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ABSTRACT. The purpose of this paper is twofold. First, we want to initiate a study of regular
variation on time scales by introducing this concept in such a way that it unifies and extends
well studied continuous and discrete cases. Some basic properties of regularly varying functions
on time scales will be established as well. Second, we give conditions under which certain
solutions of linear second order dynamic equations are regularly varying. Open problems and
possible directions for a future research are discussed, too.
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2 PAVEL REHAK

1. INTRODUCTION

The concept of regular variation has been shown to be extremely useful in many fields of
mathematics, both, in the continuous and the discrete setting, seele.g.,[2,/5,6,/8, 9, 12, 13, 14,
15,[16]. In this paper we introduce the concept of regular variation for real functions defined on
an arbitrary time scal@. It will be shown that our definition is a generalization and unification
of the continuous and the discrete case, in a certain sense. From this point of view, our paper
can be understood as the one which wants to initiate study of this important concept in a general
time scale setting. Recall that in addition to the classical differential and difference calculi, the
calculus on time scales includes as a special case also the so-called quantum calculus, see e.g.,
[11]. In the second part of this paper, we provide information about asymptotic behavior of
positive decreasing solutions of linear second order dynamic equations (which include an one-
dimensional Schrodinger differential equation). We give sufficient and necessary conditions
under which the solutions are regularly (or slowly) varying. For related results concerning
linear second order differential and difference equations see [14] and [15], respectively.

The paper is organized as follows. First we recall basic facts about time scales. Then we
define regularly varying functions on time scales and prove some of its properties. In particular,
we establish a representation theorem for such functions using the fact that they are related
to solutions of certain linear first order dynamic equations. Connections of regularly varying
functions with positive solutions of linear second order dynamic equations will be shown in
Sectior] 4. Open problems and possible directions for a future research are discussed in the last
section.

2. PRELIMINARIES

In 1988, Stefan Hilger [10] introduced the calculus on time scales which unifies continuous
and discrete analysis. thme scal€T is an arbitrary nonempty closed subset of the real numbers
R. We define théorward jump operator by o(t) := inf{s € T : s > t}, and thegraininessu
of the time scalél' by u(t) := o(t) — t. Apointt € T is said to beight-denseright-scattered
if o(t) =t,o(t) > t, respectively. We denot” := f o 0. Throughout this paper we assume
thatT is a time scale which is unbounded above. For a funcfiom — R thedelta derivative
is defined by

A o :
Jo0):= s%tl,]&r-(ti)#t o(s)—t
Here are some useful formulas involving delta derivatiyé: = f + uf*, (f9)® = f2g +
f7g® = 27 + fg®, (f/9)™ = (f*g — fg™)/(gg°), wheref, g are delta differentiable and
g9° # 0inthe last formula. A functiorf : T — R is calledrd-continuousprovided it is contin-
uous at all right-dense pointsihand its left-sided limits exist (finite) at all left-dense points in
T (left-dense and left-scattered points are defined similarly as their “right counterparts”). The
classes of real rd-continuous functions and real rd-continuously delta differentiable functions
on a time scale intervdl will be denoted by’,4(7) and byC/,(I), respectively. Fou, b € T and

a delta differentiable functiofi, theNewton integrals defined byfab 2@ At = f(b) — f(a).
Note that every rd-continuous function has an antiderivative. For the concept Bighwnn
delta integraland thelLebesgue delta integrake [4, Chapter 5]. Note that we have

o(t)y=t, p(t) =0, f>=f, /bf(t) At = /bf(t) dt, whenT =R,
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while
b b—1
ot)=t+1, u(t) =1, > =Af, / ft) At = Zf(t), whenT = Z,
a < b, and )

o(t) = qt, p(t) = (¢ = V)t, [* = Dgy := (y(at) —y(1))/(qt = 1),
t n—1
/ F(s)As =Y f(¢)u(’), t = ", whenT = ¢ := {¢" : k € Ny}

1 §=0
with ¢ > 1. We say that a functiop : T — R is regressiveprovidedl + u(t)p(t) # 0fort € T.
The set of all regressive and rd-continuous functignsT — R is denoted byR = R(T).
Define the set opositively regressivéunctionsR*t = R*(T) as the set consisting of those
p € R satisfyingl + u(t)p(t) > 0 fort € T. Define thegeneralized exponential function
e,(t,s) as the unique solution, (-, ty) of the initial value problemy® = p(t)y, y(ts) = 1,
wherep € R. In fact,e,(t, s) is defined by means of a cylinder transformation, e.gl lin [3], but
here we prefer a simpler equivalent definition. By an intefwab], wherea,b € T, we mean
the set{t € T : a < t < b}, ifitis not said otherwise; similarly we define other types of
time scale-intervals. The monographs([3, 4] are very good sources for searching many other
information concerning time scales and dynamic equations on time scales.

3. REGULAR VARIATION ON TIME SCALES
We start this section with the definition of the central concept.

Definition 3.1. A positive functionf € Cy([a, 00)) is said to beegularly varying of index’,
Y € R, if there exists a positive functiom € C4([a, o)) satisfying

_ta®(t)
(3.1) f(t) ~ Ca(t) and tlirglo OB v,

C being a positive constant. #f = 0, then f is said to beslowly varying

The totality of regularly varying functions of indexis denoted byRV(+)). The totality of
slowly varying functions is denoted &) .

The next statement is a representation theorem. Clearly, it suffices if the conditions in the
theorem hold eventually (for larg®. Without loss of generality we can assume that they are
satisfied on the intervad, co).

Theorem 3.1. A positive functionf € Cyq([a, o)) belongs toRV(¢)) if and only if it has the
representation

(3.2) f(t) = gp(t)eg(t, a)>
wherey € Cyy([a, >0)) is a positive function tending to a positive constant are C4([a, 00))
satisfies) € R™ = R ([a, o)) andlim,_,, to(t) = 9.

Proof. “Only if”: Let f € RV(9). Then there is) € C4([a, >0)) such thaty = o*/a and
lim; . t5(t) = . Moreover,a satisfies the first order linear dynamic equatich = 6(¢)a,
and so it has the form(t) = ages(t, a) with ag > 0. Sincex is positive,e;(t, a) is positive as
well, and henceé € R*. From the first condition i (3]1) we now have that there is a positive
function ¢ tending to a positive constant such that|3.2) holds.

“If”: Let (8.2) hold with 6 € Rt andlim;_., t6(t) = ¥. Puta(t) = es(t,a). Thena is
a positive function such thatm; .., ta”(t)/a(t) = lim; .., t6(t) = 9. Sincef(t) ~ Ca(t),
whereC' = lim; ., ¢(t), f € RV(9). 1
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If T =R, then|3.2) reduces to
33) s =een{ [ as},

S

wherelim;_ ., ¢(t) = C > 0 andlim;_, ¢ (t) = 9. If T = Z, then [3.2) reduces to

t—1 w
(3.4) ﬁz%H(H-Q,

j=a J
wherelim; .., ¢, = C > 0 andlim; .., ¢, = ¢. In both these cases the obtained formulas
coincide with the known representation formula in the continuous casel(see [16]), resp. in
the discrete case (see [15]). Hence our definition can be understood as a generalization and
unification of that in the continuous and the discrete case.

Note that in[5/ 8], a very useful imbedding theorem was establishe@ }f is a regularly
varying sequence, then the functi@(of a real variable), defined bi(x) = y,, is regularly
varying. Such a result makes it then possible to apply the continuous theory to the theory
of regularly varying sequences. However, the development of a discrete theory, analogous
to the continuous one, is not generally close, and sometimes far from a simple imitation of
arguments for regularly varying functions, as noticed and demonstratéd in [5]. A theory of
regular variation on time scales offers something more than the imbedding result, and has the
following advantages: Once there is proved a result on gefigrdlautomatically holds for
the continuous and the discrete case, without any other effort. Moreover, at the same time, the
theory works also on other time scales which may be different from the “classical” ones.

The next defined normalized regular variation will be of particular interest in our subsequent
theory.

Definition 3.2. A positive functionf € Cl([a, 00)) is said to benormalized regularly varying
of indexd, ¥ € R, if it satisfies
tf2(t)

1m
t=oo f(1)
If ¥ = 0, thenf is said to benormalized slowly varying

The totality of normalized regularly varying functions of indéxs denoted byN RV (¥).
The totality of normalized slowly varying functions is denoted\f\$ ).

It is easy to see thagt € N'RV(¢) if and only if it has the representatidn (B.2), where) is
replaced by a positive constafit i.e.,

(3.5) f(t) = Ces(t, a).

Let f € NRV(9). Thenf2(t) % 0ifandonlyifé(t) % 0fort € [a, c0) in the representation
(3:3). This follows fromf2(t)/f(t) = 6(¢). Further note that if(t) > 0, then clearlys €
R*T. If f € NSV is decreasing, then far from (3.3) being inR " it is sufficient to assume
wu(t) = O(t). Indeed, ifu(t)/t is bounded andim, .., td(t) = 0, thenlim, .., u(t)d(¢) = 0.
Similarly, if f € NRV(¢) (with ¥ < 0) is decreasing, then fare R it is sufficient to assume

p(t) = oft).

4. REGULARLY VARYING DECREASING SOLUTIONS OF SECOND ORDER LINEAR
DYNAMIC EQUATIONS

Consider the linear dynamic equation
(4.2) y>2 —p(t)y” =0,
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wherep € Cyq([a, >0)) is positive. Basic properties df (4.1) can be found e.g.| in [3] or [7].
By a solution we will mean a nontrivial solution. Recall thas@lutiony of (4.1) is called
nonoscillatoryif yy° > 0 eventually. Otherwise, it is callealcillatory. In view of the Sturm

type separation theorem, one solution[of(4.1) is oscillatory if and only if every solution is so.
Hence we may speak abduon)oscillation of equatiofd.1). Sincey** = 0 is nonoscillatory
(such an equation is readily explicitly solvable), then|(4.1) is nonoscillatory as well by the Sturm
type comparison theorem. MoreoverMf denotes the set of all (nontrivial) solutions pf (4.1),
then anyy € M is eventually monotone and belongs to one of the two classes

M" = {y € M : 3T € [a, 00) such thaty(t)y*(t) > 0fort € [T, 00)},
M~ = {yeM: y(t)y*(t) < 0fort € [a,00)}.

These classes are nonempty. Basic asymptotic properties of solutions| of (4.1) in tHelclass
was studied in[1] (in fact, there were studied a more general equatiorf than (4.1), namely a qua-
silinear dynamic equation). In our paper we study asymptotic properties from a different point
of view — we establish necessary and sufficient conditions under which positive decreasing
solutions of [(4.]l) are normalized slowly/regularly varying. Note that considering just positive
elements oM~ is without loss of generality, in view of the homogeneity of the solution space.
One of the main tools used in the subsequent proofs is based on the Riccati like transfor-
mation. Note that the below described technique works no matter what the sigis.off y
is a solution of [(4.]1) withy(t)y°(t) > 0 for larget, sayt € [a,o0), (in particular, [(4.1) is
nonoscillatory), themv defined byw = 32 /y satisfies the Riccati dynamic equation

w(t)
1+ p(t)w(t)

with w € R* for ¢t € [a,00). The opposite implication holds as well, and this technique is
usually referred to as thRiccati technique

In the next two theorems we give conditions guaranteeing the existence of regularly varying
solutions of [(4.]1). We will see that the index of regular variation depends on the value of the
limit of certain expression involving the coefficiemt

(4.2) wA (1) - plt) + 0

Theorem 4.1. Let y be any positive decreasing solution .1) and n(t) = O(t). Then
y € NSV if and only if

t—o0

4.3) lim t/oo p(s) As = 0.

Proof. “Only if”: Let y € NSV be a positive decreasing solution §f (4.1) fanco). Set
w =y~ /y. Thenw(t) < 0 and satisfied (4}2) withy € R* for ¢ € [a, ). Sincey € NSV,
we havelim; ., tw(t) = 0 andlim;_,., w(t) = 0. First we show that

(o) w2(t) -
/a T () &

In view of u(t) = O(t), there existsN' > 0 such thatu(t)/t < N fort € [a,00). Since
lim; . tjw(t)| = 0, there existsdV/ < 1/(2N) such thatw(t)| < M/t for larget, say again
t € [a,00), without loss of generality. Then

pO)M _ p(t) _
- <

pt)|w(t)] <
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fort € [a,00). Hence,

) wQ(t) (e M?/tQ

/a 1+u<t>w<t>“§/a T o]
I S 0N
‘M/a 00 = O]

| 1+ N
§M2/ +At

to(t) 1—1/2
= 2M*(1 + N)é.
Now, integrating[(4.2) front to oo and multiplying byt we get
) wQ(s) [e%]
4.4 — tw(t +t/ —ASZt/ s) As.
“ O T = 7

Next we show that . )
lim Zf/ w—<8) As = 0.
t—oo Jy 1+ p(s)w(s)
Using the time scale L'Hospital rule, see e.gl, [3], and the above derived estimates, we have
ST/ () As L to(u ()
o 1/t e T p(tw(?)
. L+ p(t)/t
t=oo 1 — pu(t)|w(t)]
1+ N
< li 2 -t
= B O
1+ N
1—MN
<2(1+ N) lim (tw(t))?

=0

< lim (tu(1))?

From [4.4) we now gef (413).
“If": Let y be a positive decreasing solution of equatjon](4.1)far[a, o). We claim that

lim;_ y2(t) = 0. If not, then there is\/ > 0 such thaty®(t) < —M for t € [a, ), and so
y(t) <y(a) — (t —a)M. Lettingt — oo we havelin,_,, y(t) = —oo, a contradiction. Hence
integration of [(41]1) front to oo yieldsy~ (t) = — [ p(s)y?(s) As. Multiplying this equality
by ¢/y(t) and using a monotone naturezpive obtain
ty>(t) _ t [T ty(t) [~ >
I = [ newras < U [T A=t [ pts) s
Hencelim, .., ty>(t)/y(t) = 0 by (4.3), and s € NSV. i

Remark 4.1. A closer examination of the proof shows that the conditigty = O(¢) is not
needed to prove the “if” part.

Theorem 4.2. Lety be any positive decreasing solution @.1) and .(t) = o(t). Theny €
NRV(9) if and only if
(4.5) lim t/ p(s)As=A>0,

t

t—o00

whered is the negative root of the equatiod — A\ — A =0, i.e.,¥ = (1 —V1+ 4A) /2.
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Proof. “Only if”: Let y € NRV(J) be a positive solution of (4.1) far € [a,00). Setw =
y*/y. Thenw(t) < 0 and satisfieg (4}2) witly € R* for ¢ € [a, >0). Sincey € NRV(¥), we
havelim,_, ., tw(t) = ¥ andlim,;_., w(t) = 0. We show that

0 w2<t) -
/a T altu() & <

There exists\/ > 0 such thatu(t) < M/t. Further, in view of the conditiotim; .. () /t =
0, we haveu(t)|w(t)] < Mu(t)/t < 1/2 for larget, sayt € [a,o0). Hence,

[e'e) wQ(t) [e'e] M2/t2
T S / T @)
< 2M2/ %At

:2M2/:Oﬁ(l+@) At

9 1 <1

<2M <1+m)/a mAt

1

a.

Thus as in the previous proof we gt (4.4). Further we show that
limt/mﬂAs:ﬂz
t=oo Jy 1+ p(s)w(s)

Using the time scale L'Hospital rule and the above derived estimates, since

Mp(t)

= (2M* + M)

lim p(t)w(®)] < lim =522 =0,
we have
ST/ sy As Lt (D)
100 1/t oo L p(t)w(t)
. o L+plt)/t
O T R
=%

From [4:3)lim, o t [~ p(s) As = =0 + ¥ = A.
“If": Let y be a positive decreasing solution pf (4.1) foe [a,c0). Similarly as in the
previous proof, we havém; .., y*(t) = 0. Setn(t) = ty>(t)/y(t). Then

t o0 o0

— ps”sAsgt/ p(s) As,

= [ rewrmas<i [ o)

and son is bounded. Further, satisfies the modified Riccati dynamic equation
n(t))A (1) /1

4.6 — ) —p(t)+ ————— =

“9 (") =0

with n/t € R* on|a, c0). Sincen is bounded, we havim; ., n(t)/t = 0, and so integration
of (4.6) fromt¢ to oo yields

O ©  p(s))s?
(4.7) ‘nT:/t p(s) AS‘/t TR EyA

0<—n(t) =
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Let us write condition[(4]5) as
(4.8) t/ p(s)As = A+e(t) =07 =9 +e(t),
t

wherelim;_,, €1(t) = 0. Multiplying (4.7) byt with the use of{(4/8) we get

(4.9) ) =9 — 9 +ei(t) —t /t h 1 +"MEZ;7/7 ?8) 750

Denote

go(t) = t/too 17°(s) (Sz T M(ls)n(s)s B sal(s)) '

Sincen is bounded ang(t) = o(t), using the time scale L'Hospital rule we have

lim e5(¢) = lim 7%(¢) ( to(t) ta(t))

t—00 t—o0 2+ u(t)nt)t  to(t)

T 2 L+ p(t)/t
=t () (1 ETOMON 1)
= 0.

Hence,

© R
f 1+u<s>n<s>/sAs‘t/t so(s) S5 e

wherelim; ., €2(t) = 0. Thus from [(4.D) we obtain

—n(t) =9 =10 — t/too Zj(?) As +e(t),

wheres(t) = €,(t) — e2(t). Consequently,

() = 92 — 9 — tG(t) /t i de et
wherem(t) < G(t) < M(t) with m(t) = inf,s, n?(s), M(t) = sup,s, n*(s), or
(4.10) G(t) —n(t) =9% -9 +e(t).

We claim thafim, .., 7(t) = . Recall that-n is a bounded positive function. First we assume
that there existéim; ...(—n(t)) = L > 0. Then from [4.ID) we gef? + L = ¥* — 0. If
L > —9,thent? = L?> + L +9 > L?, contradiction. Similarly we get contradictionfif < —2.
Next we assume théitm inf, ,..(—n(t)) = L. < L* = limsup,_, . (—n(t)). IntroduceL; and

Ly by
Ly =, /li{n inf G(t) and Ly = /limsup G(t),
—00 t—o0

respectively. In general,, < L, < L, < L*, andL, is nonnegative. Assuming that at least
one of the inequalities is strict, which implies that at least one of the values is different from
—1, we come to a contradiction, arguing similarly as in the case whexisted. All these
observations prove that the liniitn, .., n(¢) exists and is equal td. n

Remark 4.2. Theoreni 4. and Theorgm #.2 can be unified into one statement, wWher@
andd is assumed to be the nonpositive root\df- A — A = 0. The condition on the graininess
can be expressed e.g., as that thet® is 0 such thatim sup,_, . u(t)/t < AB.
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5. CONCLUDING REMARKS

In this last section we indicate some directions for a future research related to the topic of
this paper.
Usually, in the continuous case, a regularly varying functiaf index+J, 9 € R, is defined
as one which is positive and measurable on the real intérvab), and for all\ > 0 it satisfies
)y
(5.1) lim ———= = \".
i (1)

This definition is due to Karamata [13]. Such functions have the representatibn (3.3) or
L~
£(8) = o)t exp { [ As} 7

wherelim;_, {p(t) = 0. Hence, a class of regularly varying functions of a given index can be
seen as the one containing functions which are asymptotically equivalent to a power function
multiplied by a factor which varies “more slowly” than a power function. In the basic theory of
regularly varying sequences two main approaches are known. First, the approach by Karamata
[12] based on a counterpart of the continuous definition: A positive seqyghnge € {a,a +

1,...} C Zis said to be regularly varying of indek ¢ € R, if

(5.2) lim 124 _ \

t—o00 ft
for all A > 0, where[u] denotes the integer part af Second, the approach by Galambos
and Seneté [8] based on a purely sequential definition: A positive seqfigrice € {a,a +
1,...} C Zis said to be regularly varying of indek v € R, if there exists a positive sequence

{a;} satisfying

(5.3) fi ~Ca; and lim ¢ (1 - O‘“) =,
t—oo Ot
C being a positive constant. 1h![5] it was shown that these two definitions are equivalent. In
[15] is was shown that the second condition[in(5.3) can be replacéehby,, tAco; /oy = ¥,
cf. (3.1). Moreover (seé [15]).f:} has the representatidn (B.4) or

t—1 =
fi=vt" 1] <1+ w—?’) ,
i=1 J

wherelim, ... ¥, = 0. The imbedding theorem, a very important statement in the discrete
theory of regular variation, was recalled in the third section.

Taking into account the above facts, it is natural to look for a general definitioh:far — R
in the sense of Karamata, i.e., unifyirig (5.1) ahd](5.2). One possible candidate for such a
definition could be the condition

i LEOD) 0

t—oo f(1)
wherer : R — T is defined asr(t) = max{s € T : s < t}. Is this definition equivalent
to Definition[3.1? For this, are some additional conditions needed? Is there a significant role
played by the graininess df, which is not known from the “classical” cases? Some of the first
computations in this direction show that there could be. We are also interested in proving an
imbedding type theorem, which enables us to use the continuous theory in developing a theory
of regularly varying functions on time scales.
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In the theory of regular variation in the continuous case, many interesting properties of reg-
ularly varying functions have been established, segl[2,19, 14, 16]. In addition, there is also the
theory of rapidly varying functions and of other similar objects. Although not so deep, an anal-
ogous discrete theory has been developed. As noticed above, this development is not generally
close and sometimes far from a simple imitation of arguments of the continuous considerations.
Both these theories have been shown to be extremely useful in many applications concerning
various fields of mathematics. In view of all these facts, one can claim that the study of regular
variation on time scales promises interesting and nontrivial efforts with receiving useful results
at their ends. One of the purposes of our paper is to initiate such a study.
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