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ABSTRACT. The purpose of this article to characterize the Caristi type mapping by the absolute
derivative. The equivalences of the Caristi mapping with contraction mapping is discussed too.
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1. INTRODUCTION

In 1976 [1] J. Caristi introduced the fixed point theorem in the metric space which was one of
the generalizations of the Banach’s fixed point theorem. The method performed out is different
the generalizations introduced by the other researchers, namely his mapping involves a real-
valued function with metric space domains. Today the mappings is called Caristi type mapping.
Many mathematicians regard Caristi’s theorem is similar to Ekeland’s variational principles [5]
which do not highlight the existence of a fixed point.

Development the Caristi’s fixed point theorem has been carried out by researchers through
a variety of different ways such as combines the Banach fixed point theorem to that Caristi’s
fixed point theorem [4]. In 1996, Kada-Suzuki and Takahashi usedtistance function to
characterize the Caristi type mapping [8]. In 2019, Muslikh et al. used the absolute derivative
to characterize the Caristi type mapping for two mappings [13]. Further, there exist several
results involving set-valued mapping into Caristi type conditions,[see [10, 11, 19]. Related to
set-valued mappings, Muslikh et al. also introduced the absolute derivative of the set-valued
mappings, see [14]. In this article we develop the Caristi’s fixed point theorem which involve
by utilizing the absolute derivative of Caristi type mappings.

Let (X, d) be a complete metric space ahd C X. Caristi’s fixed point theorem states
that each mapping : K — K satisfies the condition: there exists a lower semi-continuous
functiony : K — [0, +00) such that

(1.1) d(z, f(x)) +o(f(2) < ¢(z)
for eachx € X has a fixed point.

Some authors have mentioned that a mapgingK’ — K is called the Caristi type map-
pings if the inequalitied (1] 1) is satisfied.

One advantage of the Caristi type mapping can be used to characterize completeness of a
metric space.That is if the Caristi type mappings have a fixed point on arbitrary metric spaces ,
then the metric space is complete see for example Kirk [9]. Not all of the mappings which have
the fixed point results in the completeness of the metric space. It is well-known that the fixed
point property for contraction mappings does not characterize metric completeness|(see [18]).

A mappingf : X — X is called a contraction, if there exists a real numbet k£ < 1,
such that

(1.2) d(f(x), f(y)) < kd(z,y)
forall z,y € X.

Theorem 1.1. (Banach’s Fixed Point Theorem) LEX, d) be a complete metric space. fif:
X — X is a contraction onX, thenf has a unique fixed point.

The relation between the contraction real-valued function and its derivative is described as
follows.

Lemma 1.2. The functionf : [a,b] — R is a differentiable or{a, b). Thenf is a contraction
on [a, b] if and only if there exists a real numbefs< k£ < 1 such that|f'(x)| < k for all
x € [a,b].

Some of the generalizations Banach'’s fixed point theorem were presented in below.
Theorem 1.3. (Kannan's Fixed Point TheoreffT] Let (X, d) be a complete metric space and
. . 1

let f : X — X be a function. If there exists real numbeérs: a < 5 such that

(1.3) d(f(x), f(y)) < ald(x, f(x)) +d(y, f(y)]
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forall z,y € X, thenf has a unique fixed point.
The mappingf that satisfieq (1]3) is called Kannan type mappings.

Theorem 1.4. (Reich’s Fixed Point Theorelfig] Let (X, d) be a complete metric space and
let f : X — X be a function. If the real numbersb, ¢ are non negative and + b+ ¢ < 1
such that

(1.4) d(f(z), f(y)) < ad(z, f(z)) + bd(y, f(y)] + cd(z, y)
forall z,y € X, thenf has a unique fixed point.

The mappingf that satisfieq (1]4) is called Reich type mappings.
The mapping that satisfies the inequalities](1.3) or] (1.4) is categorized as contraction type
mappings. Iff is a contraction mapping with the constant contraction k£ < 1, thenf is a
Caristi type mapping with a function (for example see [3]).
1
p(z) = md(%f(l’))-

The other result iff is a Reich type mapping, thehis Caristi type mapping with a function
1—c¢
= mﬂ%ﬂ@)-

Similarly, Kannan type mapping (1.3) is included in the Caristi type mapping class. Thus, the
class of the Caristi type mapping is very large, including at least the above mentioned types of
contraction mappings [15].

p(z)

The advantage of Caristi type mapping which was described above, motivates us to develop
the mapping. The main characteristic of the Caristi type mapping lays in the existence of a non-
negative real-valued functiop. Therefore, we highlight the existence of the function. In the
case, we replaced its function by the absolute derivative function that will be described below.

Suppose thaf : [a,b] — R is real valued function and the pointc (a, b). We say that the
function f is differentiable ap € (a, b) if there existsf’(p) € R such that

i 1) =T )

t—p T —DP

= f'(p).
The definition is called the classical definition in the context.

In 1971, E. Braude introduced the derivative of the metric valued function with abstract
metric domains which is known as "metrically differentiable” (see [12]).

Definition 1.1. Let (X, d) and(Y, p) be two metric spaces and letc X be a limit point. The
function f : X — Y is saidmetrically differentiableat p if a real numberf’(p) exists with
the property that for every > 0 there exists) > 0 such that for every,y € X, x # y and
0 <d(xz,p) <6,0<d(y,p) <d,then

p(f (@), f(y))
(1.5) )

In 1975, K. Skaland defined it but is weaker than Braude’s definition.

—f'p)| <e
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Definition 1.2. [17] Let (X, d) and(Y, p) be a metric spaces and jet X be a limit point. The
function f : X — Y is saiddifferentiable at p if real numberf’(p) exists with the property
that for everye > 0 there exist® > 0 such that for every: € Ns(p) then

p(f(z), f(p))
d(z,p)

A non-negative real numbgf(p) is called themetrically derivativeor thequasiderivativeof
the functionf at the poinp € X. Recently, differentiation in metric spaces, as discussed in [2],
explain two kinds derivative, namely ttabsolute derivativéDefinition[1.2) and thestrongly
absolute derivativéDefinition[1.1).

Throughout this paper, we use the notatjfjp, as an absolute derivative of the functign
and a function differentiable in the sense of the metric is catiettically differentiable.

(1.6) — f'(p)| <e.

Theorem 1.5. ([2],[17]) Let (X,d) and (Y, p) be two metric spaces. If : X — Y is
metrically differentiable at € X, thenf is continuous at.

The following a result relate differentiability in the sense of the metric and differentiability
in the sense classical on the real life ([2]Proposition 3.1).

Proposition 1.6.If A C R andp € A is a limit point of A, then for any mapping : A — R,
we have the following:

(1) If f is continuously differentiable in the sense classical,ahen f is metrically differ-
entiable (strongly) ap,and

fans(@) = 1f'(P)|

(2) If f is differentiable in the sense classicalgthenf is metrically differentiabley,and

fans(@) = ' (D)

Definition 1.3. Let f : X — R be a function and let, € X be a ponit. The functiorf is
called lower semi-continuous at poing if every e > 0 there exists) > 0 such that for each
x € B.(xo) we have

(1.7) f(zo) —e < fla).

The functionf is upper semi-continuous if the function () is lower semi-continuous. The
function f is called continuous oX if it is lower semi-continuous and upper semi-continuous
at every points inX.

Proposition 1.7. Let f : X — R be a function and lefz, } be a sequence that converges to
o € X. If f lower semi-continuous at,, then

(1.8) liminf f(z,) > f(xo).
If fis upper semi-continuous at, then

(1.9) lim sup f(z,) < (o).

n
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2. MODIFIED CARISTI’'S FIXED POINT THEOREMS

In this Section we modify the Caristi’s fixed point theorem. The modification is replacing the
function ¢ in Caristi’s fixed point theorem by the absolute derivative function of the function
f. Note that, the functiorf is differentiable in the sense of the metric on metric spaces. Thus
the characterization of Caristi type mapping can be characterized by absolute derivative such as
Theoreni 2.B below.

For the proof of the Theorem 2.3 we need the following Lemma.
Lemma 2.1. Let (X, d) be a metric space and : X — X be a continuously metrically
differentiable onX. For eachz, y € X we define relation<;" as follows.
(2.1) r 2qy = d(z,y) < fos(®) = fars(y)-
Then the relation X" is partially ordered onX.

Proof. (i) It clear thatd(z, z) = f!,.(z) — f.,.(z) = 0 so thatr <, z is reflexive.

abs a

(i) If 2 =g ythend(z,y) < fi,,(x) — fops(y) and ify <4 z thend(y, x) < f7,,(y) — fops(2).
This implies 2d(x,y) < 0 and so that: = y (Symmetry).

(i) If <4 ythend(z,y) < fl,.(x)— fl..(y) and ify =<4 zthend(y, z) < fl, (y) — fi,:(2)-
By metric we obtain
d(z,z) < d(z,y) +d(y, 2)
S (f(lzbs(x) - f(;bs(y)) + (fclzbs(y) - fébs(z))

= faps(T) = faps(2)-

This means <, z (transitive) g

Lemma 2.2. (Zorn’s Lemma) LefX be non-empty partially ordered. If every totally ordered
subsetM of X has an upper bound iX, thenX has at least one maximal element.

The following is a modification of the Caristi’s fixed point theorem by absolute derivative.

Theorem 2.3. Let (X, d) be a complete metric space and fet X — X be a continuously
metrically differentiable onX such that

(2.2) d(z, f(2)) + faps(f(2)) < faps(2)
for eachz € X. Thenf has a fixed point inX .

Proof. For eachr, y € X defined relationX,;" in X as follows

(2.3) =gy == d(2,y) < fope(¥) = fops(y)-

According to Lemma 2|1, the paif(, <,) is a partially ordered. Let, € X fixed. By Zorn's
Lemma, totally ordered subsgf of X containingz.

Let M = {z,}aer C X, wherel is a totally ordered set. This means there iscgrsuch that
o =q xgforalla € I'. Now we define

(24) To =4 Ty = « =<4 ﬁ
forall o, 3 € T.
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From [2.3), the sequence of real numét,. (z,)} is decreasing i), co] hence there exists
areal number > 0 such thatf/, . (z,) converges te whena increases.
Let be givere > 0 arbitrary then there existg, € I" such that foxx >, « this holds

(25) r S fébs(‘ra) S fc/Lbs(me) S T+ €
If 8 =4 a =4 ap, then according tqd (2.3), (2.4) arjd (2.5) we obtain
(2.6) (T, 25) < faps(Ta) = faps(wp) ST+ e—r=¢

which implies that{x, } is Cauchy net in a complete metric spaceso that there exists € X
such thatr, — = (asa increases ). Since the real functigfy, is continuous, certainly it a
lower semi-continuous so thg}, . (z,) < r.
If 3 >4 a, thenzs >, x, then

d(2a,28) < fops(Ta) = fans(T)

by inequalities[(2]3). If? is increasing then we obtain
d(2a, 2) < fope(Ta) = faps(@)-

In this case implies that, <; x for all & € I'. In particularzy <4 z. SinceM is maximal, of
courser € M. Moreover, if we lety = f(z) the condition[(2.2) implies that

(2.7) To 2q v 2qy = f(z)
for all « € . Again by maximality,f(z) € M. Sincex € M we have
(2.8) y=flz) Zqz

Based on the inequality (2.7)[, (2.8) and {2.2) yield42, f(z)) = 0. Hencef(z) = x or the
function f has a fixed point € X. 1

3. ABSOLUTE DERIVATIVE TEST

In this Section, we will investigate the relation of the contraction mapping and its absolute
derivative.

Definition 3.1. Let (X, d) be a metric space. A sé&f C X is said to bed-convexmetrically
convex) if for eachr, y € K there is an "interval(z, y| in K.

An interval [z, y] in K is image of an arc or path (homeomorphism) [0,1] — K such
that(0) = ,7(1) = y and for0 < p < ¢ < r < 1, we haved(y(p),~(r)) = d(y(p),(q)) +
d(v(q),~(r)). So we can say that’ is d-convex if for everyr,y € K there exists € K such
that

(3.1) d(z,y) =d(z,z) +d(z,y).

The metric spaceX, d) is said to bdocally d-convex if every pointr € X has ad-convex
neighborhoodV, (z) for somer > 0.

In 1982, Gerald Jungck states that a function which locally Lipschitzian®éoavex sub-
set K of metric space is globally Lipschitzian dd with the same Lipschitzian constant [6].
Precisely as follows.

Theorem 3.1. ([6]) Let K be ad-convex subset of metric spac¥,d), let f : K — X and
suppose thal, € (0,00). If for eacha € K there exists), > 0 such thatd(f(a), f(x))) <
Ld(a,x) forall z € N;, (a) N K, thend(f(z), f(y)) < Ld(z,y) forall z,y € K.
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The following is the other main result a kind of Mean Value Theorem in the metric space
version.

Theorem 3.2. Let K be ad-convex subset of metric spac¥,d) and letf : K — X be a
metrically differentiable orf” with f/, (z) # 0 for all x € K. If for eachz € K there exists
d, > 0andc, € N5, (z)N K such thatd(f(z), f(z)) < fl,.(c.)d(z, z) forall z € N5, (x) N K,
then

(32) d(f(l'), f(y)) S fébS(C)d(l’,y)

forall =,y € K and for some: € K.

Proof. Suppose the points # y € K. SinceK is d-convex, there is a path: [0,1] — K

such thaty(0) = x,v(1) = y and the image ([0, 1]) = [z, y]. The hypothesis concerning ¢f
implies that for each € [0, 1] there exist®, > 0 andc; € [0, 1] such that

(3.3) d(f(v(1)), f(2)) < fas(V(ct))d(~(1), 2)

wherez, y(c;) € N5, (v(t)) N K.
Sincey is continuous, for eache [0, 1] we can choose; > 0 such thatl; = (t — r,t +1;) C
[0,1] and

(3.4) d((t), (")) < &

forallt’ € I, = (t —ry, t +14). In particular we choose), r; > 1 such that/y = [0, () C [0, 1]
andl, = (]. -, 1] C [0, ].]
Let{I; | t € [0,1]} be an open cover of the connected [fet]. Since|0, 1] compact there is
finite open cover,,, I, , - - - I, such thaf0, 1] C J;_, I;, and;, N I;; # () fori # j. In this
casel, = 0 andt; = 1. Moreovert; € I, for 1 <i < nandt;,_; < t;. Now we can choose the
pointc; € I;, , NI, sothatt;_; < ¢; <t;fori=1,2,...n. From (21) we have
(3.5) d(y(ti1)), () < 0n,_y and  d(y(ci)),7(t:) < O,
so that from|[(3.3) we obtain
d(f (y(tir), f(y(t:)) < d(f((ti-1)), f V() + d(f (v(ci)), f((E:)))

< fans(V(€))d(v(tim1), v(e)) + fans(v(e)d(v(c), v (t:))
(3.6) = faps(7(ci))d(y(tim1), v (t:))
sincet; ; < ¢; < t; and convexity ofK'. Consequently,

d(f(x), f(y)) = d(f((t0)), f(7(tn))
< Zd(f(7(ti—1))v f(r(t))) < Zfébs(v(ci))d(v(tz——l),W(ti))

= Z Foos(v(€))d(v(to), Y(tn)) = Z Fans(7(€:))d(7(0), 7(1))

= Z Tops(v(ci))d(z,y),

again using the fact thdt is convex. So for each, y € K there isc € K such that
d(f(x), f(y)) < d(f(x), f(c)) +d(f(c), f(y)) < faps(c)d(@,c) + faps(c)d(c,y)
= fans(O)d(2, €) + d(c, y)]
= faps(©)d(z, y)
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wheref,, (c) = >0 fu(v(c)- n

The relation between a contraction mapping and its absolute derivative as in the real-valued
function (Lemma 12 ) is presented in the next.

Proposition 3.3. (Absolute derivative test) Lét be ad-convex subset of metric spac¥, d)
and letf : K — K be a continuously metrically differentiable én. Thenf is a contraction
if and only if there exists a numbér< k < 1 such thatf/, .(z) < k < 1forall z € K.

Proof. If f is contraction or{, then there i$ < k < 1 such that

(3.7) d(f(x), f(y)) < kd(z,y)

for eachr,y € K.
According to the hypothesis, the functighis metrically differentiable ori. It implies for
eachp € K the limit

@), S )
dzy)—dpp)  d(z,7)

exists and equalg,. (p) (see Definitiof 11 ). Fronj (3.7) we obtain

bt U@

<k<l,
day)—dpp)  d(z,y)

forall p € K. In other wordsf!, (z) < k < 1forall z € K.

Conversely, iff is continuously metrically differentiable aliconvex/’, then for eachr, y €
K there existg: € K such that

(3.8) d(f(2), f(y) < fas(c)d(z,y).
by Theorenj 3]2. Sincg,, (z) < k < 1forall z € K, it allow that we obtain

d(f(2), f(y) < faps()d(z,y) < kd(z,y).
forall x,y € K. This proves that the functiofiis a contraction or’. g

Corollary 3.4. Let (X, d) be a complete metric space adeconvex and leff : X — X be
a continuously metrically differentiable oK. If there exists a numbdr < k < 1 such that
"o(z) < kforall z € K, thenf has a unique fixed point.

abs

The same as result before fifis contraction maps with constant Lipschiiz< £ < 1) and
f is continuously metrically differentiable witfj, () = T % (x, f(x)) thenf is the Caristi
type mapping.

When do Caristi type mapping to be contraction mappings? Here is the statement.

Proposition 3.5. Let K be a subset of metric spa¢&’, d). Suppose : K — K is continu-
ously metrically differentiable o/ that satisfies property as follows

(@) fiyu(z) = d(z. f(y)) forall e £ y € K
(b) For eachz,y € K there exist) < k < 1 such thatd(z, f(z)) = d(y, f(y)) — (k —

1d(z,y).
If fis a Caristi type mapping, thefiis a contraction mapping.
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Proof. Sincef is a Caristi type mapping, we have

(3.9) ans(F () < faps () — dl, f(2))

for eachz € K. From the properties (aj.,.(z) = d(z, f(y)) for all x # y € K so that
inequalities[(3.9) become

d(f(z), f(y) < d(z, f(y)) — d(z, f(z))
forall x # y € K. According to the properties (b) therelis< £ < 1. Hence holds
d(f(x), f(y) < d(z, f(y)) — d(z, f(z))

<d(z,y) +d(y, [(y) — d(z, f(2))

= d(z,y) + (k= 1)d(z,y)

= kd(z,vy)
forallx Ay € K. 1
Corollary 3.6. Let (X, d) be a complete metric space and fet X — X be a continuously

metrically differentiable onX such that satisfies (a) and (b). ffis Caristi type mapping, then
f has a unique fixed point.

4. CONCLUSION

In conclusion, the paper given the way alternatives for investigating the existence of the
fixed point of the mapping. The results of the paper show that the absolute derivative plays
an important role in determining whether there is a fixed point of mapping. In addition, there
is a significant result to test the contraction mapping on metric spaces by using the absolute
derivative. Thus also the requirements of the equivalence between Caristi type mapping and
contraction mapping used the absolute derivative.
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