K −→ K satisfies the condition: there exists a lower semi-continuous
functionϕ : K −→ [0, +∞) such that

(1.1) d(x, f(x)) + ϕ(f(x)) ≤ ϕ(x)

for eachx ∈ X has a fixed point.
Some authors have mentioned that a mappingf : K −→ K is called the Caristi type map-

pings if the inequalities (1.1) is satisfied.
One advantage of the Caristi type mapping can be used to characterize completeness of a

metric space.That is if the Caristi type mappings have a fixed point on arbitrary metric spaces ,
then the metric space is complete see for example Kirk [9]. Not all of the mappings which have
the fixed point results in the completeness of the metric space. It is well-known that the fixed
point property for contraction mappings does not characterize metric completeness (see [18]).

A mappingf : X −→ X is called a contraction, if there exists a real number0 ≤ k < 1,
such that

(1.2) d(f(x), f(y)) ≤ kd(x, y)

for all x, y ∈ X.

Theorem 1.1. (Banach’s Fixed Point Theorem) Let(X, d) be a complete metric space. Iff :
X −→ X is a contraction onX, thenf has a unique fixed point.

The relation between the contraction real-valued function and its derivative is described as
follows.

Lemma 1.2. The functionf : [a, b] −→ R is a differentiable on(a, b). Thenf is a contraction
on [a, b] if and only if there exists a real numbers0 ≤ k < 1 such that|f ′(x)| ≤ k for all
x ∈ [a, b].

Some of the generalizations Banach’s fixed point theorem were presented in below.

Theorem 1.3. (Kannan’s Fixed Point Theorem)[7] Let (X, d) be a complete metric space and

let f : X −→ X be a function. If there exists real numbers0 ≤ α <
1

2
, such that

(1.3) d(f(x), f(y)) ≤ α[d(x, f(x)) + d(y, f(y)]
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CHARACTERIZATION OF CARISTI TYPE MAPPING 3

for all x, y ∈ X, thenf has a unique fixed point.

The mappingf that satisfies (1.3) is called Kannan type mappings.

Theorem 1.4. (Reich’s Fixed Point Theorem)[16] Let (X, d) be a complete metric space and
let f : X −→ X be a function. If the real numbersa, b, c are non negative anda + b + c < 1
such that

(1.4) d(f(x), f(y)) ≤ ad(x, f(x)) + bd(y, f(y)] + cd(x, y)

for all x, y ∈ X, thenf has a unique fixed point.

The mappingf that satisfies (1.4) is called Reich type mappings.
The mapping that satisfies the inequalities (1.3) or (1.4) is categorized as contraction type

mappings. Iff is a contraction mapping with the constant contraction0 ≤ k < 1, thenf is a
Caristi type mapping with a function (for example see [3]).

ϕ(x) =
1

1− k
d(x, f(x)).

The other result iff is a Reich type mapping, thenf is Caristi type mapping with a function

ϕ(x) =
1− c

1− a− b− c
d(x, f(x)).

Similarly, Kannan type mapping (1.3) is included in the Caristi type mapping class. Thus, the
class of the Caristi type mapping is very large, including at least the above mentioned types of
contraction mappings [15].

The advantage of Caristi type mapping which was described above, motivates us to develop
the mapping. The main characteristic of the Caristi type mapping lays in the existence of a non-
negative real-valued functionϕ. Therefore, we highlight the existence of the function. In the
case, we replaced its function by the absolute derivative function that will be described below.

Suppose thatf : [a, b] −→ R is real valued function and the pointp ∈ (a, b). We say that the
functionf is differentiable atp ∈ (a, b) if there existsf ′(p) ∈ R such that

lim
x→p

f(x)− f(p)

x− p
= f ′(p).

The definition is called the classical definition in the context.

In 1971, E. Braude introduced the derivative of the metric valued function with abstract
metric domains which is known as "metrically differentiable" (see [12]).

Definition 1.1. Let (X, d) and(Y, ρ) be two metric spaces and letp ∈ X be a limit point. The
functionf : X −→ Y is saidmetrically differentiableat p if a real numberf ′(p) exists with
the property that for everyε > 0 there existsδ > 0 such that for everyx, y ∈ X, x 6= y and
0 < d(x, p) < δ, 0 < d(y, p) < δ, then

(1.5)

∣∣∣∣ρ(f(x), f(y))

d(x, y)
− f ′(p)

∣∣∣∣ < ε

In 1975, K. Skaland defined it but is weaker than Braude’s definition.

AJMAA, Vol. 16, No. 1, Art. 9, pp. 1-10, 2019 AJMAA

http://ajmaa.org


4 M. M USLIKH AND A. K ILICMAN AND S. H. SAPAR AND N. BACHOK

Definition 1.2. [17] Let (X, d) and(Y, ρ) be a metric spaces and letp ∈ X be a limit point. The
functionf : X −→ Y is saiddifferentiableat p if real numberf ′(p) exists with the property
that for everyε > 0 there existsδ > 0 such that for everyx ∈ Nδ(p) then

(1.6)

∣∣∣∣ρ(f(x), f(p))

d(x, p)
− f ′(p)

∣∣∣∣ < ε.

A non-negative real numberf ′(p) is called themetrically derivativeor thequasiderivativeof
the functionf at the pointp ∈ X. Recently, differentiation in metric spaces, as discussed in [2],
explain two kinds derivative, namely theabsolute derivative(Definition 1.2) and thestrongly
absolute derivative(Definition 1.1).

Throughout this paper, we use the notationf ′abs as an absolute derivative of the functionf
and a function differentiable in the sense of the metric is calledmetrically differentiable.

Theorem 1.5. ([2],[17]) Let (X, d) and (Y, ρ) be two metric spaces. Iff : X −→ Y is
metrically differentiable atc ∈ X, thenf is continuous atc.

The following a result relate differentiability in the sense of the metric and differentiability
in the sense classical on the real line ([2]Proposition 3.1).

Proposition 1.6. If A ⊂ R andp ∈ A is a limit point ofA, then for any mappingf : A −→ R,
we have the following:

(1) If f is continuously differentiable in the sense classical atp, thenf is metrically differ-
entiable (strongly) atp,and

f ′abs(p) = |f ′(p)|

(2) If f is differentiable in the sense classical atp, thenf is metrically differentiablep,and

f ′abs(p) = |f ′(p)|

Definition 1.3. Let f : X −→ R be a function and letx0 ∈ X be a ponit. The functionf is
called lower semi-continuous at pointx0 if every ε > 0 there existsδ > 0 such that for each
x ∈ Bε(x0) we have

(1.7) f(x0)− ε ≤ f(x).

The functionf is upper semi-continuous if the function (−f ) is lower semi-continuous. The
functionf is called continuous onX if it is lower semi-continuous and upper semi-continuous
at every points inX.

Proposition 1.7. Let f : X −→ R be a function and let{xn} be a sequence that converges to
x0 ∈ X. If f lower semi-continuous atx0, then

(1.8) lim inf
n

f(xn) ≥ f(x0).

If f is upper semi-continuous atx0, then

(1.9) lim sup
n

f(xn) ≤ f(x0).
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2. M ODIFIED CARISTI ’ S FIXED POINT THEOREMS

In this Section we modify the Caristi’s fixed point theorem. The modification is replacing the
functionϕ in Caristi’s fixed point theorem by the absolute derivative function of the function
f . Note that, the functionf is differentiable in the sense of the metric on metric spaces. Thus
the characterization of Caristi type mapping can be characterized by absolute derivative such as
Theorem 2.3 below.

For the proof of the Theorem 2.3 we need the following Lemma.

Lemma 2.1. Let (X, d) be a metric space andf : X −→ X be a continuously metrically
differentiable onX. For eachx, y ∈ X we define relation "�d" as follows.

(2.1) x �d y ⇐⇒ d(x, y) ≤ f ′abs(x)− f ′abs(y).

Then the relation "�d" is partially ordered onX.

Proof. (i) It clear thatd(x, x) = f ′abs(x)− f ′abs(x) = 0 so thatx �d x is reflexive.

(ii) If x �d y thend(x, y) ≤ f ′abs(x)−f ′abs(y) and ify �d x thend(y, x) ≤ f ′abs(y)−f ′abs(x).
This implies 2d(x, y) ≤ 0 and so thatx = y (symmetry).

(iii) If x �d y thend(x, y) ≤ f ′abs(x)−f ′abs(y) and ify �d z thend(y, z) ≤ f ′abs(y)−f ′abs(z).
By metric we obtain

d(x, z) ≤ d(x, y) + d(y, z)

≤ (f ′abs(x)− f ′abs(y)) + (f ′abs(y)− f ′abs(z))

= f ′abs(x)− f ′abs(z).

This meansx �d z (transitive)

Lemma 2.2. (Zorn’s Lemma) LetX be non-empty partially ordered. If every totally ordered
subsetM of X has an upper bound inX, thenX has at least one maximal element.

The following is a modification of the Caristi’s fixed point theorem by absolute derivative.

Theorem 2.3. Let (X, d) be a complete metric space and letf : X −→ X be a continuously
metrically differentiable onX such that

(2.2) d(x, f(x)) + f ′abs(f(x)) ≤ f ′abs(x)

for eachx ∈ X. Thenf has a fixed point inX.

Proof. For eachx, y ∈ X defined relation "�d" in X as follows

(2.3) x �d y ⇐⇒ d(x, y) ≤ f ′abs(x)− f ′abs(y).

According to Lemma 2.1, the pairs(X,�d) is a partially ordered. Letx0 ∈ X fixed. By Zorn’s
Lemma, totally ordered subsetM of X containingx0.
Let M = {xα}α∈Γ ⊂ X, whereΓ is a totally ordered set. This means there is anxβ such that
xα �d xβ for all α ∈ Γ. Now we define

(2.4) xα �d xβ ⇐⇒ α �d β

for all α, β ∈ Γ.

AJMAA, Vol. 16, No. 1, Art. 9, pp. 1-10, 2019 AJMAA

http://ajmaa.org


6 M. M USLIKH AND A. K ILICMAN AND S. H. SAPAR AND N. BACHOK

From (2.3), the sequence of real number{f ′abs(xα)} is decreasing in[0,∞] hence there exists
a real numberr ≥ 0 such thatf ′abs(xα) converges tor whenα increases.

Let be givenε > 0 arbitrary then there existsα0 ∈ Γ such that forα �d α0 this holds

(2.5) r ≤ f ′abs(xα) ≤ f ′abs(xα0) ≤ r + ε.

If β �d α �d α0, then according to (2.3), (2.4) and (2.5) we obtain

(2.6) d(xα, xβ) ≤ f ′abs(xα)− f ′abs(xβ) ≤ r + ε− r = ε

which implies that{xα} is Cauchy net in a complete metric spaceX so that there existsx ∈ X
such thatxα → x ( asα increases ). Since the real functionf ′abs is continuous, certainly it a
lower semi-continuous so thatf ′abs(xα) ≤ r.
If β �d α, thenxβ �d xα then

d(xα, xβ) ≤ f ′abs(xα)− f ′abs(xβ)

by inequalities (2.3). Ifβ is increasing then we obtain

d(xα, x) ≤ f ′abs(xα)− f ′abs(x).

In this case implies thatxα �d x for all α ∈ Γ. In particularx0 �d x. SinceM is maximal, of
coursex ∈ M . Moreover, if we lety = f(x) the condition (2.2) implies that

(2.7) xα �d x �d y = f(x)

for all α ∈ Γ. Again by maximality,f(x) ∈ M . Sincex ∈ M we have

(2.8) y = f(x) �d x.

Based on the inequality (2.7) , (2.8) and (2.2) yields 2d(x, f(x)) = 0. Hencef(x) = x or the
functionf has a fixed pointx ∈ X.

3. ABSOLUTE DERIVATIVE TEST

In this Section, we will investigate the relation of the contraction mapping and its absolute
derivative.

Definition 3.1. Let (X, d) be a metric space. A setK ⊂ X is said to bed-convex(metrically
convex) if for eachx, y ∈ K there is an "interval"[x, y] in K.

An interval [x, y] in K is image of an arc or path (homeomorphism)γ : [0, 1] −→ K such
thatγ(0) = x, γ(1) = y and for0 ≤ p < q < r ≤ 1, we haved(γ(p), γ(r)) = d(γ(p), γ(q)) +
d(γ(q), γ(r)). So we can say thatK is d-convex if for everyx, y ∈ K there existsz ∈ K such
that

(3.1) d(x, y) = d(x, z) + d(z, y).

The metric space(X, d) is said to belocally d-convex if every pointx ∈ X has ad-convex
neighborhoodNr(x) for somer > 0.

In 1982, Gerald Jungck states that a function which locally Lipschitzian on ad-convex sub-
setK of metric space is globally Lipschitzian onK with the same Lipschitzian constant [6].
Precisely as follows.

Theorem 3.1. ([6]) Let K be ad-convex subset of metric space(X, d), let f : K −→ X and
suppose thatL ∈ (0,∞). If for eacha ∈ K there existsδa > 0 such thatd(f(a), f(x))) ≤
Ld(a, x) for all x ∈ Nδa(a) ∩K, thend(f(x), f(y)) ≤ Ld(x, y) for all x, y ∈ K.

AJMAA, Vol. 16, No. 1, Art. 9, pp. 1-10, 2019 AJMAA

http://ajmaa.org


CHARACTERIZATION OF CARISTI TYPE MAPPING 7

The following is the other main result a kind of Mean Value Theorem in the metric space
version.

Theorem 3.2. Let K be ad-convex subset of metric space(X, d) and letf : K −→ X be a
metrically differentiable onK with f ′abs(x) 6= 0 for all x ∈ K. If for eachx ∈ K there exists
δx > 0 andcx ∈ Nδx(x)∩K such thatd(f(x), f(z)) ≤ f ′abs(cx)d(x, z) for all z ∈ Nδx(x)∩K,
then

(3.2) d(f(x), f(y)) ≤ f ′abs(c)d(x, y)

for all x, y ∈ K and for somec ∈ K.

Proof. Suppose the pointsx 6= y ∈ K. SinceK is d-convex, there is a pathγ : [0, 1] −→ K
such thatγ(0) = x, γ(1) = y and the imageγ([0, 1]) = [x, y]. The hypothesis concerning off
implies that for eacht ∈ [0, 1] there existsδt > 0 andct ∈ [0, 1] such that

(3.3) d(f(γ(t)), f(z)) ≤ f ′abs(γ(ct))d(γ(t), z)

wherez, γ(ct) ∈ Nδt(γ(t)) ∩K.
Sinceγ is continuous, for eacht ∈ [0, 1] we can choosert > 0 such thatIt = (t− rt, t + rt) ⊂
[0, 1] and

(3.4) d(γ(t)), γ(t′)) < δt

for all t′ ∈ It = (t− rt, t+ rt). In particular we chooser0, r1 > 1 such thatI0 = [0, r0) ⊂ [0, 1]
andI1 = (1− r1, 1] ⊂ [0, 1].
Let {It | t ∈ [0, 1]} be an open cover of the connected set[0, 1]. Since[0, 1] compact there is
finite open coverIt0 , It1 , · · · Itn such that[0, 1] ⊂

⋃n
i=0 Iti andIti ∩ Itj 6= ∅ for i 6= j. In this

caset0 = 0 andt1 = 1. Moreover,ti ∈ Iti for 1 < i < n andti−1 < t1. Now we can choose the
point ci ∈ Iti−1

∩ Iti so thatti−1 < ci < ti for i = 1, 2, . . . n. From (21) we have

(3.5) d(γ(ti−1)), γ(ci)) < δti−1
and d(γ(ci)), γ(ti)) < δti

so that from (3.3) we obtain

d(f(γ(ti−1), f(γ(ti)) ≤ d(f(γ(ti−1)), f(γ(ci))) + d(f(γ(ci)), f(γ(ti)))

≤ f ′abs(γ(ci))d(γ(ti−1), γ(ci)) + f ′abs(γ(ci)d(γ(ci), γ(ti))

= f ′abs(γ(ci))d(γ(ti−1), γ(ti))(3.6)

sinceti−1 < ci < ti and convexity ofK. Consequently,

d(f(x), f(y)) = d(f(γ(t0)), f(γ(tn))

≤
n∑

i=1

d(f(γ(ti−1)), f(γ(ti))) ≤
n∑

i=1

f ′abs(γ(ci))d(γ(ti−1), γ(ti))

=
n∑

i=1

f ′abs(γ(ci))d(γ(t0), γ(tn)) =
n∑

i=1

f ′abs(γ(ci))d(γ(0), γ(1))

=
n∑

i=1

f ′abs(γ(ci))d(x, y),

again using the fact thatK is convex. So for eachx, y ∈ K there isc ∈ K such that

d(f(x), f(y)) ≤ d(f(x), f(c)) + d(f(c), f(y)) ≤ f ′abs(c)d(x, c) + f ′abs(c)d(c, y)

= f ′abs(c)[d(x, c) + d(c, y)]

= f ′abs(c)d(x, y)
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8 M. M USLIKH AND A. K ILICMAN AND S. H. SAPAR AND N. BACHOK

wheref ′abs(c) =
∑n

i=1 f ′abs(γ(ci)).

The relation between a contraction mapping and its absolute derivative as in the real-valued
function (Lemma 1.2 ) is presented in the next.

Proposition 3.3. (Absolute derivative test) LetK be ad-convex subset of metric space(X, d)
and letf : K −→ K be a continuously metrically differentiable onK. Thenf is a contraction
if and only if there exists a number0 ≤ k < 1 such thatf ′abs(x) ≤ k < 1 for all x ∈ K.

Proof. If f is contraction onK, then there is0 ≤ k < 1 such that

(3.7) d(f(x), f(y)) ≤ kd(x, y)

for eachx, y ∈ K.
According to the hypothesis, the functionf is metrically differentiable onK. It implies for
eachp ∈ K the limit

lim
d(x,y)→d(p,p)

d(f(x), f(y))

d(x, y)

exists and equalsf ′abs(p) (see Definition 1.1 ). From (3.7) we obtain

f ′abs(p) = lim
d(x,y)→d(p,p)

d(f(x), f(y))

d(x, y)
≤ k < 1,

for all p ∈ K. In other wordsf ′abs(x) ≤ k < 1 for all x ∈ K.

Conversely, iff is continuously metrically differentiable ond-convexK, then for eachx, y ∈
K there existsc ∈ K such that

(3.8) d(f(x), f(y)) ≤ f ′abs(c)d(x, y).

by Theorem 3.2. Sincef ′abs(x) ≤ k < 1 for all x ∈ K, it allow that we obtain

d(f(x), f(y)) ≤ f ′abs(c)d(x, y) ≤ kd(x, y).

for all x, y ∈ K. This proves that the functionf is a contraction onK.

Corollary 3.4. Let (X, d) be a complete metric space andd-convex and letf : X −→ X be
a continuously metrically differentiable onX. If there exists a number0 ≤ k < 1 such that
f ′abs(x) ≤ k for all x ∈ K, thenf has a unique fixed point.

The same as result before, iff is contraction maps with constant Lipschitz(0 ≤ k < 1) and

f is continuously metrically differentiable withf ′abs(x) =
1

1− k
d(x, f(x)) thenf is the Caristi

type mapping.

When do Caristi type mapping to be contraction mappings? Here is the statement.

Proposition 3.5. Let K be a subset of metric space(X, d). Supposef : K −→ K is continu-
ously metrically differentiable onK that satisfies property as follows

(a) f ′abs(x) = d(x, f(y)) for all x 6= y ∈ K
(b) For eachx, y ∈ K there exist0 ≤ k < 1 such thatd(x, f(x)) = d(y, f(y)) − (k −

1)d(x, y).

If f is a Caristi type mapping, thenf is a contraction mapping.
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Proof. Sincef is a Caristi type mapping, we have

(3.9) f ′abs(f(x)) ≤ f ′abs(x)− d(x, f(x))

for eachx ∈ K. From the properties (a)f ′abs(x) = d(x, f(y)) for all x 6= y ∈ K so that
inequalities (3.9) become

d(f(x), f(y) ≤ d(x, f(y))− d(x, f(x))

for all x 6= y ∈ K. According to the properties (b) there is0 ≤ k < 1. Hence holds

d(f(x), f(y) ≤ d(x, f(y))− d(x, f(x))

≤ d(x, y) + d(y, f(y))− d(x, f(x))

= d(x, y) + (k − 1)d(x, y)

= kd(x, y)

for all x 6= y ∈ K.

Corollary 3.6. Let (X, d) be a complete metric space and letf : X −→ X be a continuously
metrically differentiable onX such that satisfies (a) and (b). Iff is Caristi type mapping, then
f has a unique fixed point.

4. CONCLUSION

In conclusion, the paper given the way alternatives for investigating the existence of the
fixed point of the mapping. The results of the paper show that the absolute derivative plays
an important role in determining whether there is a fixed point of mapping. In addition, there
is a significant result to test the contraction mapping on metric spaces by using the absolute
derivative. Thus also the requirements of the equivalence between Caristi type mapping and
contraction mapping used the absolute derivative.
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