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ABSTRACT. The study of optimization methods on manifolds has emerged as an immensely
significant topic in mathematics due its ubiquitous applicability as well as various computa-
tional advantages associated with it. Motivated by this fact, the present article is devoted to
the study of a class of constrained multiobjective programming problems (MOPP) in the frame-
work of Hadamard manifolds. We present the generalized Guignard constraint qualification
(GGCQ) in the framework of Hadamard manifolds for (MOPP). Employing (GGCQ), we de-
rive Karush-Kuhn-Tucker type necessary optimality criteria for (MOPP). Moreover, we present
several other constraint qualifications (CQs) on Hadamard manifolds, namely, Abadie’s CQ,
generalized Abadie’s CQ, Cottle-type CQ, Slater-type CQ, linear CQ, linear objective CQ and
Mangasarian-Fromovitz CQ. Further, we establish various relations between these constraint
qualifications. In particular, we show that these constraint qualifications, in turn, become suffi-
cient conditions ensuring that (GGCQ) is satisfied.
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1. INTRODUCTION

In recent times, it has frequently been observed that a lot of nonlinear mathematical pro-
gramming problems arise in several real world applications which require to be formulated
on smooth manifolds (see, [11, 12]). As a result, despite the fact that generalizing the meth-
ods and algorithms of optimization from Euclidean spaces to the framework of manifolds is a
non-trivial task, it is fairly obvious to realize the necessity of such endeavours from a practical
point of view. In this regard, Rapcsák [9] and Udrişte [14] introduced a generalization of the
convexity notion, namely, geodesic convexity in the framework of Riemannian manifolds. In
such setting, the usual linear space is replaced by a Riemannian manifold, and a line segment
is redefined in terms of ‘geodesic’. Generalizing and extending the theories of optimization
from Euclidean space to the framework of Riemannian manifold is significantly advantageous.
For instance, by employing suitable Riemannian geometry perspective, a constrained optimiza-
tion problem can be often treated as an unconstrained problem. Additionally, by incorporating
suitable Riemannian metric, one can conveniently transform many nonconvex programming
problems into convex programming problems, (see, for instance, [10, 11]). For all these rea-
sons, in recent times, various scholars have generalized and extended numerous concepts and
ideas in mathematical programming from Euclidean plane to Riemannian manifolds; see for
instance, [1, 2, 19, 20, 16] and the references cited therein.

In theory of optimization, Karush-Kuhn-Tucker (in short, KKT) type optimality criteria is of
utmost importance, both from theoretical as well as numerical point of view. Constraint qual-
ifications are certain conditions imposed on a nonlinear programming problem that ensure the
satisfaction of KKT conditions at an optimal point. Thus, constraint qualifications play a very
crucial role in deducing KKT type optimality conditions. KKT type optimality criteria and their
applications have been studied extensively by many notable authors. We refer to the the paper
[5] for a brief history of such conditions in the Euclidean space setting.

Maeda [7] studied differentiable multiobjective optimization problems and constraint quali-
fications in Rn. Constraint qualifications for nonsmooth multiobjective optimization problems
in Rn were explored by Li [6]. Yang et al. [21] investigated optimality criteria for nonlinear
optimization problems on Riemannian manifolds. Intrinsic formulation of KKT conditions and
constraint qualifications on smooth manifolds were discussed by Bergman and Herzog [3].

Motivated by the results derived in [3, 6, 7] as well as by the importance of optimization in
the context of smooth manifolds, in this article, we focus on studying a class of smooth multi-
objective programming problems on Hadamard manifolds (MOPP). The novelty of our work is
discussed as follows. We present the generalized Guignard constraint qualification (GGCQ) in
Hadamard manifold setting for (MOPP). Employing (GGCQ), we derive Karush-Kuhn-Tucker
type necessary optimality criteria for (MOPP). Further, we present some other constraint qualifi-
cations, namely, Abadie’s constraint qualification, generalized Abadie’s constraint qualification,
Cottle-type constraint qualification, Slater-type constraint qualification, linear constraint quali-
fication, linear objective constraint qualification and Mangasarian-Fromovitz constraint qualifi-
cation. Moreover, we derive several interesting relations between these constraint qualifications.
In particular, we show that these constraint qualifications are in fact, sufficient conditions which
ensure that (GGCQ) is satisfied. The results presented in this paper generalize and extend the
corresponding results derived by Maeda [7] in the framework of an even more general space,
namely, Hadamard manifolds.
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CONSTRAINT QUALIFICATIONS FOR MOPP ON HADAMARD MANIFOLDS 3

The organization of the paper is as follows. In Section 2, we recall some mathematical
notation and preliminary concepts that will be used throughout this article. In Section 3, we
present the generalized Guignard constraint qualification in Hadamard manifold framework
and employ it to derive KKT type necessary conditions for (MOPP). In Section 4, we present
several other constraint qualifications for (MOPP), and establish sufficient conditions ensuring
(GGCQ). In Section 5, conclusions are drawn as well as some future research directions are
mentioned.

2. NOTATION AND MATHEMATICAL PRELIMINARIES

Throughout this article, the standard notation N and Rn signify the set of all naturals and the
n-dimensional Euclidean space, respectively. The Euclidean inner product on Rn is denoted
by ⟨·, ·⟩. For any pair of elements u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn, the following
notational conventions are used

u ≦ v ⇐⇒ uj ≦ vj, ∀j = 1, 2, . . . , n,

u ≺ v ⇐⇒ uj < vj, ∀j = 1, 2, ..., n.

u ⪯ v ⇐⇒

{
uj ≦ vj, for all j = 1, 2, ..., n; j ̸= k,

uk < vk, for at least one k ∈ {1, 2, .., n}.

The notation u ⊀ v (respectively, u ⪯̸ v) indicates the negation of u ≺ v (respectively, u ⪯ v).

Let the notation H denote an n-dimensional smooth manifold. A Riemannian metric on
a smooth manifold H is a positive definite and symmetric 2-tensor field G . A Riemannian
metric induces an inner product on every tangent space TpH and this inner product is denoted
by the symbol G (u, v) = ⟨u, v⟩p for every p ∈ H and u, v ∈ TpH . Any smooth manifold
endowed with some Riemannian metric is referred to as a Riemannian manifold. For any ele-
ment p ∈ H , the exponential map expp : TpH → H is defined as expp(q) = γp,q(1) for any
q ∈ TpH , where γp,q is the geodesic that starts at the point p ∈ H with a velocity q.

A Riemannian manifold H is termed as geodesic complete, if for any arbitrary element
u ∈ H , the exponential map expu(v) is defined for every v ∈ TpH . Any Riemannian manifold
that is complete, simply connected and has a nonpositive sectional curvature everywhere is
termed as a Cartan-Hadamard manifold, or simply, Hadamard manifold. Let p ∈ H be any
arbitrary element of a Hadamard manifold H . Then the exponential map expp : TpH →
H is a diffeomorphism. Further, the inverse exponential map exp−1

p : H → TpH satisfies
exp−1

p (p) = 0p. Moreover, for every element q ∈ H , there always exists some unique minimal
geodesic γp,q : [0, 1] → H , which satisfies γp,q(t) = expp(texp −1

p (q)). The gradient of
a smooth map Φ : H → R, denoted by grad Ψ, is a vector field on H defined through
dΦ(X) = ⟨gradΦ, X⟩ = X(Φ), where X is also a vector field on the manifold H .
The following definition is from Udrişte [14].

Definition 2.1. Any subset S of a Hadamard manifold H is said to be a geodesic convex set
in H , if for every pair of distinct elements x, y ∈ S and for any geodesic γx,y : [0, 1] → H
joining the points x and y, we have

γx,y(t) ∈ S, ∀t ∈ [0, 1],

where, γx,y(t) = expx (t exp
−1
x (y)).

The following definition is from Rapcsák [9].
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Definition 2.2. Let S be a geodesic convex subset of a Hadamard manifold H and let g : S →
R be a real valued function on S. Then g is referred to as a geodesic convex function at y ∈ S
if and only if the following holds

g(z)− g(y) ≥
〈
grad g(y), exp−1

y (z)

〉
, ∀z ∈ S.

Also, g is referred to as a geodesic strictly convex function at y ∈ S if the preceding inequality
is strict, for y ̸= z.

For more comprehensive discussions on geodesic convex functions on Hadamard manifolds,
we refer to [1, 2, 9, 13, 14, 15, 17, 18] and the references cited therein. Henceforth, throughout
this article, we shall use the symbol H to denote a Hadamard manifold of dimension n, unless
otherwise specified.

3. CONSTRAINT QUALIFICATIONS FOR (MOPP)

In this article, the following constrained multiobjective programming problem on Hadamard
manifold (MOPP) is considered:

(MOPP) Minimize f(z) := (f1(z), ..., fr(z)),

subject to gj(z) ≤ 0, j = 1, 2, . . . , s.

Here, the functions fi : H → R, (i ∈ {1, 2, ..., r}) and gj : H → R, (j ∈ {1, 2, ..., s}), are all
real valued smooth functions that are defined on some n-dimensional Hadamard manifold H .
The feasible set for (MOPP), denoted by D, is given by

D := {z ∈ H : gj(z) ≤ 0, ∀j = 1, 2, . . . , s}.

We denote the set of all active inequality constraints at a feasible element z ∈ D by A (z), that
is,

A (z) := {j ∈ {1, 2, ..., s} : gj (z) = 0} .
The following definitions from Maeda [7] will be used in the sequel.

Definition 3.1. Any feasible element z̃ ∈ D is called a Pareto efficient solution of (MOPP), if
there exists no other feasible element z ∈ D which satisfies the following:

f(z) ⪯ f(z̃).

Definition 3.2. Any feasible element z̃ ∈ D is called a weak Pareto efficient solution of
(MOPP), if there exists no other feasible element z ∈ D which satisfies the following:

f(z) ≺ f(z̃).

Remark 3.1. It follows readily from the above definitions that every Pareto efficient solution
of (MOPP) is a weak Pareto efficient solution of (MOPP). The converse, however, is not true in
general.

For any arbitrary feasible element z̃ ∈ D, we define the following sets Sk and S for k =
1, . . . , r, that will be used throughout this article.

Sk := {z ∈ H | fi(z) ≦ fi (z̃) , ∀i = 1, . . . , r, i ̸= k, gj(z) ≦ 0,∀j = 1, 2, . . . , s},
S := {z ∈ H | fi(z) ≦ fi (z̃) , ∀i = 1, . . . , r, gj(z) ≦ 0, ∀j = 1, 2, . . . , s}.

In the following definition, we define the Bouligand tangent cone (in other words, contingent
cone) for any subset of a Hadamard manifold H .
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Definition 3.3. Let A ⊆ H and z be any element in the closure of the set A. Then the
Bouligand tangent cone (in other words, contingent cone) of the set A at z, denoted by T (A; z),
is defined by

T (A; z) := {w ∈ TzH : ∃tm ↓ 0,∃wm ∈ TzH ,

wm → w, expz(tmwm) ∈ A, ∀m ∈ N}.

In the following definition, we extend the notion of linearizing cone from Maeda [7] on
Hadamard manifolds for (MOPP).

Definition 3.4. For any z̃ ∈ D, the linearizing cone to the set S at the element z̃ is the set
defined as follows

T Lin (S; z̃) := {w ∈ Tz̃H :⟨grad fi (z̃) , w⟩ ≦ 0 ∀i = 1, 2, . . . , r,

⟨grad gj (z̃) , w⟩ ≦ 0, ∀j ∈ A (z̃)}.

In the following theorem we establish an interesting relationship between the contingent cone
T (S; z̃) and linearizing cone T Lin (S; z̃).

Theorem 3.1. For any arbitrary feasible element z̃ ∈ D the following holds.
r⋂

k=1

cl coT
(
Sk; z̃

)
⊆ T Lin (S; z̃) .

Proof. To begin with, we claim that

T
(
Sk; z̃

)
⊆ T Lin

(
Sk; z̃

)
, ∀k = 1, 2, . . . , r.

Let us assume that v ∈ Tz̃H is an arbitrary element in T
(
Sk; z̃

)
for any fixed k = 1, 2, . . . , r.

Then by the definition of contingent cone, ∃tm ↓ 0, ∃vm ∈ TzH , vm → v, ∀m ∈ N such that

(3.1) expz̃(tmvm) ∈ Sk.

Let us construct a sequence {zm}∞m=1 in the following manner

zm = expz̃(tmvm), ∀m ∈ N.

Then for every m ∈ N, we have the following

fi (zm) = fi (expz̃(tmvm)) ≦ fi (z̃) , ∀i = 1, 2, . . . , r and i ̸= k,

gj (zm) = gj (expz̃(tmvm)) ≦ 0 = gj (z̃) , ∀j ∈ A (z̃) .

By the Taylor expansion of fi at z̃, for every i = 1, 2, . . . r, i ̸= k, we have the following

(3.2) fi (expz̃(tmvm)) = fi(z̃) + tm ⟨grad fi(z̃)) , vm⟩+ o (tm) .

From (3.2) it follows that for every i = 1, 2, . . . r, i ̸= k, we have

(3.3)
fi (expz̃(tmvm))− fi(z̃)

tm
= ⟨grad fi(z̃), vm⟩+

o (tm)

tm
.

Since fi (zm) = fi (expz̃(tmvm)) ≦ fi (z̃), for every i = 1, 2, . . . , r, i ̸= k, then as tm → 0, it
follows from equation (3.3) that

(3.4) ⟨grad fi (z̃) , vm⟩ ≦ 0, i = 1, 2, . . . , r, i ̸= k.

Similarly, we can establish that

(3.5) ⟨grad gj (z̃) , vm⟩ ≦ 0, j ∈ A (z̃) .
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By employing the continuity and linearity properties of inner product, we obtain the following

(3.6)
⟨grad fi (z̃) , v⟩ ≦ 0, ∀i = 1, 2, . . . , r, i ̸= k,

⟨grad gj (z̃) , v⟩ ≦ 0, ∀j ∈ A (z̃) .

From (3.6) it follows that v ∈ T Lin
(
Sk; z̃

)
. This implies that

T
(
Sk; z̃

)
⊆ T Lin

(
Sk; z̃

)
, k = 1, 2, . . . , r.

The linearizing cone T Lin
(
Sk; z̃

)
is a closed convex cone. Hence it follows that

(3.7)
r⋂

k=1

cl coT
(
Sk; z̃

)
⊆

r⋂
k=1

T Lin
(
Sk; z̃

)
= T Lin (S; z̃) .

This completes the proof.

Remark 3.2. Theorem 3.1 is a generalization of Lemma 3.1 from [7] from Euclidean space to
the novel context of Hadamard manifolds.

Now, we present the generalized Guignard constraint qualification in the framework of Hadamard
manifolds for (MOPP).

Definition 3.5. Let z̃ ∈ D. Then the generalized Guignard constraint qualification (in short,
(GGCQ)) is said to be satisfied at z̃ if and only if the following holds

T Lin (S; z̃) ⊆
r⋂

i=1

cl coT
(
Si; z̃

)
.

The following theorem provides a necessary condition for efficiency of a feasible point of
(MOPP).

Theorem 3.2. Let z̃ ∈ D be an arbitrary feasible point of (MOPP) at which (GGCQ) holds. If
z̃ ∈ D is an efficient solution of (MOPP), then the following system of inequalities

⟨grad fi (z̃) , w⟩ ≦ 0, ∀i ∈ {1, . . . , r},
⟨grad fi (z̃) , w⟩ < 0, for at least one i,

⟨grad gj (z̃) , w⟩ ≦ 0, ∀j ∈ A (z̃),

has no solution w ∈ Tz̃H .

Proof. On the contrary, let us assume that there exists a vector w ∈ Tz̃H such that the following
system of inequalities is satisfied

⟨grad fi (z̃) , w⟩ ≦ 0, ∀i ∈ {1, . . . , r},
⟨grad fi (z̃) , w⟩ < 0, for at least one i,

⟨grad gj (z̃) , w⟩ ≦ 0, ∀j ∈ A (z̃).

Thus we have
w ∈ TLin (S; z̃) .

Without loss of generality, let us consider that

⟨grad f1 (z̃) , w⟩ < 0,

⟨grad fi (z̃) , w⟩ ≦ 0, i = 2, 3, . . . , r.

Since (GGCQ) is satisfied at z̃ ∈ D, it follows that

w ∈ cl coT
(
S1; z̃

)
.
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Then it follows that there exists some sequence {wm}∞m=1 ⊆ coT (S1; z̃), such that

lim
m→∞

wm = w.

Then for any element wm (m = 1, 2, . . .) of the sequence {wm}∞m=1, there exist Lm ∈ R,
λmk

≧ 0 and wmk
∈ T (S1; z̃), k = 1, 2, . . . , Lm, such that

Lm∑
k=1

λmk
= 1,

Lm∑
k=1

λmk
wmk

= wm.

For every m ∈ N and k = 1, 2, . . . , Lm, since wmk
∈ T (S1, z̃), by Definition 3.3 there exist

sequences
{
wn

mk

}∞
n=1

, wn
mk

∈ Tz̃H , ∀n ∈ N and
{
tnmk

}∞
n=1

, tnmk
(> 0) ∈ R ∀n ∈ N, with

tnmk
↓ 0, such that

lim
n→∞

wn
mk

= wmk
, expz̃(t

n
mk

wn
mk

) ∈ S1.

Let us set xn
mk

as follows
xn
mk

:= expz̃(t
n
mk

wn
mk

), ∀n ∈ N.
Then for every n ∈ N, we have the following

(3.8)
fi
(
xn
mk

)
= fi

(
expz̃(t

n
mk

wn
mk

)
)
≦ fj (z̃) , ∀i ∈ {2, 3, . . . , r},

gj
(
xn
mk

)
= gj

(
expz̃(t

n
mk

wn
mk

)
)
≦ 0, ∀j ∈ A (z̃).

Again, since z̃ ∈ D is an efficient solution of (MOPP), it follows that

f1
(
xn
mk

)
= f1

(
expz̃(t

n
mk

wn
mk

)
)
≧ f1 (z̃) , ∀n ∈ N.

From the Taylor expansion of fi at z̃, for each i ∈ {2, 3, . . . , r}, we have the following

fi
(
expz̃(t

n
mk

wn
mk

)
)
= fi(z̃) + tnmk

⟨grad fi(z̃)) , wn
mk

〉
+ o

(
tnmk

)
.

Then it follows that for each i ∈ {2, 3, . . . , r}, we have

(3.9)
fi
(
expz̃(t

n
mk

wn
mk

)
)
− fi(z̃)

tnmk

=
〈
grad fi(z̃), w

n
mk

〉
+

o
(
tnmk

)
tnmk

.

Since fi
(
xn
mk

)
= fi

(
expz̃(t

n
mk

wn
mk

)
)
≦ fi (z̃), for every i ∈ {2, 3, . . . , r}, then as tnmk

→ 0, it
follows from equation (3.9) that

⟨grad fi (z̃) , wmk
⟩ ≦ 0, ∀i ∈ {2, 3, . . . , r}.

Similarly, we can show that

⟨grad f1 (z̃) , wmk
⟩ ≧ 0,

⟨grad fi (z̃) , wmk
⟩ ≦ 0, ∀i ∈ {2, 3, . . . , r},

⟨grad gj (z̃) , wmk
⟩ ≦ 0, ∀j ∈ A (z̃).

From the continuity and linearity property of the inner product it follows that

⟨grad f1 (z̃) , w⟩ ≧ 0,

⟨grad fi (z̃) , w⟩ ≦ 0, ∀i ∈ {2, 3, . . . , r},
⟨grad gj (z̃) , w⟩ ≦ 0, ∀j ∈ A (z̃),

which is a contradiction. This completes the proof.

Remark 3.3. If H = Rn, Theorem 3.2 reduces to Theorem 3.1 from [7]. Thus, Theorem 3.2
generalizes Theorem 3.1 from [7] from Euclidean space to an even more general space, that is,
Hadamard manifolds.
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In the following theorem we deduce Karush-Kuhn-Tucker type necessary optimality criteria
for (MOPP) using (GGCQ).

Theorem 3.3. Let z̃ ∈ D be an arbitrary feasible point of (MOPP) at which (GGCQ) holds.
If z̃ ∈ D is an efficient solution of (MOPP), then there exist Lagrange multipliers αi (i =
1, . . . , r), and λj (j = 1, . . . , s) such that

r∑
i=1

αi grad fi (z̃) +
s∑

j=1

λj grad gj (z̃) = 0,

and, αi > 0, ∀i ∈ {1, . . . r},

gj (z̃) ≦ 0, λj ≧ 0, λjgj (z̃) = 0, ∀j ∈ {1, . . . , s}.
Proof. Since z̃ ∈ D is an efficient solution of (MOPP) and (GGCQ) holds at z̃, it follows from
Theorem 3.2 that the following system of inequalities

⟨grad fi (z̃) , w⟩ ≦ 0, ∀i ∈ {1, . . . , r},
⟨grad fi (z̃) , w⟩ < 0, for at least one i,

⟨grad gj (z̃) , w⟩ ≦ 0, ∀j ∈ A (z̃),

has no solution w ∈ Tz̃H . By using Tucker’s theorem of alternative ([8] pp. 29-30), it follows
that there exist αi > 0 (i ∈ {1, . . . , r}), λj ≧ 0 (j ∈ A (z̃)), such that

(3.10)
r∑

i=1

αi grad fi (z̃) +
∑

j∈A (z̃)

λj grad gj (z̃) = 0.

By setting λj = 0 (j /∈ A (z̃)), we have

(3.11)
r∑

i=1

αi grad fi (z̃) +
s∑

j=1

λj grad gj (z̃) = 0.

On the other hand, since gj (z̃) = 0 for every j ∈ A (z̃), we have

λjgj (z̃) = 0, ∀j ∈ {1, 2, . . . , s}.
This completes the proof.

Remark 3.4. If the manifold H is Rn, Theorem 3.3 reduces to Theorem 3.2 from [7]. Thus,
Theorem 3.3 generalizes Theorem 3.2 from [7] from Euclidean space to the framework of
Hadamard manifolds.

The following examples illustrate the significance of (GGCQ) and Theorem 3.3.

Example 3.1. Let us take into consideration the set H ⊂ R defined as H := {x ∈ R, x > 0}.
Then H is a Riemannian manifold (see for instance, [9], and Example 4.4 of [12]). The tangent
plane at any point x ∈ H , denoted by TxH , is the set of all reals R. H is equipped with the
Riemannian metric as defined below

⟨p, q⟩x = ⟨G (x)p, q⟩, ∀p, q ∈ TxH = R2,

where ⟨·, ·⟩ denotes the standard inner product on R2 and G (x) = 1/x2. H is also a Hadamard
manifold. The exponential map expx : TxH → H for any u ∈ TxH is given by expx(u) =
xe

u
x , ∀u ∈ H .

We take into consideration the following smooth multiobjective programming problem (P) on
H .

(P ) Minimize f(x) = (f1(x), f2(x)) := (−(x− e)3, (x− e)3),

subject to g(x) := −x ≤ e,
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where, the functions fi : H → R, (i = 1, 2) and g : H → R, are smooth real valued functions
defined on H . The feasible set F for the problem is

F = {x ∈ R, x ≥ e}.
Let us pick the feasible point z̃ = e ∈ F . Clearly z̃ is a Pareto efficient solution of (P). Then it
follows that

grad f1(x) = G (x)−1
(
−3(x− e)2

)
= −3x2(x− e)2,

grad f2(x) = G (x)−1
(
3(x− e)2

)
= 3x2(x− e)2,

grad g(x) = G (x)−1 (−1) = −x2.

Using above equations, it can be verified that

(3.12) T Lin (S; z̃) = [0,∞).

Again, for the problem (P), we can show by simple calculations that S1 = {e} and S2 = [e,∞).
Then it follows that T (S1; e) = {0} and T (S2; e) = [0,∞). Then we obtain the following

(3.13)
2⋂

i=1

cl coT
(
Si; z̃

)
= {0}.

From (3.12) and (3.13), it follows that (GGCQ) is not satisfied at the point z̃ = e ∈ F . However,
it can be verified that for any choice of Lagrange multipliers αi > 0 (i = 1, 2) and for λ = 0,
we have

(3.14)

2∑
i=1

αi grad fj (z̃) + λ grad g (z̃) = 0,

g (z̃) ≦ 0, λg (z̃) = 0.

Thus, it is verified that satisfaction of (GGCQ) is not a sufficient condition for Theorem 3.3.

Example 3.2. Let us take into consideration the set H ⊂ R defined as H := {x ∈ R, x > 0}.
Then H is a Hadamard manifold, as explained in Example 3.1.
We take into consideration the following smooth multiobjective programming problem (MP) on
H .

(MP) Minimize f(x) = (f1(x), f2(x)) := (2
√
x, log x),

subject to g(x) := 1− log x ≤ 0,

where, the functions fi : H → R, (i = 1, 2) and g : H → R, are smooth real valued functions
defined on H . The feasible set F for the problem is

F = {x ∈ R, x ≥ e}.
Let us pick the feasible point z̃ = e ∈ F . Clearly z̃ is a Pareto efficient solution of (MP). Then
it follows that

grad f1(x) = G (x)−1

(
1√
x
)

)
= x

√
x,

grad f2(x) = G (x)−1

(
1

x

)
= x,

grad g(x) = G (x)−1

(
−1

x

)
= −x.

Using above equations, it can be verified that

(3.15) T Lin (S; z̃) = {0}.
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Again, for the problem (P), we can show by simple calculations that S1 = {e} and S2 = {e}.
Then it follows that T (S1; e) = {0} and T (S2; e) = {0}. Then we obtain the following

(3.16)
2⋂

i=1

cl coT
(
Si, z̃

)
= {0}.

From (3.15) and (3.16), it follows that (GGCQ) is satisfied at the point z̃ = e ∈ F . Then it can
be verified that exist Lagrange multipliers α1 = 1, α2 =

√
e, λ = 2

√
e such that

(3.17)
2∑

i=1

αi grad fj (z̃) + λ grad g (z̃) = 0,

Thus, the necessary optimality conditions in Theorem 3.3 is verified.

4. SUFFICIENT CONDITIONS FOR (GGCQ)

In this section, we present several constraint qualifications in the framework of Hadamard
manifolds for (MOPP). Subsequently, we establish various interesting relationships between
these constraint qualifications. In particular, we show that these constraint qualifications be-
come sufficient conditions ensuring that (GGCQ) is satisfied.
The following definitions are extensions of different constraint qualifications from Maeda [7]
from Euclidean spaces to Hadamard manifolds for (MOPP).

Definition 4.1. Let z̃ ∈ D. Then the Abadie’s constraint qualification (in short, (ACQ)) is said
to hold at the feasible point z̃ if we have the following

(4.1) T Lin (S; z̃) ⊆ T (S; z̃) .

Definition 4.2. Let z̃ ∈ D. Then the generalized Abadie’s constraint qualification (in short,
(GACQ)) is said to hold at the feasible point z̃ if we have the following

(4.2) T Lin (S; z̃) ⊆
r⋂

i=1

T
(
Si; z̃

)
.

Definition 4.3. Let z̃ ∈ D. Then the Cottle-type constraint qualification (in short, (CTCQ))
is said to hold at the feasible point z̃ if for every k = 1, 2, . . . , r, the following system of
inequalities

(4.3)
⟨grad fi (z̃) , v⟩ < 0, i = 1, 2, . . . , r and i ̸= k,

⟨grad gj (z̃) , v⟩ < 0, j ∈ A (z̃) ,

admits of a solution v ∈ Tz̃H .

Definition 4.4. Let z̃ ∈ D. Then the Slater-type constraint qualification (in short, (STCQ)
is said to hold at the feasible point z̃ if each of the functions fi (i = 1, 2, . . . , r), and gj
(j = 1, 2, . . . , s), are geodesic convex and for every k = 1, 2, . . . , r, the following system
of inequalities

(4.4)
fi(z) < fi (z̃) , i = 1, 2, . . . , r and i ̸= k,

gj(z) < 0, j = 1, 2, . . . , s,

admits of a solution z ∈ H .

Definition 4.5. Let z̃ ∈ D. Then the linear constraint qualification (in short, (LCQ)) is said to
hold at the feasible point z̃ if each of the functions fi (i = 1, 2, . . . , r), and gj (j ∈ A (z̃)) are
linear.
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Definition 4.6. Let z̃ ∈ D. Then the linear objective constraint qualification (in short, (LOCQ))
is said to hold at the feasible point z̃ if each of the functions fi (i = 1, 2, . . . , r) are linear and
the following system of inequalities

⟨grad fi (z̃) , v⟩ ≦ 0, i = 1, 2, . . . , r,

⟨grad gj (z̃) , v⟩ < 0, j ∈ A (z̃) ,

admits of a solution v ∈ Tz̃H .

Definition 4.7. Let z̃ ∈ D. Then the Mangasarian-Fromovitz constraint qualification (in short,
(MFCQ)) is said to hold at the feasible point z̃ if {grad fi, i = 1, 2, . . . , r} is a linearly inde-
pendent set and following system of inequalities

⟨grad fi (z̃) , v⟩ = 0, i = 1, 2, . . . , r,
⟨grad gj (z̃) , v⟩ < 0, j ∈ A (z̃) ,

admits of a solution v ∈ Tz̃H .

Remark 4.1. It readily follows from the above definitions that, if (ACQ) is satisfied at z̃ ∈ D,
then (GACQ) is satisfied at z̃ ∈ D. Moreover, if (GACQ) is satisfied at z̃ ∈ D, then (GGCQ) is
automatically satisfied at z̃ ∈ D.

In the following theorem we establish a relationship between the linear constraint qualifica-
tion (LCQ) and the Abadie’s constraint qualification (ACQ).

Theorem 4.1. Let z̃ ∈ D be any feasible element of (MOPP). If (LCQ) is satisfied at z̃ ∈ D,
then (ACQ) is satisfied at z̃ ∈ D.

Proof. Let v ∈ Tz̃H be an arbitrary element of T Lin (S; z̃). Then from the definition of lin-
earizing cone, it follows that

⟨grad fi (z̃) , v⟩ ≦ 0, i = 1, 2, . . . , r,(4.5)

⟨grad gj (z̃) , v⟩ ≦ 0, j ∈ A (z̃) .(4.6)

Let us assume that (LCQ) is satisfied at z̃. Since T Lin (S; z̃) is closed, there exists a sequence
{vn}∞n=1 such that vn → v as n → ∞. Let us consider a sequence tn ↓ 0. Now let us define a
sequence {zn} in the following manner

zn := expz̃(tnvn), ∀n ∈ N.
Clearly, zn → z̃ as n → ∞. Then it follows that each of the functions fi (i = 1, 2, . . . , r), and
gj (j ∈ A (z̃)), are linear. Combining this with inequalities (4.5) and (4.6), we have

fi (zn) = fi (expz̃(tnvn)) = fi (z̃) + tn ⟨grad fi (z̃) , vn⟩ ≦ fi (z̃) , ∀i = 1, 2, . . . , r,(4.7)

gj (zn) = gj (expz̃(tnvn)) = gj (z̃) + tn ⟨grad gj (z̃) , vn⟩ ≦ gj (z̃) = 0, ∀j ∈ A (z̃).(4.8)

For every j /∈ A (z̃), it follows from the continuity of gj that

(4.9) gj (zn) = gj(expz̃(tnvn)) < 0, for sufficiently large n.

From inequalities (4.8) and (4.9), it follows that

(4.10) gj (zn) = gj(expz̃(tnvn)) ≤ 0, for sufficiently large n, ∀j = 1, 2, . . . , s.

From (4.7), (4.8) and (4.10) we have

(4.11) zn = expz̃(tnvn) ∈ S, all n sufficiently large.

This implies that
v ∈ T (S; z̃) .

This completes the proof.
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In the following theorem we establish a relationship between the linear objective constraint
qualification (LOCQ) and the Abadie’s constraint qualification (ACQ).

Theorem 4.2. Let z̃ ∈ D be any feasible element of (MOPP). If (LOCQ) is satisfied at z̃ ∈ D,
then (ACQ) is satisfied at z̃ ∈ D.

Proof. From the given hypothesis, (LOCQ) is satisfied at z̃. Hence each of the functions fi
(i = 1, 2, . . . , r) are linear. Furthermore, there exists some w ∈ Tz̃H such that

(4.12)
⟨grad fi (z̃) , w⟩ ≦ 0, i = 1, 2, . . . , r,

⟨grad gj (z̃) , w⟩ < 0, j ∈ A (z̃) .

Let us assume that v ∈ Tz̃H be any arbitrary element of T Lin (S; z̃). We define a sequence
{vn}∞n=1 as follows

vn = v + τnw, ∀n ∈ N,

where {τn} ↓ 0. Clearly, vn → v as n → ∞. Then it follows that for every n, we have

⟨grad fi (z̃) , vn⟩ = ⟨grad fi (z̃) , v⟩+ τn ⟨grad fi (z̃) , w⟩ ≦ 0, i = 1, 2, . . . , r,(4.13)

⟨grad gj (z̃) , vn⟩ = ⟨grad gj (z̃) , v⟩+ τn ⟨grad gj (z̃) , w⟩ < 0, j ∈ A (z̃) .(4.14)

For every vn (n ∈ N), we consider a sequence {λnk
}∞k=1 ↓ 0. Now, we define a sequence

{znk
}∞k=1 as follows

znk
:= expz̃(λnk

vn), ∀k ∈ N.

Clearly, {znk
} → z̃ as k → ∞. Since each of the functions fi (i = 1, 2, . . . , r) are linear, it

follows from (4.13) that

(4.15) fi (znk
) = fi (expz̃(λnk

vn)) = fi (z̃) + λnk
⟨grad fi (z̃) , vn⟩ ≦ fi (z̃) .

Again, from (4.14), it follows that for every j ∈ A (z̃),

(4.16)
gj (znk

) = gj (expz̃(λnk
vn)) = gj (z̃) + λnk

⟨grad gj (z̃) , vn⟩+ o (|λnk
|)

< gj (z̃) ,

for sufficient large values of k, and lim
k→∞

o(|λnk |)
|λnk |

= 0. Now, for every j /∈ A (z̃), it follows from

the continuity of gj that

(4.17) gj (znk
) = gj (expz̃(λnk

vn)) < 0, for sufficiently large k.

Then it follows from (4.15), (4.16) and (4.17) that

(4.18) znk
= (expz̃(λnk

vn)) ∈ S, for sufficiently large k.

This implies that
v ∈ T (S; z̃) .

This completes the proof.

In the following theorem we establish relationship between the Mangasarian-Fromovitz con-
straint qualification (MFCQ) and the Cottle-type constraint qualification (CTCQ).

Theorem 4.3. Let z̃ ∈ D be any arbitrary feasible element of (MOPP). If (MFCQ) is satisfied
at z̃ ∈ D, then (CTCQ) is satisfied at z̃ ∈ D.
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Proof. According to the given hypothesis, (MFCQ) is satisfied at z̃ ∈ D. This implies that
{grad fi, i = 1, 2, . . . , r} is a linearly independent set. Moreover, there exists some w ∈ Tz̃H
such that

⟨grad fi (z̃) , w⟩ = 0, i = 1, 2, . . . , r,(4.19)

⟨grad gj (z̃) , w⟩ < 0, j ∈ A (z̃) .(4.20)

On the contrary, let us assume that (CTCQ) is not satisfied at z̃ ∈ D. Then there exists some
k ∈ {1, 2, . . . , r} such that the following system of inequalities

⟨grad fi (z̃) , v⟩ < 0, i = 1, 2, . . . , r and i ̸= k,(4.21)

⟨grad gj (z̃) , v⟩ < 0, j ∈ A (z̃) ,(4.22)

does not admit of a solution v ∈ Tz̃H . Then from Gordon’s theorem of alternative (see, [8]), it
follows from (4.21) and (4.22) that there exist real numbers αi ≧ 0, i = 1, 2, . . . , r, i ̸= k, and
λj ≧ 0, j ∈ A (z̃), not all zero such that the following equation is satisfied

(4.23)
r∑

i=1
i ̸=k

αi grad fi (z̃) +
∑

j∈A (z̃)

λj grad gj (z̃) = 0.

From (4.19) and (4.23) it follows that

(4.24)
∑

j∈A (z̃)

λj ⟨grad gj (z̃) , w⟩ = 0.

Combining (4.20) and (4.24) we have λj = 0, for every j ∈ A (z̃). Then from (4.23), we have

(4.25)
r∑

i=1
i ̸=k

αi grad fk (z̃) = 0.

From the linear independence of the set {grad fi, i = 1, 2, . . . , r}, it follows that αi = 0, for
every i = 1, 2, . . . , r and i ̸= k, which is a contradiction. This completes the proof.

In the following theorem we establish a relationship between the Slater-type constraint qual-
ification (STCQ) and the Cottle-type constraint qualification (CTCQ).

Theorem 4.4. Let z̃ ∈ D be any feasible element of (MOPP). If (STCQ) is satisfied at z̃ ∈ D,
then (CTCQ) is satisfied at z̃ ∈ D.

Proof. From the given hypothesis, (STCQ) is satisfied at z̃ ∈ D. Then it follows that each of
the functions fi (i = 1, 2, . . . , r), and gj (j = 1, 2, . . . , s), are geodesic convex and for every
k = 1, 2, . . . , r, the following system of inequalities

(4.26)
fi(z) < fi (z̃) , i = 1, 2, . . . , r and i ̸= k,

gj(z) < 0, j = 1, 2, . . . , s,

admits of a solution zk ∈ H . From the geodesic convexity of the functions fi, (i = 1, 2, . . . , r,
and gj , (j = 1, 2, . . . , s), it follows from (4.26) that〈

grad fi (z̃) , exp
−1
z̃ (zk)

〉
≦ fi (zk)− fi (z̃) < 0, ∀i = 1, 2, . . . , r,(4.27) 〈

grad gj (z̃) , exp
−1
z̃ (zk)

〉
≦ gj (zk)− gj (z̃) < 0, ∀j ∈ A (z̃).(4.28)
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Let us define vk := exp−1
z̃ (zk). Then it follows that for every k = 1, 2, . . . , r, we have the

following

(4.29)
⟨grad fi (z̃) , vk⟩ < 0, i = 1, 2, . . . , r and i ̸= k,

⟨grad gj (z̃) , vk⟩ < 0, j ∈ A (z̃) .

From (4.29) it follows that (CTCQ) is satisfied at z̃ ∈ D. This completes the proof.

In the following theorem we establish a relationship between the Cottle-type constraint qual-
ification (CTCQ) and the generalized Guignard constraint qualification (GGCQ).

Theorem 4.5. Let z̃ ∈ D be any feasible element of (MOPP). If (CTCQ) is satisfied at z̃ ∈ D,
then (GGCQ) is satisfied at z̃ ∈ D.

Proof. From the given hypothesis, (CTCQ) is satisfied at z̃ ∈ D. Hence, it follows that there
exists some w ∈ Tz̃H such that the following system of inequalities is satisfied for every
k = 1, 2, . . . , r.

⟨grad fi (z̃) , w⟩ < 0, i = 1, 2, . . . , r and i ̸= k,(4.30)

⟨grad gj (z̃) , w⟩ < 0, j ∈ A (z̃) .(4.31)

Let v ∈ Tz̃H be an arbitrary element of T Lin (S; z̃). Then from the definition of linearizing
cone, it follows that

(4.32)
⟨grad fi (z̃) , v⟩ ≦ 0, i = 1, 2, . . . , r,

⟨grad gj (z̃) , v⟩ ≦ 0, j ∈ A (z̃) .

To begin with, we claim that v ∈ T (S1; z̃). Let us consider a sequence {τn}∞n=1 ↓ 0. Then we
define a sequence {vn}∞n=1 as follows

(4.33) vn := v + τnw.

Clearly, vn → v as n → ∞. From (4.30), (4.31) and (4.33), it follows that

⟨grad fi (z̃) , vn⟩ = ⟨grad fi (z̃) , v⟩+ τn ⟨grad fi (z̃) , w⟩ < 0,(4.34)

⟨grad gj (z̃) , vn⟩ = ⟨grad ġj (z̃) , v⟩+ τn ⟨grad gj (z̃) , w⟩ < 0.(4.35)

For every element of the sequence {vn}, (n = 1, 2, . . .), we consider a sequence {λnk
}∞k=1 ↓ 0.

Now, we construct a sequence {znk
}∞k=1 converging to z̃ by

znk
:= expz̃(λnk

vn), ∀k ∈ N.
Clearly, {znk

} → z̃ as k → ∞. Then for sufficiently large values of k, we have the following
for every i = 2, 3, . . . , r.

(4.36)
fi (znk

) = fi (expz̃(λnk
vn)) = fi (z̃) + λnk

⟨grad fi (z̃) , vn⟩+ o (|λnk
|)

< fi (z̃) .

Similarly, for sufficiently large values of k, we have the following for every j ∈ A (z̃).

(4.37)
gj (znk

) = gj (expz̃(λnk
vn)) = gj (z̃) + λnk

⟨grad gj (z̃) , vn⟩+ o (|λn|)
< gj (z̃) = 0.

Now, for every j /∈ A (z̃), it follows from the continuity of gj that

(4.38) gj (znk
) = gj (expz̃(λnk

vn)) < 0, for sufficiently large k.

Then it follows from (4.36), (4.37) and (4.38) that

(4.39) znk
= (expz̃(λnk

vn)) ∈ S1, for sufficiently large k.
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Without any loss of generality, we may assume that znk
∈ S1 for all k. This implies that

vn ∈ T
(
S1; z̃

)
.

Since vn → v as n → ∞ and the set T (S1; z̃) is closed, it follows that

v ∈ T
(
S1; z̃

)
.

By following exactly same procedure, we can show that for every k = 2, 3, . . . , r, we have
v ∈ T

(
Sk; z̃

)
. Then it follows that

v ∈
r⋂

k=1

T
(
Sk; z̃

)
⊆

r⋂
k=1

cl coT
(
Sk; z̃

)
.

This completes the proof.

In the following theorem we summarize all the results that have been derived in this section.

Theorem 4.6. Let z̃ ∈ D be a Pareto efficient solution of (MOPP). Let us assume that any of
the constraint qualifications ((ACQ), (GACQ), (CTCQ), (STCQ), (LCQ), (LOCQ), (MFCQ)) is
satisfied at z̃ ∈ D. Then there exist multipliers α ∈ Rr and λ ∈ Rs such that

r∑
i=1

αi grad fi (z̃) +
s∑

j=1

λj grad gj (z̃) = 0,

⟨λ, g (z̃)⟩ = 0, α > 0, λ ≧ 0.

Remark 4.2. If H = Rn, Theorem 4.6 reduces to Theorem 4.1 from [7]. Thus, Theorem
4.6 generalizes Theorem 4.1 from [7] from Euclidean space to an even more general space of
Hadamard manifolds.

The relationships between various constraint qualifications are summarized in the form of a
schematic diagram in Fig 1.

LCQ ACQ LOCQ

GACQ

GGCQ

MFCQ CTCQ STCQ

Figure 1: Diagram showing the relationships between various constraint qualifications.

5. CONCLUSIONS AND FUTURE DIRECTIONS

This article dealt with the study of a class of constrained multiobjective programming prob-
lems on Hadamard manifolds (MOPP). The importance and novelty of our work lies in the
fact that we have provided several constraint qualifications as well as several interesting in-
terrelations among them in the framework of Hadamard manifolds, which was not previously
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explored. In particular, we have presented the generalized Guignard constraint qualification
(GGCQ) in the framework of Hadamard manifolds for (MOPP). We have employed (GGCQ)
to derive Karush-Kuhn-Tucker type necessary optimality criteria for (MOPP). Further, we have
introduced several other constraint qualifications (CQs), such as, Abadie’s CQ, generalized
Abadie’s CQ, Cottle CQ, Slater CQ, linear CQ, linear objective CQ and Mangasarian-Fromovitz
CQ in Hadamard manifold setting. Moreover, we have derived various interesting relations be-
tween these constraint qualification. Subsequently, we have established these constraint quali-
fication, in turn, become sufficient conditions ensuring that (GGCQ) is satisfied.

The various results that are presented in this article leave various avenues for future research.
For example, it would be interesting to extend this work for nonsmooth multiobjective program-
ming problems on Hadamard manifolds. In particular, we aim to explore constraint qualifica-
tions for both smooth as well as nonsmooth semi-infinite programming problems on Hadamard
manifolds in our upcoming works.

ACKNOWLEDGMENTS

The first author is supported by the Council of Scientific and Industrial Research, New Delhi,
India, through grant number 09/1023(0044)/2021-EMR-I.

DECLARATIONS

The authors declare that there is no actual or potential conflict of interest in relation to this
article.

REFERENCES

[1] P.-A. ABSIL, C. G. BAKER and K. A. GALLIVAN, Trust-region methods on Riemannian
manifolds, Found. Comput. Math. 7 (2007), pp. 303-330.

[2] P.-A. ABSIL, R. MAHONY and R. SEPULCHRE, Optimization Algorithms on Matrix
Manifolds, Princeton University Press, Princeton, NJ, 2009.

[3] R. BERGMANN and R. HERZOG, Intrinsic formulation of KKT conditions and con-
straint qualifications on smooth manifolds, SIAM J. Optim. 29 (2019), pp. 2423-2444.

[4] I. EKELAND, On the variational principle, J. Math. Anal. Appl. 47 (1974), pp. 324-353.
[5] T. KJELDSEN, A contextualized historical analysis of the Kuhn–Tucker theorem in non-

linear programming: the impact of World War II. Hist. Math. 27 (2000), pp. 331-361.
[6] X.F. LI, Constraint qualifications in nonsmooth multiobjective optimization, J. Optim.

Theory Appl. 106 (2000), pp. 373-398.
[7] T. MAEDA, Constraint qualifications in multiobjective optimization problems: Differen-

tiable case, J. Optim. Theory Appl. 80 (1994), pp. 483-500.
[8] O.L. MANGASARIAN, Nonlinear Programming, SIAM Classics in Applied Mathemat-

ics, vol. 10. McGraw-Hill, New York, 1969. Reprint Philadelphia, 1994.
[9] T. RAPCSÁK, Smooth Nonlinear Optimization in Rn, Springer, Berlin, 2013.

[10] E.A. PAPA QUIROZ and P.R. OLIVEIRA, Proximal point methods for quasiconvex and
convex functions with Bregman distances on Hadamard manifolds, J. Convex Anal. 16
(2009), pp. 49-69.

[11] E.A. PAPA QUIROZ, E.M. QUISPE and P.R. OLIVEIRA, Steepest descent method with
a generalized Armijo search for quasiconvex functions on Riemannian manifolds, J. Math.
Anal. Appl. 341 (2008), pp. 467-477.

AJMAA, Vol. 20 (2023), No. 2, Art. 2, 17 pp. AJMAA

https://ajmaa.org


CONSTRAINT QUALIFICATIONS FOR MOPP ON HADAMARD MANIFOLDS 17

[12] E.A. PAPA QUIROZ and P.R. OLIVEIRA, Full convergence of the proximal point method
for quasiconvex functions on Hadamard manifolds, ESAIM Control Optim. Calc. Var. 18
(2012), pp. 483-500.
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