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2 W. G. ALSHANTI

1. I NTRODUCTION

In 1938, A. Ostrowski [1] introduced his famous integral inequality:

Theorem 1.1.Letf : [a, b] → R be continuous mapping on[a, b] such thatf ′ ∈ L∞ (a, b) then
∀x ∈ [a, b]

(1.1)

∣∣∣∣∣∣ f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a) ‖f ′‖∞ .

Since that time, an extensive research history on obtaining companions of Ostrowski type
inequalities has been conducted. Most early studies as well as current work utilize various
characteristics of the function and/or its derivatives such as absolutely continuous, convexity,
bounded variation, and Lipschitz continuous. The offspring of Ostrowski type inequalities has
been a large toolbox of numerical integration theory employed by many researchers. They
provide the numerical integration field with a large class of quadrature and cubature rules.

In 1999, Dragomir [2], [3] derived some interesting inequalities of Ostrowski type as follows:

Theorem 1.2.Letf : [a, b] → R be L-lipschitzian mapping on[a, b]. Then we have

(1.2)

∣∣∣∣∣∣b− a

3

[
f (a) + f (b)

2
+ 2f

(
a + b

2

)]
−

b∫
a

f (t) dt

∣∣∣∣∣∣ ≤ 5

36
L (b− a)2 .

Theorem 1.3.Letf : [a, b] → R be a mapping of bounded variation on[a, b]. Then∀x ∈ [a, b]
we have

(1.3)

∣∣∣∣∣∣[(x− a) f(a) + (b− x) f(b)]−
b∫

a

f (t) dt

∣∣∣∣∣∣ ≤
[
b− a

2
+

∣∣∣∣x− a + b

2

∣∣∣∣] b
∨
a

(f) .

Most recently in 2017, Budak. H, et al. [4] reported the following Ostrowski type inequality
for mappings whose first derivatives are of bounded variation as follows:

Theorem 1.4. Let f : [a, b] → R be such thatf ′ is continuous of bounded variation on[a, b].
Then∀x ∈

[
a, a+b

2

]
we have∣∣∣∣b− a

2
f(

a + b

2
) +

b− a

4

[
f(

3a + b

4
) + f(

a + 3b

4
)

]
(1.4)

+
(b− a)2

32

[
f ′(

a + 3b

4
)− f ′(

3a + b

4
)

]
−

b∫
a

f (t) dt

∣∣∣∣∣∣
≤ (b− a)2

32

b
∨
a

(f ′) .

Related studies can be found in [5], [6], [7], and [8].

2. PRELIMINARIES

A review of recent literature shows that many integral inequalities of Ostrowski type are
carried out for differentiable functions either in the case where the second derivatives belong to
L∞ or the case when the first derivatives are of bounded variation. For instance, in [9], Budak
& Sarikaya presented the following integral inequalities of Ostrowski type:
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Theorem 2.1. Let f : [a, b] → R be a twice differentiable function on(a, b) such thatf ′′ ∈
L∞ (a, b). Then

∣∣∣∣∣b− a

2

[
f(

a + b

2
) +

f(a) + f(b)

2

]
− (b− a)2

36
[f ′(b)− f ′(a)](2.1)

−
b∫

a

f (t) dt

∣∣∣∣∣∣
≤ 11

64
(b− a)3 ‖f ′′‖∞ .

Theorem 2.2. Let f : [a, b] → R be a twice differentiable function onI such that[a, b] ⊂ I
wheref ′ is of bounded variation on[a, b]. Then

∣∣∣∣∣b− a

2

[
f(

a + b

2
) +

f(a) + f(b)

2

]
− (b− a)2

36
[f ′(b)− f ′(a)](2.2)

−
b∫

a

f (t) dt

∣∣∣∣∣∣
≤ (b− a)2

36

b
∨
a

(f ′) .

In this current paper, we utilize differentiable functions, namely, functions with bounded
second derivatives and functions whose first derivatives are of bounded variation as well as
locally Lipschitz to establish new inequalities of Ostrowski’s type. Applications for special
means and quadrature rules are also given.

3. M AIN RESULTS

3.1. The case whenf ′′ ∈ L∞ [a, b]. We commence our main results with the following Os-
trowski’s type inequality for differentiable function with bounded second derivative:

Theorem 3.1. Let f : [a, b] → R be a twice continuously differentiable function on[a, b] i.e.,

(f ∈ C2 [a, b]). Suppose thatf ′′ ∈ L∞ [a, b] i.e.,

(
‖f ′′‖∞ = sup

t∈[a,b]

|f ′′ (t)| < ∞

)
. Then

∣∣∣∣∣∣b− a

16

[
3 [f(a) + f(b)] + 10f(

a + b

2
)

]
− (b− a)2

64
[f ′(b)− f ′(a)]−

b∫
a

f (t) dt

∣∣∣∣∣∣(3.1)

≤ 17

3.29
(b− a)3 ‖f ′′‖∞ .
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Proof. First, we consider the following

b∫
a

K(t)f ′′ (t) dt(3.2)

=

a+b
2∫

a

(
t− 3a + b

4

)(
t− 7a + b

8

)
f ′′ (t) dt

+

b∫
a+b
2

(
t− a + 3b

4

)(
t− a + 7b

8

)
f ′′ (t) dt

which can be reduced as,

b∫
a

K(x, t)f ′′ (t) dt(3.3)

=
(b− a)2

32
[f ′(b)− f ′(a)]− b− a

8

[
3f(a) + 5f(

a + b

2
) + 3f(b)

]
+ 2

b∫
a

f (t) dt

Now, using both(3.2) and(3.3) yields,

(b− a)2

64
[f ′(b)− f ′(a)]− b− a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]
+

b∫
a

f (t) dt

=
1

2


a+b
2∫

a

(
t− 3a + b

4

)(
t− 7a + b

8

)
f ′′ (t) dt

+

b∫
a+b
2

(
t− a + 3b

4

)(
t− a + 7b

8

)
f ′′ (t) dt

 .(3.4)

Further, sincef ′′ ∈ L∞ [a, b], then imposing Hölder’s integral inequality on(3.4) gives∣∣∣∣∣∣(b− a)2

64
[f ′(b)− f ′(a)]− b− a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]
+

b∫
a

f (t) dt

∣∣∣∣∣∣(3.5)

=
1

2

‖f ′′‖∞
t∈[a, a+b

2 ]

a+b
2∫

a

∣∣∣∣(t− 3a + b

4

)(
t− 7a + b

8

)∣∣∣∣ dt

+‖f ′′‖∞
t∈[a+b

2
,b]

b∫
a+b
2

∣∣∣∣(t− a + 3b

4

)(
t− a + 7b

8

)∣∣∣∣ dt

 .
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But,

a+b
2∫

a

∣∣∣∣(t− 3a + b

4

)(
t− 7a + b

8

)∣∣∣∣ dt =

b∫
a+b
2

∣∣∣∣(t− a + 3b

4

)(
t− a + 7b

8

)∣∣∣∣ dt(3.6)

=
17

3.29
(b− a)3 .

Now, considering both(3.5) and(3.6) completes the proof.

Corollary 3.2. Under the assumptions of Theorem(3.1) and assumingf ′(a) = f ′(b), we have
the following Bullen type inequality[10]

(3.7)

∣∣∣∣∣∣b− a

16

[
3 [f(a) + f(b)] + 10f(

a + b

2
)

]
−

b∫
a

f (t) dt

∣∣∣∣∣∣ ≤ 17

3.29
(b− a)3 ‖f ′′‖∞ .

3.2. The case whenf ′ is of bounded variation. For differentiable function whose first deriv-
ative is of bounded variation, the following Ostrowski’s type inequality holds:

Theorem 3.3. Let f : [a, b] → R be a continuously differentiable function on[a, b], i.e.,
(f ∈ C1 [a, b]). Suppose thatf ′ is of bounded variation on[a, b]. Then

∣∣∣∣∣∣b− a

16

[
3 [f(a) + f(b)] + 10f(

a + b

2
)

]
− (b− a)2

64
[f ′(b)− f ′(a)]−

b∫
a

f (t) dt

∣∣∣∣∣∣(3.8)

≤ 3

26
(b− a)2 b

∨
a

(f ′) .

Proof. We start by rewriting(3.4) using Riemann-Stieltjes integrals of
(
t− 3a+b

4

) (
t− 7a+b

8

)
and

(
t− a+3b

4

) (
t− a+7b

8

)
with respect tof ′ over

[
a, a+b

2

]
and

[
a+b
2

, b
]
, respectively, as follows

(b− a)2

64
[f ′(b)− f ′(a)]− b− a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]
+

b∫
a

f (t) dt(3.9)

=
1

2


a+b
2∫

a

(
t− 3a + b

4

)(
t− 7a + b

8

)
df ′(t)

+

b∫
a+b
2

(
t− a + 3b

4

)(
t− a + 7b

8

)
df ′(t)

 .
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Now, applying Hölder’s integral inequality on(3.9) yields∣∣∣∣∣∣(b− a)2

64
[f ′(b)− f ′(a)]− b− a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]
+

b∫
a

f (t) dt

∣∣∣∣∣∣(3.10)

≤ 1

2


∣∣∣∣∣∣∣

a+b
2∫

a

(
t− 3a + b

4

)(
t− 7a + b

8

)
df ′(t)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
b∫

a+b
2

(
t− a + 3b

4

)(
t− a + 7b

8

)
df ′(t)

∣∣∣∣∣∣∣
 .

Recall that

(3.11)

∣∣∣∣∣∣
b∫

a

g(t)df(t)

∣∣∣∣∣∣ ≤ sup
t∈[a,b]

|g(t)|
b
∨
a

(f) ,

whereg, f : [a, b] → R are such thatg is continuous on[a, b] andf is of bounded variation on
[a, b]. Now, by(3.11), the inequality(3.10) can be written in the following form∣∣∣∣∣∣(b− a)2

64
[f ′(b)− f ′(a)]− b− a

16

[
3f(a) + 10f(

a + b

2
) + 3f(b)

]
+

b∫
a

f (t) dt

∣∣∣∣∣∣(3.12)

≤ 1

2

 sup
t∈[a, a+b

2 ]

∣∣∣∣(t− 3a + b

4

)(
t− 7a + b

8

)∣∣∣∣ a+b
2∨
a

(f ′)

+ sup
t∈[a+b

2
,b]

∣∣∣∣(t− a + 3b

4

)(
t− a + 7b

8

)∣∣∣∣ b
∨

a+b
2

(f ′)

 .

But,

sup
t∈[a, a+b

2 ]

∣∣∣∣(t− 3a + b

4

)(
t− 7a + b

8

)∣∣∣∣(3.13)

= sup
t∈[a+b

2
,b]

∣∣∣∣(t− a + 3b

4

)(
t− a + 7b

8

)∣∣∣∣
=

3

25
(b− a)2 .

Finally, by substituting(3.13) into (3.12), the proof is completed.

3.3. The case whenf ′′ ∈ L1 [a, b]. For twice differentiable function whose second derivative
belongs toL1[a, b], the following Ostrowski’s type inequality holds:
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Theorem 3.4. Let f : [a, b] → R be a twice continuously differentiable function on[a, b] i.e.,

(f ∈ C2 [a, b]). Suppose thatf ′′ ∈ L1 [a, b] i.e.,

(
‖f ′′‖1 =

b∫
a

|f ′′ (t)| dt < ∞
)

. Then∣∣∣∣∣∣b− a

16

[
3 [f(a) + f(b)] + 10f(

a + b

2
)

]
− (b− a)2

64
[f ′(b)− f ′(a)]−

b∫
a

f (t) dt

∣∣∣∣∣∣(3.14)

≤ 3

25
(b− a)2 ‖f ′′‖1 .

Proof. Imposing Hölder’s inequality on(3.4), wheref ′′ ∈ L1 [a, b], and using the result(3.13)
completes the proof.

3.4. The case whenf ′ is locally Lipschitz on [a, b]. For differentiable function whose first
derivative is locally Lipschitz on[a, b], the following Ostrowski’s type inequality holds:

Theorem 3.5. Let f : [a, b] → R be a continuously differentiable function on[a, b], i.e.,
(f ∈ C1 [a, b]). Suppose thatf ′ is locally Lipschitz on[a, b] with Lipschitz constantL. Then∣∣∣∣∣∣b− a

16

[
3 [f(a) + f(b)] + 10f(

a + b

2
)

]
− (b− a)2

64
[f ′(b)− f ′(a)]−

b∫
a

f (t) dt

∣∣∣∣∣∣(3.15)

≤ 3L

26
(b− a)3 .

Proof. Recall that iff satisfies the local Lipschitz condition on[a, b] with Lipschitz constantL
then,f is of bounded variation on[a, b] such that

(3.16) sup

{
b
∨
a

(f, P ) | P is a partition of[a, b]

}
≤ L (b− a) .

Therefore, by Theorem(4) and sincef ′ is locally Lipschitz on[a, b] with Lipschitz constantL,
then(3.15) can be obtained.

4. APPLICATIONS

4.1. Applications to special means.Before we start, we introduce the following means:
(1) The arithmetic mean,

A(a, b) =
a + b

2
, a, b ∈ R

(2) The geometric mean,
G(a, b) =

√
ab, a, b ≥ 0

(3) The harmonic mean,

H(a, b) =
2

1
a

+ 1
b

, a, b > 0

(4) The logarithmic mean,

L(a, b) =

{
a, a = b

b−a
ln b−ln a

, a 6= b
, a, b > 0

(5) Thep-logarithmic mean,

Lp(a, b) =

{
a, a = b(

bp+1−ap+1

(p+1)(b−a)

) 1
p
, a 6= b

, a, b > 0, p ∈ R\ {−1, 0}
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(6) The identric mean,

I(a, b) =

{
a, a = b

1
e

(
bb

aa

) 1
b−a

, a 6= b
, a, b > 0.

Now, we deduce some inequalities for the above means, by considering(3.1) and the use of
particular functions, as follows:

Corollary 4.1. Let a, b ∈ R+ such thea < b, andn ∈ Z \ {−1, 0, 1, 2}. Then the following
inequality holds:∣∣∣∣∣Ln

n(a, b) +
(b− a)2

64
n (n− 1) Ln−2

n−2(a, b)− 3A(an, bn) + 5An(a, b)

8

∣∣∣∣∣(4.1)

≤ 17

3.29
(b− a)2 δn(a, b),

where

δn(a, b) =

{
n (n− 1) an−2, n ∈ (−∞, 2) \ {−1, 0, 1}
n (n− 1) bn−2, n ∈ (2,∞) .

Proof. Considerf(x) = xn, wherex ∈ [a, b] ⊂ (0,∞) andn ∈ Z \ {−1, 0, 1, 2}. Then we
have

(4.2)

[
3 [f(a) + f(b)] + 10f(

a + b

2
)

]
= 6A(an, bn) + 10An(a, b),

(4.3) [f ′(b)− f ′(a)] = (b− a) n (n− 1) Ln−2
n−2(a, b),

b∫
a

f (t) dt = (b− a) Ln
n(a, b),

and

(4.4) ‖f ′′‖∞ =

{
n (n− 1) an−2, n ∈ (−∞, 2) \ {−1, 0, 1}
n (n− 1) bn−2, n ∈ (2,∞) .

Now, substituting equations(4.2), (4.3) and(4.4) into inequality(3.1) completes the proof.

Similarly, the following can be obtained by considering, respectively,f(x) = 1
x

andf(x) =
ln x for x ∈ [a, b] ⊂ (0,∞):

Corollary 4.2. Leta, b ∈ R+ such thea < b, then the following inequality holds:∣∣∣∣∣L−1(a, b)− 3H−1 (a, b) + 5A−1 (a, b)

8
+

(b− a)2 H−1 (a, b)

32ab

∣∣∣∣∣(4.5)

≤ 17

3.28

(b− a)2

a3
,

Corollary 4.3. Leta, b ∈ R+ such thea < b, then the following inequality holds:∣∣∣∣∣ln
(

A5 (a, b) .G3 (a, b)

I8(a, b)

)
+

(b− a)2 G−2 (a, b)

8

∣∣∣∣∣(4.6)

≤ 17

3.26

(
b− a

a

)2

.
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4.2. Applications to quadrature rules. Let In : a = x0 < x1 < x2 < .... < xn−1 < xn = b
be a partition of the interval[a, b] and defineδi = xi+1 − xi for i = 0, 1, · · · , n − 1 such that
υ(δ) := max {δi | i = 0, 1, ....., n− 1}. Now, consider the following general quadrature rule:
(4.7)

Qn (f, In) =
n−1∑
i=0

(
1

16

[
3 [f(xi) + f(xi+1)] + 10f(

xi + xi+1

2
)

]
− δi

64
[f ′(xi+1)− f ′(xi)]

)
δi

Then the following Theorems holds:

Theorem 4.4.Letf : [a, b] → R such thatf ∈ C2 [a, b] andf ′′ ∈ L∞ [a, b]. Then

(4.8)

b∫
a

f (x) dx = Qn (f, In) + Rn (f, In) ,

whereQn (f, In) is defined by formula(4 .7 ), and the remainderRn (f, In) satisfies the esti-
mates

(4.9) |Rn (f, In)| ≤ 17n

3.29
(υ(δ))3 ‖f ′′‖∞ .

Proof. Applying (3.1) to the interval[xi, xi+1], we get∣∣∣∣∣∣ δi

16

[
3 [f(xi) + f(xi+1)] + 10f(

xi + xi+1

2
)

]
− δ2

i

64
[f ′(xi+1)− f ′(xi)]−

xi+1∫
xi

f (t) dt

∣∣∣∣∣∣(4.10)

≤ 17

3.29
δ3

i ‖f ′′‖∞ .

for all i = 0, 1, ....., n − 1. Therefore, by summing(4.10) over i from 0 to n − 1, we get
(4.8).

Theorem 4.5. Let f : [a, b] → R be such thatf ∈ C1 [a, b]. Suppose thatf ′ is of bounded
variation on[a, b]. Then

(4.11)

b∫
a

f (x) dx = Qn (f, In) + Sn (f, In) ,

whereQn (f, In) is defined by formula(4 .7 ), and the remainderSn (f, In) satisfies the esti-
mates

(4.12) |Sn (f, In)| ≤ 3

26
(υ(δ))2 b

∨
a

(f ′) .

Proof. Applying (3.8) to the interval[xi, xi+1], we get∣∣∣∣∣∣ δi

16

[
3 [f(xi) + f(xi+1)] + 10f(

xi + xi+1

2
)

]
− δ2

i

64
[f ′(xi+1)− f ′(xi)]−

xi+1∫
xi

f (t) dt

∣∣∣∣∣∣(4.13)

≤ 3

26
δ2

i

xi+1

∨
xi

(f ′) .

for all i = 0, 1, ....., n − 1. Therefore, by summing(4.13) over i from 0 to n − 1, we get
(4.11).
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Theorem 4.6.Letf : [a, b] → R be such thatf ∈ C2 [a, b] andf ′′ ∈ L1 [a, b]. Then

(4.14)

b∫
a

f (x) dx = Qn (f, In) + Mn (f, In) ,

whereQn (f, In) is defined by formula(4 .7 ), and the remainderMn (f, In) satisfies the esti-
mates

(4.15) |Mn (f, In)| ≤ 3n

25
(υ(δ))2 ‖f ′′‖1 .

Proof. Applying (3.14) to the interval[xi, xi+1], we get∣∣∣∣∣∣ δi

16

[
3 [f(xi) + f(xi+1)] + 10f(

xi + xi+1

2
)

]
− δ2

i

64
[f ′(xi+1)− f ′(xi)]−

xi+1∫
xi

f (t) dt

∣∣∣∣∣∣(4.16)

≤ 3

25
δ2

i ‖f ′′‖1 .

for all i = 0, 1, ....., n − 1. Therefore, by summing(4.16) over i from 0 to n − 1, we get
(4.14).

Theorem 4.7.Letf : [a, b] → R be such thatf ∈ C1 [a, b]. Suppose thatf ′ is locally Lipschitz
on [a, b] with Lipschitz constantL. Then

(4.17)

b∫
a

f (x) dx = Qn (f, In) + Nn (f, In) ,

whereQn (f, In) is defined by formula(4 .7 ), and the remainderNn (f, In) satisfies the esti-
mates

(4.18) |Nn (f, In)| ≤ 3nL

26
(υ(δ))3 .

Proof. Applying (3.15) to the interval[xi, xi+1], we get∣∣∣∣∣∣ δi

16

[
3 [f(xi) + f(xi+1)] + 10f(

xi + xi+1

2
)

]
− δ2

i

64
[f ′(xi+1)− f ′(xi)]−

xi+1∫
xi

f (t) dt

∣∣∣∣∣∣(4.19)

≤ 3L

26
δ3

i .

for all i = 0, 1, ....., n − 1. Therefore, by summing(4.19) over i from 0 to n − 1, we get
(4.17).
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