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1. INTRODUCTION

Recently there are several studies to the products of partial sums of independent identically
distributed (i.i.d.) positive random variables. It is well known that the products of i.i.d. positive,
square integrable random variables are asymptotically log-normal. This fact is an immediate
consequence of the classical central limit theorem (CLT). This point, up to the knowledge of
the author, was first argued by Arnold and Villaseñr [1], who considered the limiting properties
of the sums of records. In their paper Arnold and Villaseñr obtained the following version of
the CLT for a sequence of i.i.d. exponential r.v.’s (Xn)n≥1 with the mean equal to one:∑n

k=1 logSk − n log n+ n√
2n

d−→ Φ, as n→∞,

where Sk =
∑k

j=1 Xj , 1 ≤ k ≤ n, and Φ is a standard normal random variable. Rempała and
Wesołowski [8] have noted that this limit behavior of a product of partial sums has a universal
character and holds for any sequence of square integrable, positive i.i.d. random variables.
Namely, they have proved the following

Theorem 1.1 (Theorem RW). Let (Xn)n≥1 be a sequence of i.i.d. positive square integrable
random variables with EX1 = µ, V ar(X1) = σ2 > 0 and the coefficient of variation γ = σ/µ.
Then (∏n

k=1 Sk
n!µn

)1/(γ
√
n)

d−→ e
√

2Φ.

Recently, Gonchigdanzan and Rempała [2] discussed an almost sure limit theorem for the
product of the partial sums of i.i.d. positive random variables as follows.

Theorem 1.2 (Theorem GR). Let (Xn)n≥1 be a sequence of i.i.d. positive square integrable
random variables with EX1 = µ > 0, V ar(X1) = σ2. Denote γ = σ/µ the coefficient of
variation. Then for any real x,

lim
N→∞

1

logN

N∑
n=1

1

n
I

((∏n
k=1 Sk
n!µn

)1/(γ
√
n)

≤ x

)
= F (x), a.s.

where F (·) is the distribution function of the random variable e
√

2Φ.

For further discussions of the CLT, the authors refer to [5, 6, 7]. Zhang and Huang [10]
obtained the the invariance principle of the product of sums of random variables. It is perhaps
worth to notice that by the strong law of large numbers and the property of the geometric mean
it follows directly that

(1.1)
(∏n

k=1 Sk
n!

)1/n
a.s.−−→ µ

if only existence of the first moment is assumed.
In the present paper we are interested in the asymptotic distribution of products of general

weighted sums of dependent positive random variables, which extends the above Theorem RW.

2. MAIN RESULTS

2.1. Some notations and assumptions. Given probability space (Ω,F ,P), let (Xn,Fn)n≥1 be
a sequence of dependent positive random variables with the common expectation µ = E(X1) >
0 and F0 = {∅,Ω}, Fi ⊆ Fi+1 ⊆ F for all i = 1, · · · . Denote

Sk,k = a1,kX1 + · · ·+ ak,kXk, k = 1, 2, . . .
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where {ai,k, 1 ≤ i ≤ k, k ≥ 1} is a triangular array of positive real numbers with
∑k

i=1 ai,k = 1
for all k ≥ 1. In addition for any i = 1, · · · , let

bi,n =
n∑
k=i

ai,k, Yi = Xi − µ.

Assume that the following conditions are satisfied: for any ε ∈ (0, 1), as n→∞

(2.1)
n∑
i=1

P

(
bi,n|Yi| > ε

( n∑
i=1

b2
i,n

)1/2
∣∣∣Fi−1

)
P−→ 0;

(2.2)
n∑
i=1

E

 bi,n|Yi|√∑n
i=1 b

2
i,n

I
{
bi,n|Yi| ≤

( n∑
i=1

b2
i,n

)1/2
}∣∣∣Fi−1

 P−→ 0;

(2.3)
n∑
i=1

V ar

 bi,n|Yi|√∑n
i=1 b

2
i,n

I
{
bi,n|Yi| ≤ ε

( n∑
i=1

b2
i,n

)1/2
}∣∣∣Fi−1

 P−→ σ2 ≥ 0;

(2.4)
Sn,n
µ
− 1

a.e.−−→ 0;

(2.5)
1√∑n
i=1 b

2
i,n

n∑
i=1

(Sk,k − 1)2 P−→ 0.

2.2. Main results.

Theorem 2.1. Under the above notations and assumptions, for any An satisfying

(2.6)
An∑n
i=1 b

2
i,n

→ 1, as n→∞,

we have

(2.7)

(
n∏
k=1

(Sk,k/µ)

) µ√
An

d−→ eN , as n→∞,

where N is a normal random variable with mean zero and variation σ2.

Remark 2.2. In the above theorem, we give up the assumption of independence and even that
of finiteness of the absolute values of the (1 + δ)-order moments, where δ > 0 is arbitrary
constant. However negligibility in the limit of the terms will be retained.

In condition (2.3) the case σ2 = 0 is not excluded. Hence, in particular, the above theorem
yields a convergence condition for degenerate distributions.

Remark 2.3. It is well known that (see also Shiryaev [9]) condition (2.1) is equivalent to the
following (2.1′)

(2.1′) max
1≤i≤n

bi,n|Yi|(∑n
i=1 b

2
i,n

)1/2

P−→ 0.
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Assuming (2.1) or (2.1′), condition (2.3) is equivalent to the following (2.3′)

(2.3′)
n∑
i=1

 bi,n|Yi|√∑n
i=1 b

2
i,n

− E

 bi,n|Yi|√∑n
i=1 b

2
i,n

I
{
bi,n|Yi| ≤ ε

( n∑
i=1

b2
i,n

)1/2
}∣∣∣Fi−1

2

P−→ σ2.

3. PROOF OF THE RESULTS IN SECTION 2

Before proving Theorem 2.1 we need mention the following key lemma.

Lemma 3.1. Under the conditions (2.1)-(2.3), for any An satisfying (2.6), we have

(3.1)
µ√
An

n∑
k=1

(
Sk,k
µ
− 1

)
d−→ N as n→∞.

Proof. Using the notations in Section 2, (3.1) becomes

1√
An

n∑
k=1

k∑
i=1

ai,kYi
d−→ N .

Observe that

µ√
An

n∑
k=1

(
Sk,k
µ
− 1

)
=

1√
An

n∑
k=1

k∑
i=1

ai,kYi =
1√
An

n∑
i=1

(
n∑
k=i

ai,k

)
Yi,

recall bi,n =
∑n

k=i ai,k and define now

Zi,n =
1√
An

bi,nYi,

then
µ√
An

n∑
k=1

(
Sk,k
µ
− 1

)
=

n∑
i=1

Zi,n.

From the Theorem 1 (p. 541 in Shiryaev [9]), the desired result is obtained by the conditions
(2.1)-(2.3).

Proof of Theorem 2.1. Here we will use the delta-method expansion to prove our results as
Rempała and Wesołowski [8]. Denote Ck = Sk,k/µ. By the condition (2.4), for any δ > 0,
there exists a number R such that for any r > R

P
(

sup
k≥r
|Ck − 1| > δ

)
≤ δ.

Consequently, there exist two sequences {δm} ↓ 0 (δ1 = 1/2) and (Rm) ↑ ∞ such that

P
(

sup
k≥Rm

|Ck − 1| > δm

)
≤ δm.

Taking now any real x and any m, we have

P

(
µ√
An

n∑
k=1

logCk ≤ x

)
=P

(
µ√
An

n∑
k=1

logCk ≤ x, sup
k≥Rm

|Ck − 1| ≥ δm

)

+ P

(
µ√
An

n∑
k=1

logCk ≤ x, sup
k≥Rm

|Ck − 1| < δm

)
:=Am,n +Bm,n
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where Am,n ≤ δm. Next we will control the term Bm,n. By the following logarithm:

log(1 + x) = x+
x2

(1 + θx)2
,

where θ ∈ (0, 1) depends on x ∈ (−1, 1), we have

Bm,n =P
{ µ√

An

Rm∑
k=1

logCk +
µ√
An

n∑
k=Rm+1

log(1 + (Ck − 1)) ≤ x, sup
k≥Rm

|Ck − 1| < δm

}
=P
{ µ√

An

Rm∑
k=1

logCk +
µ√
An

n∑
k=Rm+1

(Ck − 1)

+
µ√
An

n∑
k=Rm+1

(Ck − 1)2

(1 + θk(Ck − 1))2
≤ x, sup

k≥Rm
|Ck − 1| < δm

}
=P
{ µ√

An

Rm∑
k=1

logCk +
µ√
An

n∑
k=Rm+1

(Ck − 1)

+
[ µ√

An

n∑
k=Rm+1

(Ck − 1)2

(1 + θk(Ck − 1))2

]
I( sup
k≥Rm

|Ck − 1| < δm) ≤ x
}

− P
{ µ√

An

Rm∑
k=1

logCk +
µ√
An

n∑
k=Rm+1

(Ck − 1) ≤ x, sup
k≥Rm

|Ck − 1| ≥ δm

}
:=Dm,n + Fm,n,

where θk, k = 1, · · · , n are (0, 1)-valued random variables and Fm,n ≤ δm. To estimate the
term Dm,n, we rewrite it as

Dm,n =P
{ µ√

An

Rm∑
k=1

[logCk − (Ck − 1)] +
µ√
An

n∑
k=1

(Ck − 1)

+
[ µ√

An

n∑
k=Rm+1

(Ck − 1)2

(1 + θk(Ck − 1))2

]
I( sup
k≥Rm

|Ck − 1| < δm) ≤ x
}
.

For any fixed m,
µ√
An

Rm∑
k=1

[logCk − (Ck − 1)]
P−→ 0

as n → ∞. By the following elementary inequality: for |x| < 1 and any θ ∈ (0, 1) it follows
that x2/(1 + θx)2 ≤ 4x2. Then for any m, by condition (2.5),[ µ√

An

n∑
k=Rm+1

(Ck − 1)2

(1 + θk(Ck − 1))2

]
I( sup
k≥Rm

|Ck − 1|) ≤ 4µ√
An

n∑
k=1

(Ck − 1)2 P−→ 0,

as n→∞. Since

P

log

(
n∏
k=1

(Sk,k/µ)

) µ√
An

≤ x

 = P

(
µ√
An

n∑
k=1

logCk ≤ x

)
= Am,n +Dm,n + Fm,n

and from Lemma 3.1, we have Am,n+Fm,n ≤ 2δm → 0 asm→∞ and limn→∞Dm,n → Φ(x)
as m→∞, which imply the desired results.
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Remark 3.2. From the proof of Theorem 2.1, we know that condition (2.4) can be replaced by
the following: for any δ > 0, there exists a constants R such that

(3.2) P
(

max
n≥R
|Sn,n/µ− 1| > δ

)
≤ δ.

4. FURTHER DISCUSSIONS

4.1. Independent case. When (Xn)n≥1 is a sequence of positive independent random vari-
ables, conditions (2.1)-(2.3) become

n∑
i=1

P

(
bi,n|Yi| > ε

( n∑
i=1

b2
i,n

)1/2

)
→ 0;

n∑
i=1

E

 bi,n|Yi|√∑n
i=1 b

2
i,n

I
{
bi,n|Yi| ≤

( n∑
i=1

b2
i,n

)1/2
}→ 0;

n∑
i=1

V ar

 bi,n|Yi|√∑n
i=1 b

2
i,n

I
{
bi,n|Yi| ≤ ε

( n∑
i=1

b2
i,n

)1/2
}→ σ2;

These are well known (see Gnedenko and Kolmogorov [4]) that

µ√
An

n∑
k=1

(
Sk,k
µ
− 1

)
d−→ N .

Furthermore it is easy to check that when (Xn)n≥1 is a sequence of positive square integrable
i.i.d random variables and ai,k = 1/k for all 1 ≤ i ≤ k, k ≥ 1, Theorem 2.1 induces the
Theorem RW in Section 1.

4.2. Martingale case. Let

Zi,n =
µ√∑n
i=1 b

2
i,n

bi,nYi

and (Zi,n,Fi)n≥1,1≤i≤n be a square integrable martingale difference:

EZ2
i,n <∞, E(Zi,n|Fn−1) = 0.

Suppose that the Lindeberg condition is satisfied: for any ε > 0

(L)
n∑
i=1

E(Z2
i,nI(|Zi,n| > ε)|Fi−1)

P−→ 0.

Then from Shiryaev [9], we have

(4.1)
n∑
k=0

E(Z2
i,n|Fi−1)

P−→ σ2 ⇒ µ√
An

n∑
k=1

(
Sk,k
µ
− 1

)
d−→ N ,

(4.2)
n∑
k=0

Z2
i,n

P−→ σ2 ⇒ µ√
An

n∑
k=1

(
Sk,k
µ
− 1

)
d−→ N .

In addition assume that the conditions (2.4), (2.5) are satisfied then (2.7) holds.
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