

The Australian Journal of Mathematical Analysis and Applications

AJMAA

Volume 1, Issue 1, Article 12, pp. 1-5, 2004

GENERALIZED FUGLEDE-PUTNAM THEOREM AND ORTHOGONALITY

A. BACHIR AND A. SAGRES

Received 19 May 2004; accepted 8 June 2004; published 7 August 2004.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KING KHALED UNIVERSITY, ABHA, P.O. BOX 9004 KINGDOM SAUDI ARABIA bachir_ahmed@hotmail.com sagres@hotmail.com

ABSTRACT. An asymmetric Fuglede-Putnam's theorem for dominant operators and *p*-hyponormal operators is proved, as a consequence of this result, we obtain that the range of the generalized derivation induced by the above classes of operators is orthogonal to its kernel.

Key words and phrases: Derivation, Orthogonality, Fuglede-Putnam property.

1991 Mathematics Subject Classification. 47A30, 47B20, 47B47.

ISSN (electronic): 1449-5910

^{© 2004} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

Let L(H) be the class of all bounded operators acting on a complex Hilbert space H. An operator $T \in L(H)$ is said to be p-hyponormal if $(T^*T)^p - (TT^*)^p \ge 0$, for 0). If <math>p = 1, T is called hyponormal and if p = 1/2, T is called semi-hyponormal. It is well known that a p-hyponormal operator is q-hyponormal operator for $q \le p$. Hyponormal operators have been studied by many authors and it is known that hyponormal operators have many interesting properties similar to those of normal operators. Semi-hyponormal operators were first introduced by D. Xia [13], p-hyponormal operators have been studied by A. Aluthge [1], M. Cho [4], [5] and Uchiyama [11]. The set of all p-hyponormal is denoted by p - H. According to [7], a bounded operator T is called dominant if

$$(T - zI)H \subseteq (T - zI)^*H$$
, for all $z \in \sigma(T)$,

where $\sigma(T)$ denote the spectrum of T. This condition is equivalent to existence of a positive constant M_z for every $z \in \sigma(T)$ such that

$$(T - zI)(T - zI)^* \le M_z^2(T - zI)^*(T - zI).$$

If there exists a constant M such that $M_z \leq M$ for all $z \in \sigma(T)$ then T is called M-hyponormal, and if M = 1, T is hyponormal. Easily we see the following inclusion relations:

 $Normal \subset Hyponormal \subset M - hyponormal \subset Dominant.$

Given $A, B \in L(H)$, we define the generalized derivation

 $\delta_{A,B}: L(H) \to L(H)$ by $\delta_{A,B}(X) = AX - XB$.

J. Anderson and C. Foias [3] proved that if A and B are normal operators, then $R(\delta_{A,B})$ is orthogonal to $Ker(\delta_{A,B})$, where $R(\delta_{A,B})$ and $Ker(\delta_{A,B})$ denotes the range of $\delta_{A,B}$ and the kernel of $\delta_{A,B}$ respectively. The orthogonality here is understood to be in the sense of definition in [2].

In this paper, our purpose is to prove the following results:

Theorem 1.1. Let $A, B \in L(H)$ be such that A is dominant and B^* is p-hyponormal (0 . If <math>AC = CB for some $C \in L(H)$, then $A^*C = CB^*$.

This result is known as Fuglede-Putnam-Rosemblum's theorem.

Theorem 1.2. If $A, B \in L(H)$ are such that A is dominant and B^* is p-hyponormal ($0), then <math>R(\delta_{A,B})$ is orthogonal to $Ker(\delta_{A,B})$.

2. PRELIMINARIES

In this section, we recall some results which will be used in the sequel.

Definition 2.1. Given $A, B \in L(H)$. We say that the pair (A, B) has $(FP)_{L(H)}$ the Fuglede-Putnam property if AC = CB for some $C \in L(H)$, implies $A^*C = CB^*$.

Theorem 2.1. ([1]) If $T \in p - H$ and T = U | T | the polar decomposition of T, then $|T|^{1/2} U | T |^{1/2}$ is hyponormal for $1/2 \le p \le 1$.

The next theorem is due to Duggal [6]. This theorem plays important role in our arguments.

Theorem 2.2. ([6]) Let $A, B \in L(H)$. The following assertions are equivalent (i) The pair (A, B) has the property $(FP)_{L(H)}$.

(ii) If AC = CB for some $C \in L(H)$, then $\overline{R(C)}$ reduces A, $(KerC)^{\perp}$ reduces B and $A \mid_{\overline{R(C)}}$ and $B \mid_{(KerC)^{\perp}}$ are normal operators.

Theorem 2.3. ([12]) If $T \in p - H$ and M be an invariant subspace of T for which $T \mid_M$ is normal, then M reduces T.

Let's now give the well-known result.

Lemma 2.4. Let $T \in L(H)$ and T = U | T | be the polar decomposition of T, then $T^* = U^* | T^* |$ is the polar decomposition of T^* .

Lemma 2.5. Let A be a dominat operator and L be an invariant subspace of A, then $A \mid_L$ is a dominant operator.

Proof. Let P be the orthogonal projection on L. Then for all $z \in \mathbb{C}$ and for all $x \in L$,

$$\| (A |_L - zI)^* x \| = \| P(A - zI)^* x) \| \le \| (A - zI)^* x) \|$$

$$\le M_z \| (A - zI) x) \| \le M_z \| (A |_L - zI) x) \|.$$

3. MAIN RESULTS

In this section, we prove that the Fuglede-Putnam theorem holds when A is dominant and $B^* \in p - H$ for (0 .

Theorem 3.1. Let $A, B \in L(H)$ be such that A is dominant and $B^* \in p - H$ for (0 .Then the pair <math>(A, B) has $(FP)_{L(H)}$ the Fuglede-Putnam property.

Proof. (Case 1. $1/2 \le p \le 1$). Suppose that AC = CB for some $C \in L(H)$. Since KerA reduces A and $KerB^*$ reduces B^* by [5], we can write A, B and C as follows:

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} B_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} C_1 & C_2 \\ C_3 & C_4 \end{bmatrix},$$

on the following decompositions of H:

$$H = (KerA)^{\perp} \oplus (KerA) = (KerB^*)^{\perp} \oplus (KerB^*).$$

From AC = CB, it follows that $A_1C_1 = C_1B_1$ and $A_1C_2 = C_3B_1 = 0$. Since A_1 and B_1^* are one-to-one mapping, we obtain $C_2 = C_3 = 0$.

Let's consider the equality

$$(3.1) A_1 C_1 = C_1 B_1$$

Since $R(C_1)$ and $Ker(C_1)$ are invariant subspaces of A_1 and B_1 respectively, by the decompositions

$$(KerA_1)^{\perp} = \overline{R(C_1)} \oplus [R(C_1)]^{\perp}$$
 and $[Ker(B_1)]^{\perp} = [Ker(C_1)]^{\perp} \oplus Ker(C_1)$,

we have

$$A_1 = \begin{bmatrix} A_{11} & S \\ 0 & T \end{bmatrix}, \quad B_1 = \begin{bmatrix} B_{11} & 0 \\ E & G \end{bmatrix}, \quad C_1 = \begin{bmatrix} C_{11} & 0 \\ 0 & 0 \end{bmatrix}.$$

From equality (3.1), we obtain

$$(3.2) A_{11}C_{11} = C_{11}B_{11}.$$

Let $B_{11} = U | B_{11} |$ be the polar decomposition of B_{11} . Since $U | B_{11} | = | B_{11}^* | U$ by Lemma 2.4. Hence the equality (3.2) becomes

(3.3)
$$A_{11}C_{11} = C_{11} \mid B_{11}^* \mid U.$$

Let's multiply the two members of (3.3) by $|B_{11}^*|^{1/2}$ in right. Hence

$$A_{11}(C_{11} \mid B_{11}^* \mid ^{1/2}) = (C_{11} \mid B_{11}^* \mid ^{1/2}) \mid B_{11}^* \mid ^{1/2} U \mid B_{11}^* \mid ^{1/2}.$$

Since the Aluthge transform $\widetilde{B_{11}^*} = |B_{11}^*|^{1/2} U^* |B_{11}^*|^{1/2}$ is hyponormal for $(1/2 by Theorem 2.1 and <math>A_{11}$ is dominant by Lemma 2.5. Hence the pair $(A_{11}, \widetilde{B_{11}^*})$ has the Fuglede-Putnam property by [7].

Therefore the restrictions

$$A_{11} \mid_{\overline{R(C_{11}\mid B_{11}^*\mid^{1/2})}}$$
 and $B_{11}^* \mid_{[Ker(C_{11}\mid B_{11}^*\mid^{1/2})]^{\perp}}$

are normal operators by Theorem 2.2.

Since C_{11} is a one-to-one mapping with dense range and $|B_{11}^*|^{1/2}$ is a one-to-one mapping, it's follows that

$$R(C_{11} \mid B_{11}^* \mid^{1/2}) = R(C_{11}) = R(C_1)$$

and

$$Ker(C_{11} \mid B_{11}^* \mid^{1/2}) = Ker(C_{11}) = KerC_1$$

Hence $\widetilde{B_{11}^*}$ is normal by [11]. Therefore B_{11} is normal by [7], [10].

Since A_1 is dominant, by Lemma 2.5 and the restriction A_{11} is normal, then $\overline{R(C_1)}$ reduces A_1 by [9], similarly, since $B_1^* \in p - H$ and the restriction B_{11} is normal, then $[KerC_1]^{\perp}$ reduces B_1^* by Theorem 2.3. Since the pair (A_{11}, B_{11}) has the Fuglede-Putnam property, then

$$A_{11}^*C_{11} = C_{11}B_{11}^*$$

This implies that

$$A_1^*C_1 = C_1B_1^*.$$

Since

$$A^*C = \begin{bmatrix} A_1^*C_1 & 0\\ 0 & 0 \end{bmatrix}, \quad CB^* = \begin{bmatrix} C_1B_1^* & 0\\ 0 & 0 \end{bmatrix}$$

we obtain

(Case 2.
$$0). We put $p' = p + 1/2$, where $p' \in (1/2, 1]$. It comes back that B_{11}^* is p' -hyponormal. The rest of the proof is similar to the proof of the first case.$$

 $A^*C = CB^*.$

Theorem 3.2. If A is dominant and $B^* \in p - H$, then $R(\delta_{A,B})$ is orthogonal to $Ker(\delta_{A,B})$.

Proof. The pair (A, B) has the $(FP)_{L(H)}$ property by Theorem 3.1. Let $C \in L(H)$ be such that AC = CB. According to the following decompositions of H:

$$H = H_1 = \overline{R(C)} \oplus \overline{R(C)}^{\perp}, \qquad H = H_2 = (KerC)^{\perp} \oplus KerC.$$

We can write A, B, C and X

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \quad B = \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix}, \quad C = \begin{bmatrix} C_1 & 0 \\ 0 & 0 \end{bmatrix}, \quad X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix},$$

where A_1 and B_1 are normal operators and X is an operator on H_1 into H_2 . Since AC = CB, we obtain $A_1C_1 = C_1B_1$. Hence

$$AX - XB - C = \begin{bmatrix} A_1X_1 - X_1B_1 - C_1 & A_2X_2 - X_2B_2 \\ A_1X_3 - X_3B_1 & A_2X_4 - X_4B_2 \end{bmatrix}.$$

Since $C_1 \in Ker(\delta_{A_1,B_1})$ and A_1 and B_1 are normal operators. Hence by [3]

 $||AX - XB - C|| \ge ||A_1X_1 - X_1B_1 - C_1|| \ge ||C_1|| = ||C|| \quad \forall X \in L(H).$

This implies that $R(\delta_{A,B})$ is orthogonal to $Ker(\delta_{A,B})$.

REFERENCES

- [1] A. ALUTHGE, On p-Hyponormal operators for 0 , Integr. Equat. Oper. Th., 13 (1990), 307-315.
- [2] J. H. ANDERSON, On normal derivation, Proc. Amer. Math. Soc., 38 (1973), 135-140.
- [3] J. H. ANDERSON and C. FOIAS, Properties which normal operators share with normal derivations and relared operators, *Pacific. J. Math.*, **61** (1975), 313-325.
- [4] M. CHO, Spectral properties of p-Hyponormal operators for 0 ,*Glasgow. Math. J.*,**36**(1992), pp. 117-122.
- [5] M. CHO and T. HURUYA, p-Hyponormal operators for 0 , Comment. Math., 33 (1993), pp. 23-29.
- [6] B.P. DUGGAL, On intertwining operators, Mh. Math., 106 (1988), pp. 139-148.
- [7] B.P. DUGGAL, On dominant operators, Arch. Math., 46 (1986), 353-359.
- [8] S.M. PATEL, On intertwining *p*-hyponormal operators, *Indian J. math.*, **38** (1996), 287-290
- [9] J.G. STAMPFLI and B.L. WADHWA, On dominant operators, *Monatshefte. Für. Math.*, 84 (1977), pp. 33-36.
- [10] H. TADASHI, A note on *p*-Hyponormal operators, *Proc. Amer. Math. Soc.*, **125** (1997), pp. 221-230.
- [11] A. UCHIYAMA, Berger-Shaw's theorem for *p*-Hyponormal operators, *Integr. Equat. Oper. Th.*, 33 (1997).
- [12] A. UCHIYAMA and K. TANAHASHI, Fuglede-Putnam's theorem for *p*-hyponormal or *log*-Hyponormal operators, to appear.
- [13] D. XIA, On the nonnormal operators semi-hyponormal operators, *Sci. Sinica*, 23 (1980), pp. 700-713.