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ABSTRACT. In this paper, we develop further the theory of trace bounds and show that in some
sense that the earlier bounds obtained by various authors on the spectrum of symmetric positive
definite matrices are optimal. Our approach is by considering projection operators, from which
several mathematical relationships may be derived. Also criteria for positive lower bounds are
derived.
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1. INTRODUCTION

Eigenvalues and the extreme eigenvalues play an important role in many scientific applied
fields [4]. The determination of the zeroes of the characteristic polynomial is a difficult and
expensive task to perform, especially for large dimensions. In some cases, only knowledge of
the extreme eigenvalues is necessary, for example the ratio of the largest to smallest eigenvalues
for a symmetric positive definite matrix determines the conditioning of the associated linear
system. Perhaps the most well known bound for the spectrum σ(A) is the Gerschgorin bound,
where the eigenvalues lie in the union of n disks in the complex plain, centred at the diagonal
entries and having radii the sum of the absolute off diagonal entries. Zhan [12] bounded the
spread sp(A) of real symmetric interval matrices. Sun [10] bounded the minimal eigenvalue
of positive definite matrices and improved the bounds of Dembo [3] and Ma and Zarowski [7].
Mirskey [8], Brauer and Mewbom [1] used traces to bound sp(A). Wolcowicz and Styan [11]
used a statistical approach to bound the extremal eigenvalues of complex matrices with real
eigenvalues. Their approach naturally led to extensive use of trace bounds. Sharma et al.[9]
extended and improved the work of Wolcowiz and Styan. Trace bounds are elegant as they are
functions only of the diagonal entries of a matrix and its associated powers.

2. THEORY

Let λ = (λi) ∈ Rn be the vector of eigenvalues of a symmetric positive definite matrix
A ∈ Rn×n and f : (0, ∞) −→ (0, ∞) be an increasing function. Order the eigenvalues such
that

λ1 ≥ λ2 ≥ · · · ≥ λn.

Define f(λ) = [f(λ1), f(λ2), · · · , f(λn)]
t.

Lemma 2.1.
trace (f(A))2

n
≤ trace (f(A)2)

We shall prove 2.1 in two different ways.

Proof 1.

trace (f(A))2 =

(
n∑

i=1

f(λi)

)2

= n2

(∑n
i=1 f(λi)

n

)2

≤ n2

n

n∑
i=1

f(λi)
2

= n trace (f(A)2)

Where we have Jensen’s inequality [5] applied to the convex function (·)2.

Proof 2. This is our innovative new proof. Consider

P = I− eet

n
,
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then P is an orthogonal symmetric projector on to the n−1 dimensional subspace range R(P) ⊂
Rn. Also an orthonormal basis for the nullspace N(P) is

{
e√
n

}
. Then

f(λ) = Pf(λ) +

〈
f(λ),

e√
n

〉
e√
n

is a decomposition of f(λ) into it orthogonal components. Quite clearly

∥f(λ)∥2 = ⟨f(λ), f(λ)⟩ ≥
〈
f(λ),

e√
n

〉2

by the Pythagorean theorem in an innerproduct space. This yields the desired result

trace (f(A)2) ≥ trace (f(A))2

n

Theorem 2.2. Let A be invertible so that λj ̸= 0 and assume that fj = f(λj) ̸= 0. Also define
h(f(A)) = trace (f(A))2 − (n− 1) trace (f(A)2) and uj =

1
fj

, then the eigenvalues of f(A)

and f(A)−1 satisfy the quadratic equations

nf 2
j − 2 trace (f(A))fj + h(f(A)) ≤ 0(2.1)

h(f(A))u2
j − 2 trace (f(A))uj + n ≤ 0(2.2)

Proof. Let

P = I− eje
t
j −

(e− ej)(e− ej)
t

n− 1
Then P is a symmetric and orthogonal projector and it is easily verified that R(P) has dimension
n− 2. Also a orthonormal basis for N(P) is

{
ej,

e−ej√
n−1

}
. Write

f(λ) = Pf(λ) + ⟨f(λ), ej⟩ej +
⟨f(λ), e− ej⟩√

n− 1

e− ej√
n− 1

Clearly

(2.3) ⟨f(λ), f(λ)⟩ ≥ f 2
j +

(⟨f(λ), e⟩ − fj)
2

n− 1

by the Pythagorean theorem. Thus

(n− 1) trace (f(A)2) ≥ (n− 1)f 2
j + trace (f(A))2 − 2 trace (f(A))fj + f 2

j

nf 2
j − 2 trace (f(A))fj + h(f(A)) ≤ 0

Simply divide (2.1) by f 2
j to get (2.2).

Equation (2.2) has been derived by Huang and Xu [6] for the special case f(x) = x and
solved to give bounds for σ(A−1) and thus bounds for σ(A).

Lemma 2.3. The eigenvalues of f(A) satisfy

fj ≥
trace (f(A))−

√
trace (f(A))2 − nh(f(A))

n
(2.4)

fj ≤
trace (f(A)) +

√
trace (f(A))2 − nh(f(A))

n
(2.5)
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Proof. This is simply a case of solving the quadratic (2.1). However we check that the radical
is positive.

trace (f(A))2 − nh(f(A)) = trace (f(A))2 − n
[
(trace (f(A))2 − (n− 1) trace (f(A)2)

]
= (n− 1)

[
n trace (f(A)2)− trace (f(A))2

]
(2.6)

≥ 0 by Lemma 2.1

We prefer writing (2.4) and (2.5) in the form

(2.7)
∣∣∣∣fj − trace (f(A))

n

∣∣∣∣ ≤
√

(n− 1) [n trace (f(A)2)− trace (f(A))2]

n

where we have used (2.6).

Lemma 2.4. An upper bound for f(λ1) and a lower bound for f(λn) are given by

f1 ≤ m+ S
√
n− 1(2.8)

fn ≥ m− S
√
n− 1(2.9)

where

m =
⟨f(λ), e⟩

n

=
trace (f(A))

n
is the average and the variance S is given by

nS2 = ⟨f(λ)−me, f(λ)−me⟩

= ⟨f(λ), f(λ)⟩ − 2m⟨f(λ), e⟩+m2⟨e, e⟩

= trace (f(A)2)−m2n

S2 =
trace (f(A)2)

n
−m2

Proof. Simply set j = 1 and j = n in (2.7) and note that

(n− 1)
[
n trace (f(A)2)− trace (f(A))2

]
= (n− 1)

[
n2(S2 +m2)−m2n2

]
= (n− 1)n2S2

Thus (2.7) simplifies to

(2.10) |fj −m| ≤ S
√
n− 1

from which the result follows.

Lemma 2.5. A lower bound for f(λ1) and an upper bound for f(λn) are given by

f1 ≥ m+
S√
n− 1

(2.11)

fn ≤ m− S√
n− 1

(2.12)
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Proof. We use the fact that for real numbers fi, i = 1, 2, · · · , n the variance S satisfies the
inequality [2].

(2.13) S2 ≤ (f1 −m)(m− fn).

Substitute (2.9) into (2.13) and solve for f1, similarly substitute (2.8) into (2.13) and solve for
fn

It is noted that (2.8),(2.9),(2.11) and (2.12) have been derived by Wolcowiz and Styan [11]
for the special case f(x) = x, hence the result obtained later by Huang and Xu [6] is identical
after rationalization of the latter’s result.

Lemma 2.6. A condition for the lower bound on fn to be positive is that h(f(A)) > 0.

Proof. It follows from (2.9) that

m2 > S2(n− 1)

m2 −
[
trace (f(A)2)

n
−m2

]
(n− 1) > 0

m2n− (n− 1)
trace (f(A)2)

n
> 0

m2n2 − (n− 1) trace (f(A)2) > 0

trace (f(A))2 − (n− 1) trace (f(A)2) > 0

which completes the proof.

Lemma 2.7. If f(x) is replaced by αf(x) + β, where α, β > 0 are constants then the bounds
are unchanged.

Proof. The bounds result from (2.1). Let T1 = trace (f(A)) and T2 = trace (f(A)2) then

n(αfj + β)2 − 2 trace (αf(A) + βI)(αfj + β) + trace (αf(A) + βI)2

− (n− 1) trace((αf(A) + βI)2) ≤ 0

n(αfj + β)2 − 2(αT1 + βn)(αfj + β) + (αT1 + βn)2

− (n− 1)(α2T2 + 2αβT1 + β2n) ≤ 0

α2[nf 2
j − 2T1fj + T 2

1 − (n− 1)T2] ≤ 0

nf 2
j − 2T1fj + T 2

1 − (n− 1)T2 ≤ 0

which is identical to (2.1).

Comment 1. Thus translating f(λ) will not change the magnitude of the projections onto N(P)
and R(P). Also amplifying f(λ) will result in a similar amplification on the projected compo-
nents onto N(P) and R(P).

Theorem 2.8. Replacing the jth component of f(λ) by g(λj) will not change the bounds.
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Proof. Let

g̃(λ) = [f(λ1), f(λ2), · · · , f(λj−1), g(λj), f(λj+1), · · · , f(λj)]
t

or equivalently

g̃(λ) = f(λ)− f(λj)ej + g(λj)ej

mg =
trace (g̃(A))

n
(2.14)

=
trace (f(A))− fj + gj

n
(2.15)

= m− fj
n

+
gj
n

(2.16)

nmg = mn− fj + gj(2.17)

n2mg = mn2 − nfj + ngj(2.18)

n2m2
g = m2n2 − 2mnfj + 2mngj − 2fjgj + f 2

j + g2j(2.19)

S2
g =

trace (g̃(A))2

n
−m2

g(2.20)

=
trace (f(A))2 − f 2

j + g2j
n

−m2
g(2.21)

= (S2 +m2)−
f 2
j

n
+

g2j
n

−m2
g(2.22)

From (2.10) it follows that

|gj −mg| ≤
√
n− 1Sg

g2j − 2gjmg +m2g ≤ (n− 1)S2
g

= (n− 1)

(
S2 +m2 −

f 2
j

n
+

g2j
n

−m2
g

)
(2.23)
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Multiply (2.23) by n and simplify using (2.17)-(2.19) to get

ng2j − 2gj(mn− fj + gj) +m2n2 − 2mnfj + 2mng2j

− 2fjgj + f 2
j + g2j

≤ n(n− 1)S2 + n(n− 1)m2 − (n− 1)f 2
j + (n− 1)gj

nf 2
j − 2mnfj + nm2 ≤ n(n− 1)S2

(fj −m)2 ≤ (n− 1)S2

|fj −m| ≤ S
√
n− 1

Theorem 2.9. Replacing the ith component of f(λ) by g(λi), optimal outer bounds given by

fn ≥ mn− f1
n− 1

−
√

(n− 1)S2 − (m− f1)2(2.24)

f1 ≤
mn− fn
n− 1

+
√

(n− 1)S2 − (m− fn)2(2.25)

are satisfied.

Proof. If the ith component of f(λ) is replaced by g(λi) then this is equivalent to a new function
r(λ) given by

r(λ) = f(λ)− f(λi)ei + g(λi)ei(2.26)

= f(λ) + (gi − fi)ei(2.27)

As

⟨r(λ), r(λ)⟩ = T2 + 2fi(gi − fi) + (gi − fi)
2(2.28)

⟨r(λ), e⟩ = T2 + gi − fi(2.29)

and r(λ) satisfies (2.3), it follows that

(n− 1)[T2 + 2fi(gi − fi) + (gi − fi)
2] ≥ (n− 1)f 2

j + (T1 − fj + gi − fi)
2(2.30)

Equation (2.30) may be written as a quadratic in fj of the form

nf 2
j − 2(T1 + gi − fi)fj + T 2

1 − (n− 1)T2(2.31)

+ 2(gi − fi)[T1 − (n− 1)fi]− (n− 2)(gi − fi)
2 ≤ 0

Let β = gi − fi and simplify (2.31) to

nf 2
j − 2(nm+ β)fj + nm2 − n(n− 1)S2 + 2β[nm− (n− 1)fi]− (n− 2)β2 ≤ 0(2.32)

The zeroes of (2.32) are given by

f±
j = m+ α±

√
n− 1

√
(n− 1)α2 − 2α(m− fi) + S2(2.33)

where α = β
n

. Hence

|fj −m− α| ≤ (n− 1)
√

q(α)(2.34)
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where

q(α) = α2 − 2α
m− fi
n− 1

+
S2

n− 1
(2.35)

=

(
α− m− fi

n− 1

)2

+
(n− 1)S2 − (m− fi)

2

(n− 1)2
(2.36)

≥ (n− 1)S2 − (m− fi)
2

(n− 1)2
(2.37)

≥ 0(2.38)

Substituting α = m−fi
n−1

and (2.37) into (2.34), q(α) is minimized to give∣∣∣∣fj − mn− fi
n− 1

∣∣∣∣ ≤√(n− 1)S2 − (m− fi)2(2.39)

Set j = n and i = 1 to obtain the lower bound (2.24) and j = 1 and i = n to obtain the upper
bound (2.25).

One may also obtain the inner bounds

fn ≤ mn− f1
n− 1

+
√

(n− 1)S2 − (m− f1)2(2.40)

f1 ≥
mn− fn
n− 1

−
√

(n− 1)S2 − (m− fn)2(2.41)

from (2.39). It is easily shown that these bounds (2.40) and (2.41) are slightly worse than the
bounds from (2.11) and (2.12), whilst the outer bounds (2.24) and (2.25) are comparable to
those in (2.8) and (2.9). Outer bounds can then be obtained from (2.13) of the form

fn ≤ m− S2

f1 −m
(2.42)

f1 ≥ m+
S2

m− fn
(2.43)

These bounds are only useful if either fn or f1 are known. We have shown in some sense that the
bounds derived by Wolkowicz and Styan for f(x) = x are in some sense optimal, however for
different choices of f(x), the bounds may be improved as we shall illustrate with an example.

3. RESULTS

Consider the test matrix [11]

A =


4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7


with spectrum σ(A) = {1.425687, 4.775356, 6.423019, 9.375939} accurate to six decimal
places. We choose f(x) = xk, k ∈ N as polynomial functions of A are easy to evaluate. We
then take the kth root to recover the bounds. If the lower bound is negative we bound below by
zero.
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k L-(2.9) L-(2.24) U-(2.12) U- (2.42)
1 0.525063 1.089191 3.841688 3.371483
2 0 0 4.492841 4.258399
3 0 0 4.897759 4.776953
4 0 0 5.155153 5.087181

Table 3.1: Lower (L) and upper (U) bounds for λn

k L-(2.11) L-(2.43) U-(2.8) U- (2.25)
1 7.158312 7.524881 10.474937 9.712920
2 7.537532 8.129768 9.6666 9.578714
3 7.846080 8.605355 9.467244 9.509757
4 8.083989 8.917644 9.408333 9.472481

Table 3.2: Lower (L) and upper (U) bounds for λ1

As observed from columns three and five of table 3.1 slightly superior results are obtained for
the lower and upper bounds of λn when λ1 is known. Similarly from columns three and five of
table 3.2 when λn is known, better bounds are attained for λ1 for k = 1, 2. Also the bounds
from columns two and four are fairly accurate. However one would not use large k as this will
necessitate evaluation of larger powers of A.

4. CONCLUSION

We have shown that slightly superior bounds are obtained for small k when either of the
extremal eigenvalues are known. It is noted that if f : (−∞, ∞) −→ (−∞, ∞) is an increas-
ing function, then the bounds may be applied to real symmetric matrices, without regards for
positive definiteness, for example f(x) = x2k−1, k ∈ N.
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