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2 PAVEL ŘEHÁK

1. I NTRODUCTION

The concept of regular variation has been shown to be extremely useful in many fields of
mathematics, both, in the continuous and the discrete setting, see e.g., [2, 5, 6, 8, 9, 12, 13, 14,
15, 16]. In this paper we introduce the concept of regular variation for real functions defined on
an arbitrary time scaleT. It will be shown that our definition is a generalization and unification
of the continuous and the discrete case, in a certain sense. From this point of view, our paper
can be understood as the one which wants to initiate study of this important concept in a general
time scale setting. Recall that in addition to the classical differential and difference calculi, the
calculus on time scales includes as a special case also the so-called quantum calculus, see e.g.,
[11]. In the second part of this paper, we provide information about asymptotic behavior of
positive decreasing solutions of linear second order dynamic equations (which include an one-
dimensional Schrödinger differential equation). We give sufficient and necessary conditions
under which the solutions are regularly (or slowly) varying. For related results concerning
linear second order differential and difference equations see [14] and [15], respectively.

The paper is organized as follows. First we recall basic facts about time scales. Then we
define regularly varying functions on time scales and prove some of its properties. In particular,
we establish a representation theorem for such functions using the fact that they are related
to solutions of certain linear first order dynamic equations. Connections of regularly varying
functions with positive solutions of linear second order dynamic equations will be shown in
Section 4. Open problems and possible directions for a future research are discussed in the last
section.

2. PRELIMINARIES

In 1988, Stefan Hilger [10] introduced the calculus on time scales which unifies continuous
and discrete analysis. Atime scaleT is an arbitrary nonempty closed subset of the real numbers
R. We define theforward jump operatorσ byσ(t) := inf{s ∈ T : s > t}, and thegraininessµ
of the time scaleT by µ(t) := σ(t)− t. A point t ∈ T is said to beright-dense, right-scattered,
if σ(t) = t, σ(t) > t, respectively. We denotefσ := f ◦ σ. Throughout this paper we assume
thatT is a time scale which is unbounded above. For a functionf : T → R thedelta derivative
is defined by

f∆(t) := lim
s→t,σ(s) 6=t

fσ(s)− f(t)

σ(s)− t
.

Here are some useful formulas involving delta derivative:fσ = f + µf∆, (fg)∆ = f∆g +
fσg∆ = f∆gσ + fg∆, (f/g)∆ = (f∆g − fg∆)/(ggσ), wheref, g are delta differentiable and
ggσ 6= 0 in the last formula. A functionf : T → R is calledrd-continuousprovided it is contin-
uous at all right-dense points inT and its left-sided limits exist (finite) at all left-dense points in
T (left-dense and left-scattered points are defined similarly as their “right counterparts”). The
classes of real rd-continuous functions and real rd-continuously delta differentiable functions
on a time scale intervalI will be denoted byCrd(I) and byC1

rd(I), respectively. Fora, b ∈ T and
a delta differentiable functionf , theNewton integralis defined by

∫ b

a
f∆(t) ∆t = f(b)− f(a).

Note that every rd-continuous function has an antiderivative. For the concept of theRiemann
delta integraland theLebesgue delta integralsee [4, Chapter 5]. Note that we have

σ(t) = t, µ(t) ≡ 0, f∆ = f ′,

∫ b

a

f(t) ∆t =

∫ b

a

f(t) dt, whenT = R,
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while

σ(t) = t+ 1, µ(t) ≡ 1, f∆ = ∆f,

∫ b

a

f(t) ∆t =
b−1∑
t=a

f(t), whenT = Z,

a < b, and

σ(t) = qt, µ(t) = (q − 1)t, f∆ = Dqy := (y(qt)− y(t))/(qt− t),∫ t

1

f(s) ∆s =
n−1∑
j=0

f(qj)µ(qj), t = qn, whenT = qN0 := {qk : k ∈ N0}

with q > 1. We say that a functionp : T → R is regressiveprovided1+µ(t)p(t) 6= 0 for t ∈ T.
The set of all regressive and rd-continuous functionsf : T → R is denoted byR = R(T).
Define the set ofpositively regressivefunctionsR+ = R+(T) as the set consisting of those
p ∈ R satisfying1 + µ(t)p(t) > 0 for t ∈ T. Define thegeneralized exponential function
ep(t, s) as the unique solutionep(·, t0) of the initial value problemy∆ = p(t)y, y(t0) = 1,
wherep ∈ R. In fact,ep(t, s) is defined by means of a cylinder transformation, e.g., in [3], but
here we prefer a simpler equivalent definition. By an interval[a, b], wherea, b ∈ T, we mean
the set{t ∈ T : a ≤ t ≤ b}, if it is not said otherwise; similarly we define other types of
time scale-intervals. The monographs [3, 4] are very good sources for searching many other
information concerning time scales and dynamic equations on time scales.

3. REGULAR VARIATION ON TIME SCALES

We start this section with the definition of the central concept.

Definition 3.1. A positive functionf ∈ Crd([a,∞)) is said to beregularly varying of indexϑ,
ϑ ∈ R, if there exists a positive functionα ∈ C1

rd([a,∞)) satisfying

(3.1) f(t) ∼ Cα(t) and lim
t→∞

tα∆(t)

α(t)
= ϑ,

C being a positive constant. Ifϑ = 0, thenf is said to beslowly varying.

The totality of regularly varying functions of indexϑ is denoted byRV(ϑ). The totality of
slowly varying functions is denoted bySV.

The next statement is a representation theorem. Clearly, it suffices if the conditions in the
theorem hold eventually (for larget). Without loss of generality we can assume that they are
satisfied on the interval[a,∞).

Theorem 3.1. A positive functionf ∈ Crd([a,∞)) belongs toRV(ϑ) if and only if it has the
representation

(3.2) f(t) = ϕ(t)eδ(t, a),

whereϕ ∈ Crd([a,∞)) is a positive function tending to a positive constant andδ ∈ Crd([a,∞))
satisfiesδ ∈ R+ = R+([a,∞)) and limt→∞ tδ(t) = ϑ.

Proof. “Only if”: Let f ∈ RV(ϑ). Then there isδ ∈ Crd([a,∞)) such thatδ = α∆/α and
limt→∞ tδ(t) = ϑ. Moreover,α satisfies the first order linear dynamic equationα∆ = δ(t)α,
and so it has the formα(t) = α0eδ(t, a) with α0 > 0. Sinceα is positive,eδ(t, a) is positive as
well, and henceδ ∈ R+. From the first condition in (3.1) we now have that there is a positive
functionϕ tending to a positive constant such that (3.2) holds.

“If”: Let (3.2) hold with δ ∈ R+ and limt→∞ tδ(t) = ϑ. Putα(t) = eδ(t, a). Thenα is
a positive function such thatlimt→∞ tα

∆(t)/α(t) = limt→∞ tδ(t) = ϑ. Sincef(t) ∼ Cα(t),
whereC = limt→∞ ϕ(t), f ∈ RV(ϑ).
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If T = R, then (3.2) reduces to

(3.3) f(t) = ϕ(t) exp

{∫ t

a

ψ(s)

s
ds

}
,

wherelimt→∞ ϕ(t) = C > 0 andlimt→∞ ψ(t) = ϑ. If T = Z, then (3.2) reduces to

(3.4) ft = ϕt

t−1∏
j=a

(
1 +

ψj

j

)
,

wherelimt→∞ ϕt = C > 0 and limt→∞ ψt = ϑ. In both these cases the obtained formulas
coincide with the known representation formula in the continuous case (see [16]), resp. in
the discrete case (see [15]). Hence our definition can be understood as a generalization and
unification of that in the continuous and the discrete case.

Note that in [5, 8], a very useful imbedding theorem was established: If{yk} is a regularly
varying sequence, then the functionR (of a real variable), defined byR(x) = y[x], is regularly
varying. Such a result makes it then possible to apply the continuous theory to the theory
of regularly varying sequences. However, the development of a discrete theory, analogous
to the continuous one, is not generally close, and sometimes far from a simple imitation of
arguments for regularly varying functions, as noticed and demonstrated in [5]. A theory of
regular variation on time scales offers something more than the imbedding result, and has the
following advantages: Once there is proved a result on generalT, it automatically holds for
the continuous and the discrete case, without any other effort. Moreover, at the same time, the
theory works also on other time scales which may be different from the “classical” ones.

The next defined normalized regular variation will be of particular interest in our subsequent
theory.

Definition 3.2. A positive functionf ∈ C1
rd([a,∞)) is said to benormalized regularly varying

of indexϑ, ϑ ∈ R, if it satisfies

lim
t→∞

tf∆(t)

f(t)
= ϑ.

If ϑ = 0, thenf is said to benormalized slowly varying.

The totality of normalized regularly varying functions of indexϑ is denoted byNRV(ϑ).
The totality of normalized slowly varying functions is denoted byNSV.

It is easy to see thatf ∈ NRV(ϑ) if and only if it has the representation (3.2), whereϕ(t) is
replaced by a positive constantC, i.e.,

(3.5) f(t) = Ceδ(t, a).

Letf ∈ NRV(ϑ). Thenf∆(t) T 0 if and only if δ(t) T 0 for t ∈ [a,∞) in the representation
(3.5). This follows fromf∆(t)/f(t) = δ(t). Further note that ifδ(t) ≥ 0, then clearlyδ ∈
R+. If f ∈ NSV is decreasing, then forδ from (3.5) being inR+ it is sufficient to assume
µ(t) = O(t). Indeed, ifµ(t)/t is bounded andlimt→∞ tδ(t) = 0, thenlimt→∞ µ(t)δ(t) = 0.
Similarly, if f ∈ NRV(ϑ) (with ϑ < 0) is decreasing, then forδ ∈ R+ it is sufficient to assume
µ(t) = o(t).

4. REGULARLY VARYING DECREASING SOLUTIONS OF SECOND ORDER LINEAR

DYNAMIC EQUATIONS

Consider the linear dynamic equation

(4.1) y∆∆ − p(t)yσ = 0,
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wherep ∈ Crd([a,∞)) is positive. Basic properties of (4.1) can be found e.g., in [3] or [7].
By a solution we will mean a nontrivial solution. Recall that asolutiony of (4.1) is called
nonoscillatoryif yyσ > 0 eventually. Otherwise, it is calledoscillatory. In view of the Sturm
type separation theorem, one solution of (4.1) is oscillatory if and only if every solution is so.
Hence we may speak about(non)oscillation of equation(4.1). Sincey∆∆ = 0 is nonoscillatory
(such an equation is readily explicitly solvable), then (4.1) is nonoscillatory as well by the Sturm
type comparison theorem. Moreover, ifM denotes the set of all (nontrivial) solutions of (4.1),
then anyy ∈ M is eventually monotone and belongs to one of the two classes

M+ = {y ∈ M : ∃T ∈ [a,∞) such thaty(t)y∆(t) > 0 for t ∈ [T,∞)},
M− = {y ∈ M : y(t)y∆(t) < 0 for t ∈ [a,∞)}.

These classes are nonempty. Basic asymptotic properties of solutions of (4.1) in the classM−

was studied in [1] (in fact, there were studied a more general equation than (4.1), namely a qua-
silinear dynamic equation). In our paper we study asymptotic properties from a different point
of view — we establish necessary and sufficient conditions under which positive decreasing
solutions of (4.1) are normalized slowly/regularly varying. Note that considering just positive
elements ofM− is without loss of generality, in view of the homogeneity of the solution space.

One of the main tools used in the subsequent proofs is based on the Riccati like transfor-
mation. Note that the below described technique works no matter what the sign ofp is. If y
is a solution of (4.1) withy(t)yσ(t) > 0 for large t, say t ∈ [a,∞), (in particular, (4.1) is
nonoscillatory), thenw defined byw = y∆/y satisfies the Riccati dynamic equation

(4.2) w∆(t)− p(t) +
w2(t)

1 + µ(t)w(t)
= 0

with w ∈ R+ for t ∈ [a,∞). The opposite implication holds as well, and this technique is
usually referred to as theRiccati technique.

In the next two theorems we give conditions guaranteeing the existence of regularly varying
solutions of (4.1). We will see that the index of regular variation depends on the value of the
limit of certain expression involving the coefficientp.

Theorem 4.1. Let y be any positive decreasing solution of(4.1) and µ(t) = O(t). Then
y ∈ NSV if and only if

(4.3) lim
t→∞

t

∫ ∞

t

p(s) ∆s = 0.

Proof. “Only if”: Let y ∈ NSV be a positive decreasing solution of (4.1) on[a,∞). Set
w = y∆/y. Thenw(t) < 0 and satisfies (4.2) withw ∈ R+ for t ∈ [a,∞). Sincey ∈ NSV,
we havelimt→∞ tw(t) = 0 andlimt→∞w(t) = 0. First we show that∫ ∞

a

w2(t)

1 + µ(t)w(t)
∆t <∞.

In view of µ(t) = O(t), there existsN > 0 such thatµ(t)/t ≤ N for t ∈ [a,∞). Since
limt→∞ t|w(t)| = 0, there existsM ≤ 1/(2N) such that|w(t)| ≤ M/t for larget, say again
t ∈ [a,∞), without loss of generality. Then

µ(t)|w(t)| ≤ µ(t)M

t
≤ µ(t)

2Nt
≤ 1

2
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for t ∈ [a,∞). Hence,∫ ∞

a

w2(t)

1 + µ(t)w(t)
∆t ≤

∫ ∞

a

M2/t2

1− µ(t)|w(t)|
∆t

= M2

∫ ∞

a

1

tσ(t)
· 1 + µ(t)/t

t− µ(t)|w(t)|
∆t

≤M2

∫ ∞

a

1

tσ(t)
· 1 +N

1− 1/2
∆t

= 2M2(1 +N)
1

a
.

Now, integrating (4.2) fromt to∞ and multiplying byt we get

(4.4) − tw(t) + t

∫ ∞

t

w2(s)

1 + µ(s)w(s)
∆s = t

∫ ∞

t

p(s) ∆s.

Next we show that

lim
t→∞

t

∫ ∞

t

w2(s)

1 + µ(s)w(s)
∆s = 0.

Using the time scale L’Hospital rule, see e.g., [3], and the above derived estimates, we have

lim
t→∞

∫∞
t

[w2(s)/(1 + µ(s)w(s))] ∆s

1/t
= lim

t→∞

tσ(t)w2(t)

1 + µ(t)w(t)

= lim
t→∞

(tw(t))2 1 + µ(t)/t

1− µ(t)|w(t)|

≤ lim
t→∞

(tw(t))2 1 +N

1− µ(t)M/t

≤ lim
t→∞

(tw(t))2 1 +N

1−MN

≤ 2(1 +N) lim
t→∞

(tw(t))2

= 0

From (4.4) we now get (4.3).
“If”: Let y be a positive decreasing solution of equation (4.1) fort ∈ [a,∞). We claim that

limt→∞ y
∆(t) = 0. If not, then there isM > 0 such thaty∆(t) ≤ −M for t ∈ [a,∞), and so

y(t) ≤ y(a)− (t− a)M . Letting t→∞ we havelimt→∞ y(t) = −∞, a contradiction. Hence
integration of (4.1) fromt to∞ yieldsy∆(t) = −

∫∞
t
p(s)yσ(s) ∆s. Multiplying this equality

by t/y(t) and using a monotone nature ofy we obtain

−ty
∆(t)

y(t)
=

t

y(t)

∫ ∞

t

p(s)yσ(s) ∆s ≤ ty(t)

y(t)

∫ ∞

t

p(s) ∆s = t

∫ ∞

t

p(s) ∆s.

Hence,limt→∞ ty
∆(t)/y(t) = 0 by (4.3), and soy ∈ NSV.

Remark 4.1. A closer examination of the proof shows that the conditionµ(t) = O(t) is not
needed to prove the “if” part.

Theorem 4.2. Let y be any positive decreasing solution of(4.1) andµ(t) = o(t). Theny ∈
NRV(ϑ) if and only if

(4.5) lim
t→∞

t

∫ ∞

t

p(s) ∆s = A > 0,

whereϑ is the negative root of the equationλ2 − λ− A = 0, i.e.,ϑ =
(
1−

√
1 + 4A

)
/2.
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Proof. “Only if”: Let y ∈ NRV(ϑ) be a positive solution of (4.1) fort ∈ [a,∞). Setw =
y∆/y. Thenw(t) < 0 and satisfies (4.2) withw ∈ R+ for t ∈ [a,∞). Sincey ∈ NRV(ϑ), we
havelimt→∞ tw(t) = ϑ andlimt→∞w(t) = 0. We show that∫ ∞

a

w2(t)

1 + µ(t)w(t)
∆t <∞.

There existsM > 0 such thatw(t) ≤ M/t. Further, in view of the conditionlimt→∞ µ(t)/t =
0, we haveµ(t)|w(t)| ≤Mµ(t)/t ≤ 1/2 for larget, sayt ∈ [a,∞). Hence,∫ ∞

a

w2(t)

1 + µ(t)w(t)
∆t ≤

∫ ∞

a

M2/t2

1− µ(t)|w(t)|
∆t

≤ 2M2

∫ ∞

a

1

t2
∆t

= 2M2

∫ ∞

a

1

tσ(t)

(
1 +

µ(t)

t

)
∆t

≤ 2M2

(
1 +

1

2M

)∫ ∞

a

1

tσ(t)
∆t

= (2M2 +M)
1

a
.

Thus as in the previous proof we get (4.4). Further we show that

lim
t→∞

t

∫ ∞

t

w2(s)

1 + µ(s)w(s)
∆s = ϑ2.

Using the time scale L’Hospital rule and the above derived estimates, since

lim
t→∞

µ(t)|w(t)| ≤ lim
t→∞

Mµ(t)

t
= 0,

we have

lim
t→∞

∫∞
t

[w2(s)/(1 + µ(s)w(s))] ∆s

1/t
= lim

t→∞

tσ(t)w2(t)

1 + µ(t)w(t)

= lim
t→∞

(tw(t))2 1 + µ(t)/t

1− µ(t)|w(t)|
= ϑ2.

From (4.4),limt→∞ t
∫∞

t
p(s) ∆s = −ϑ+ ϑ2 = A.

“If”: Let y be a positive decreasing solution of (4.1) fort ∈ [a,∞). Similarly as in the
previous proof, we havelimt→∞ y

∆(t) = 0. Setη(t) = ty∆(t)/y(t). Then

0 < −η(t) =
t

y(t)

∫ ∞

t

p(s)yσ(s) ∆s ≤ t

∫ ∞

t

p(s) ∆s,

and soη is bounded. Further,η satisfies the modified Riccati dynamic equation

(4.6)

(
η(t)

t

)∆

− p(t) +
η2(t)/t2

1 + µ(t)η(t)/t
= 0

with η/t ∈ R+ on [a,∞). Sinceη is bounded, we havelimt→∞ η(t)/t = 0, and so integration
of (4.6) fromt to∞ yields

(4.7) − η(t)

t
=

∫ ∞

t

p(s) ∆s−
∫ ∞

t

η2(s)/s2

1 + µ(s)η(s)/s
∆s.
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Let us write condition (4.5) as

(4.8) t

∫ ∞

t

p(s) ∆s = A+ ε1(t) = ϑ2 − ϑ+ ε1(t),

wherelimt→∞ ε1(t) = 0. Multiplying (4.7) byt with the use of (4.8) we get

(4.9) − η(t) = ϑ2 − ϑ+ ε1(t)− t

∫ ∞

t

η2(s)/s2

1 + µ(s)η(s)/s
∆s.

Denote

ε2(t) = t

∫ ∞

t

η2(s)

(
1

s2 + µ(s)η(s)s
− 1

sσ(s)

)
.

Sinceη is bounded andµ(t) = o(t), using the time scale L’Hospital rule we have

lim
t→∞

ε2(t) = lim
t→∞

η2(t)

(
tσ(t)

t2 + µ(t)η(t)t
− tσ(t)

tσ(t)

)
= lim

t→∞
η2(t)

(
1 + µ(t)/t

1 + η(t)µ(t)/t
− 1

)
= 0.

Hence,

t

∫ ∞

t

η2(s)/s2

1 + µ(s)η(s)/s
∆s = t

∫ ∞

t

η2(s)

sσ(s)
∆s+ ε2(t),

wherelimt→∞ ε2(t) = 0. Thus from (4.9) we obtain

−η(t) = ϑ2 − ϑ− t

∫ ∞

t

η2(s)

sσ(s)
∆s+ ε(t),

whereε(t) = ε1(t)− ε2(t). Consequently,

−η(t) = ϑ2 − ϑ− tG(t)

∫ ∞

t

1

sσ(s)
∆s+ ε(t),

wherem(t) ≤ G(t) ≤M(t) with m(t) = infs≥t η
2(s),M(t) = sups≥t η

2(s), or

(4.10) G(t)− η(t) = ϑ2 − ϑ+ ε(t).

We claim thatlimt→∞ η(t) = ϑ. Recall that−η is a bounded positive function. First we assume
that there existslimt→∞(−η(t)) = L ≥ 0. Then from (4.10) we getL2 + L = ϑ2 − ϑ. If
L > −ϑ, thenϑ2 = L2 +L+ϑ > L2, contradiction. Similarly we get contradiction ifL < −ϑ.
Next we assume thatlim inft→∞(−η(t)) = L∗ < L∗ = lim supt→∞(−η(t)). IntroduceL1 and
L2 by

L1 =
√

lim inf
t→∞

G(t) and L2 =
√

lim sup
t→∞

G(t),

respectively. In general,L∗ ≤ L1 ≤ L2 ≤ L∗, andL∗ is nonnegative. Assuming that at least
one of the inequalities is strict, which implies that at least one of the values is different from
−ϑ, we come to a contradiction, arguing similarly as in the case whenL existed. All these
observations prove that the limitlimt→∞ η(t) exists and is equal toϑ.

Remark 4.2. Theorem 4.1 and Theorem 4.2 can be unified into one statement, whereA ≥ 0
andϑ is assumed to be the nonpositive root ofλ2−λ−A = 0. The condition on the graininess
can be expressed e.g., as that there isB > 0 such thatlim supt→∞ µ(t)/t ≤ AB.
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5. CONCLUDING REMARKS

In this last section we indicate some directions for a future research related to the topic of
this paper.

Usually, in the continuous case, a regularly varying functionf of indexϑ, ϑ ∈ R, is defined
as one which is positive and measurable on the real interval[a,∞), and for allλ > 0 it satisfies

(5.1) lim
t→∞

f(λt)

f(t)
= λϑ.

This definition is due to Karamata [13]. Such functions have the representation (3.3) or

f(t) = ϕ(t)tϑ exp

{∫ t

a

ψ̃(s)

s
∆s

}
,

wherelimt→∞ ψ̃(t) = 0. Hence, a class of regularly varying functions of a given index can be
seen as the one containing functions which are asymptotically equivalent to a power function
multiplied by a factor which varies “more slowly” than a power function. In the basic theory of
regularly varying sequences two main approaches are known. First, the approach by Karamata
[12] based on a counterpart of the continuous definition: A positive sequence{ft}, t ∈ {a, a+
1, . . . } ⊂ Z is said to be regularly varying of indexϑ, ϑ ∈ R, if

(5.2) lim
t→∞

f[λt]

ft

= λϑ

for all λ > 0, where[u] denotes the integer part ofu. Second, the approach by Galambos
and Seneta [8] based on a purely sequential definition: A positive sequence{ft}, t ∈ {a, a +
1, . . . } ⊂ Z is said to be regularly varying of indexϑ, ϑ ∈ R, if there exists a positive sequence
{αt} satisfying

(5.3) ft ∼ Cαt and lim
t→∞

t

(
1− αt−1

αt

)
= ϑ,

C being a positive constant. In [5] it was shown that these two definitions are equivalent. In
[15] is was shown that the second condition in (5.3) can be replaced bylimt→∞ t∆αt/αt = ϑ,
cf. (3.1). Moreover (see [15]),{ft} has the representation (3.4) or

ft = ϕtt
ϑ

t−1∏
j=1

(
1 +

ψ̃j

j

)
,

where limt→∞ ψ̃t = 0. The imbedding theorem, a very important statement in the discrete
theory of regular variation, was recalled in the third section.

Taking into account the above facts, it is natural to look for a general definition forf : T → R
in the sense of Karamata, i.e., unifying (5.1) and (5.2). One possible candidate for such a
definition could be the condition

lim
t→∞

f(τ(λt))

f(t)
= λϑ,

whereτ : R → T is defined asτ(t) = max{s ∈ T : s ≤ t}. Is this definition equivalent
to Definition 3.1? For this, are some additional conditions needed? Is there a significant role
played by the graininess ofT, which is not known from the “classical” cases? Some of the first
computations in this direction show that there could be. We are also interested in proving an
imbedding type theorem, which enables us to use the continuous theory in developing a theory
of regularly varying functions on time scales.
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In the theory of regular variation in the continuous case, many interesting properties of reg-
ularly varying functions have been established, see [2, 9, 14, 16]. In addition, there is also the
theory of rapidly varying functions and of other similar objects. Although not so deep, an anal-
ogous discrete theory has been developed. As noticed above, this development is not generally
close and sometimes far from a simple imitation of arguments of the continuous considerations.
Both these theories have been shown to be extremely useful in many applications concerning
various fields of mathematics. In view of all these facts, one can claim that the study of regular
variation on time scales promises interesting and nontrivial efforts with receiving useful results
at their ends. One of the purposes of our paper is to initiate such a study.
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