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ABSTRACT. Anasymmetric Fuglede-Putnam'’s theorem for dominant operatons-apdonormal
operators is proved, as a consequence of this result, we obtain that the range of the generalized
derivation induced by the above classes of operators is orthogonal to its kernel.
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2 A. BACHIR AND A. SAGRES

1. INTRODUCTION

Let L(H) be the class of all bounded operators acting on a complex Hilbert dpackn
operator’ € L(H) is said to bep—hyponormal if (T*7")? — (T'T*)? > 0,for 0 < p <
1). If p = 1, T is called hyponormal and if = 1/2, T is called semi-hyponormal. It is
well known that gp—hyponormal operator ig—hyponormal operator faf < p. Hyponormal
operators have been studied by many authors and it is known that hyponormal operators have
many interesting properties similar to those of normal operators. Semi-hyponormal operators
were first introduced by D. Xia [13h-hyponormal operators have been studied by A. Aluthge
[1], M. Cho [4], |5] and Uchiyama [11]. The set of all p-hyponormal is denotegp by H.
According to [ 7], a bounded operatéris called dominant if

(T'—21)H C (T —zI)"H, forall z € o(T),

whereo(7T) denote the spectrum @f. This condition is equivalent to existence of a positive
constantV/, for everyz € o(7T') such that

(T — 2I)(T — 2I)* < M2(T — z1)*(T — 2I).
If there exists a constant/ such thatM, < M for all z € o(T) thenT is called M —
hyponormal, and if\/ = 1, T" is hyponormal. Easily we see the following inclusion relations:

Normal C Hyponormal C M — hyponormal C Dominant.
Given A, B € L(H), we define the generalized derivation
dap:L(H)— L(H) by 04p(X)=AX - XB.

J. Anderson and C. Foias|[3] proved that4dfand B are normal operators, theR(d 4 5)
is orthogonal taier(d4,5), WwhereR (4 5) and Ker(d4 ) denotes the range of, 5 and the
kernel ofé 4 5 respectively. The orthogonality here is understood to be in the sense of definition
in [2].

In this paper, our purpose is to prove the following results:

Theorem 1.1.Let A, B € L(H) be such thatd is dominant and3* is p-hyponormal (| < p <
1).If AC = CBforsomeC € L(H), thenA*C = CB*.

This result is known as Fuglede-Puthnam-Rosemblum’s theorem.

Theorem 1.2.1f A, B € L(H) are such thatd is dominant andB* is p-hyponormal ( < p <
1), thenR(0 4 5) is orthogonal toier (6 4 ).

2. PRELIMINARIES
In this section, we recall some results which will be used in the sequel.

Definition 2.1. Given A, B € L(H). We say that the pait4, B) has(F' P) ) the Fuglede-
Putnam property ifAC' = C'B for someC' € L(H), impliesA*C = CB*.

Theorem 2.1.([I) f T € p — H andT = U | T | the polar decomposition df, then
| T |2 U | T |"?is hyponormal forl /2 < p < 1.
The next theorem is due to Duggal [6]. This theorem plays important role in our arguments.

Theorem 2.2.([6]) Let A, B € L(H). The following assertions are equivalent
(i) The pair (A, B) has the property F'P) 1(x).

(ii) If AC = CB forsomeC € L(H), thenR(C) reducesA, (KerC)* reducesB and A e
and B | g..c). are normal operators.
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Theorem 2.3.([12]) If T € p — H and M be an invariant subspace @f for whichT" |;, is
normal, thenM reducesr'.

Let’'s now give the well-known result.

Lemma2.4.LetT € L(H)andT = U | T | be the polar decomposition @f, then
T* = U* | T* | is the polar decomposition af*.

Lemma 2.5. Let A be a dominat operator andl be an invariant subspace df, thenA |, is a
dominant operator.

Proof. Let P be the orthogonal projection dn Then for allz € C and for allz € L,
| (Al —zI)"z ||=[| P(A—zI)"z) [|<|| (A= 2I)"z) |
<M. || (A=zha) [[< M. || (Al —=D)z) ||

3. MAIN RESULTS

In this section, we prove that the Fuglede-Putnam theorem holds whemominant and
B*e€p— Hfor(0<p<1).

Theorem 3.1.Let A, B € L(H) be such thatd is dominant and3* € p — H for (0 < p < 1).
Then the pair( A, B) has(F'P) ) the Fuglede-Putnam property.

Proof. (Case 1.1/2 < p < 1). Suppose thalC = CB for someC' € L(H). SinceKerA
reducesd and Ker B* reducesB* by [5], we can writed, B andC' as follows:

A 0 B0 e
S G O Rl e

on the following decompositions @ :

H = (KerA)* @ (KerA) = (KerB*)* @ (KerB*).
From AC = CB, it follows thatA,C, = C1B; andA,Cy = C3B; = 0. SinceA; and B are
one-to-one mapping, we obtairy = (5 = 0.
Let’s consider the equality

(31) Alcl = ClBl-

SinceR(C4) andKer(C4) are invariant subspaces df and B; respectively, by the decom-
positions

(KerA)*t = R(Cy) @ [R(C))]* and [Ker(B))|* = [Ker(Cy)]*: @ Ker(Cy),
we have

| Ap S | Bn 0 _|Cn 0
e O R - R A

From equality[(3.]L), we obtain
(3.2) A1 Cy = Ci By

Let B;; = U | By, | be the polar decomposition @,,. SinceU | By, |=| B}, | U by
Lemmé& 2.4. Hence the equalify (B.2) becomes
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(3.3) AnCn =Cu | By | U
Let's multiply the two members of (3.3) byB;, |'/2 in right. Hence

An(Cu | By M) = (Cu | By M) | B V2 U | By |2

Since the Aluthge transfori;, =| B:, |'/2 U* | B}, |'/? is hyponormal for(1/2 < p < 1) by
Theore andl;; is dominant by Lemm.5. Hence the pgit;;, B;;) has the Fuglede-
Putnam property by [7].

Therefore the restrictions

All |R(Cll|Bf1‘1/2) and Bikl ‘[KET(CHIBTI‘I/Z)}J_

are normal operators by Theorém|2.2.

Since(; is a one-to-one mapping with dense range i, |'/2 is a one-to-one mapping,
it's follows that

R(Cyy | Bf; [V?) = R(Ch1) = R(Ch)
and
Ker(Cyy | B, |VY?) = Ker(Cyy) = KerC.

HenceBy, is normal by [11]. Thereforé;; is normal by [7], [10].

SinceA; is dominant, by Lemm@.S and the restrictidp, is normal, then?(C,) reduces
Ay by [9], similarly, sinceB; € p— H and the restrictio,; is normal, thenKerC,]* reduces
Bj by Theorenj 23. Since the pdid,;, B1;) has the Fuglede-Putnam property, then

AEC’H - CllBikl-

This implies that
ATCl - ClBik
Since

A0 . [aBr 0
Ac_{o 0], CB_[O 0],

we obtain
A*C = CB".
(Case 20 < p < 1/2). We putp’ = p + 1/2, wherep’ € (1/2,1]. It comes back thaB;, is
p'—hyponormal. The rest of the proof is similar to the proof of the first case.
Theorem 3.2.1f A is dominant andB* € p — H, thenR(d 4 g) is orthogonal toier (6 4 5).

Proof. The pair(A, B) has the F'P) ) property by Theorein 3/1. Lét € L(H) be such that
AC = C'B. According to the following decompositions éf:

H=H =RC)®R(C), H=H=(KerO)*® KerC.

We can writeA, B, C'and X

A0 [B 0 T X X,
e O EE 0 A BRSO R S

where A, and B; are normal operators and is an operator ot/ into H,. SinceAC = CB,
we obtainA;C; = ¢, B;. Hence

AX — XB-—-C = |:A1X1_XIBI_01 AQXQ—X2B2:| '

A1X3 — XgBl A2X4 — X4B2
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SinceC, € Ker(da, p,) andA; and B, are normal operators. Hence by [3]
| AX = XB—C |2l AX, - X,B — Gy 12| G =l C || VX € L(H).
This implies thatR(d 4 5 ) is orthogonal taer (64, 5). 1
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