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2 G. J. TEE

1. I NTRODUCTION

The zeros of Chebyshev polynomials (with integer coefficients) can be expressed in terms of
cosines.

Consequently, application of Vieta’s Rule and Newton’s Rule to those polynomials gives in-
teger expressions for various sums of powers (positive and negative) of trigonometric functions.
For example,
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for oddn ≥ 3 (Durell & Robson [4], p. 206 & p. 211).
For a monic polynomial equation with integer coefficients

(1.3) xd + a1x
d−1 + a2x

d−2 + · · ·+ ad = 0,

and primep, the sumSp of the pth powers of the roots of (1.3) satisfies (2.15) the integer
congruenceSp ≡ −a1 mod p (cf. Tee [13], Theorem 1). More generally (2.18), ifq is any
positive integer thenSpq ≡ Sq modp.

Applied with Vieta’s Rule and Newton’s Rule to the Chebyshev polynomials, these congru-
ences yield many novel congruences for integer sums of powers of cosines and secants. For
example (3.22), with1 primep and integersm ≥ 0 andd ≥ 6,

(1.4) 64p
m
d÷2∑
k=1

cos6pm

(
[2k − 1]π

2d

)
≡ 10d (mod p) .

Families of polynomials with integer coefficients are constructed (8.12) whose zeros can
be expressed in terms of tangents. Applied with Vieta’s Rule and Newton’s Rule to those
polynomials, the congruences (2.15) and (2.18) yield many novel congruences for integer sums
of powers of tangents and cotangents.

The significant trigonometric congruences (each in triples) found here are (3.22), (4.13),
(5.18), (5.24), (5.29), (6.7), (6.14) and (6.21) for integer sums of powers of cosines; (3.26),
(3.28), (4.17), (4.19), (5.20), (5.26), (5.31), (6.9), (6.16), (6.18), (6.23) and (6.25) for integer
sums of powers of secants; (9.8), (9.13), (9.20), (9.30), (10.24) and (10.21) for integer sums of
powers of tangents; and (10.28) and (10.30) for integer sums of powers of cotangents.

2. SUMS OF POSITIVE POWERS OF ROOTS

A general polynomial equation of degreed ≥ 1 with complex coefficients

(2.1) Q(x) = c0x
d + c1x

d−1 + c2x
d−2 + · · ·+ cd = 0,

with c0 6= 0, has the same roots (and multiplicities) as the monic equation

(2.2) P(x)
def
= Q(x)/c0 = xd + a1x

d−1 + a2x
d−2 + · · ·+ ad = 0,

where

(2.3) ai
def
= ci/c0, (i = 1, 2, . . . , d).

1The symbol÷ denotes integer division, yielding integer quotient. For integersn andd > 0, q = n ÷ d,
wheren = qd + r, with remainder0 ≤ r < d.
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INTEGERSUMS OF POWERS OFTRIGONOMETRICFUNCTIONS (MOD p), FOR PRIMEp 3

Thed roots of equation (2.1) (and of (2.2)) will be denoted byα, β, γ, . . . , ψ, ω; and those
symmetric functions of the roots which are calledsigma functions are denoted thus:∑

α
def
= α+ β + · · ·+ ω,∑

αβ
def
= αβ + αγ + · · ·+ αω + βγ + · · ·+ βω + · · · + ψω,∑

α3β2 def
= α3β2 + α3γ2 + · · ·+ α3ω2 +

β3γ2 + · · ·+ β3ω2 + · · · + ψ3ω2 + β3α2 + γ3α2

+ · · ·+ ω3α2 + γ3β2 + · · ·+ ω3β2 + · · · + ω3ψ2,

· · ·(2.4)

The sigma functions
∑
α,
∑
αβ,

∑
αβγ, . . . ,

∑
αβγ . . . ω are called theelementary sym-

metric functions of α, β, γ, . . . , ω; and Vieta’s Rule expresses them in terms of the coefficients
of P: ∑

α = −a1,
∑

αβ = a2,
∑

αβγ = −a3,

. . . ,
∑

αβγ . . . ω = αβγ . . . ω = (−1)dad.(2.5)

Each symmetric polynomial with integer coefficients can be expressed as a polynomial in the
elementary symmetric functions, with integer coefficients (Dickson [3], p. 67).

Therefore, if all coefficientsa1, . . . , ad of the monic polynomialP are integers (positive,
negative or zero), each symmetric polynomial (in the roots of (2.2)) with integer coefficients
has integer value. In particular, each sigma function then has integer value.

For integerk, denote the sum of thekth powers of the roots as

(2.6) Sk
def
=
∑

αk = αk + βk + · · ·+ ωk,

which is a sigma function ifk > 0. From equation (2.2), Vieta’s Rule givesS1 = −a1; then
S2, S3, . . . may be computed successively by Newton’s Rule:

Sk = −a1Sk−1 − a2Sk−2 − · · · − ak−1S1 − kak, (k = 1, 2, . . . , d);

Sk = −a1Sk−1 − a2Sk−2 − · · · − adSk−d, (k > d).(2.7)

From Newton’s Rule, it follows that eachSk can be expressed as a polynomial in theai, with
integer coefficients. For example,

S1 = −a1, S2 = a2
1 − 2a2, S3 = −a3

1 + 3a1a2 − 3a3,

S4 = a4
1 − 4a2

1a2 + 4a1a3 + 2a2
2 − 4a4,(2.8)

andai is taken as 0 fori > d. Girard’s formula2 of 1629 gives (MacMahon [8] p. 6) the general
expression:

(2.9) Sq =
∑ q.(r1 + r2 + · · ·+ rd − 1)!

r1!r2! . . . rd!
(−a1)

r1(−a2)
r2 . . . (−ad)rd ,

where the sum is taken over all non-negative exponents such that

(2.10) r1 + 2r2 + 3r3 + · · ·+ drd = q.

For an even polynomial equation of degreed = 2j,

(2.11) x2j + a2x
2j−2 + a4x

2j−4 + · · ·+ a2j−2x
2 + a2j = 0,

2Albert Girard,Invention Nouvelle en l’Algèbre, Amsterdam, 1629. The formula is often ascribed to Waring,
who gave it without proof in 1782.
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4 G. J. TEE

the roots occur in pairs (+α,−α), including multiplicity; and henceSk = 0 for all odd k.
Indeed,α2 is a root (with multiplicity twice that for+α in (2.11)) of the equation of degreej:

(2.12) zj + a2z
j−1 + a4z

j−2 + · · ·+ a2j−2z + a2j = 0.

Accordingly, for all positive integersn, S2n (for the roots of (2.11)) equals twice the sum of the
nth powers of the roots of (2.12).

Similarly, for an odd polynomial of degreed = 2j + 1,

(2.13) x2j+1 + a2x
2j−1 + a4x

2j−3 + · · ·+ a2j−2x
3 + a2jx = 0,

the roots are 0 and pairs (+α,−α) including multiplicity; and henceSk = 0 for all oddk. As
with the even polynomial (2.11),S2n (for the roots of (2.13)) equals twice the sum of thenth
powers of the roots of (2.12).

For both even and odd polynomials, define

(2.14) σn
def
= 1

2
S2n,

so thatσn equals the sum of the2nth powers of the roots of the even or odd polynomial equation,
using each nonzero pair (+α,−α) once only. The root 0 for an odd polynomial is excluded from
the sum in the definition ofσn, to facilitate the later treatment of negative powers of roots.

Throughout this paper,p denotes any prime, andm denotes the non–negative integer expo-
nent inpm.

Hereafter, we shall consider only polynomials with integer coefficients.

2.1. Monic Polynomials With Integer Coefficients. If all coefficients in the monic polyno-
mialP are integers, then its zeros are called algebraic integers. Newton’s Rules (2.7) shew that
Sk then has integer value for all positive integersk. It has been proved (Tee 2.12, Theorem 1)
that3

(2.15) Sp ≡ −a1 (mod p).

Therefore

(2.16) p|Sp ⇐⇒ p|a1.

and (Tee [12], Theorem 2),Sp is an integer multiple ofp for all primesp if and only if the
coefficienta1 = 0 in P.

For both even and odd polynomials, we get that

(2.17) 1
2
S2p = σp ≡ −a2 (mod p).

Therefore, in an even or odd polynomial,σp is an integer multiple ofp for all primesp, if and
only if a2 = 0.
N.B. Note that the congruence and mod notations, devised by Gauß for relations between

integers, have been extended to indicate relations between polynomials. Consider integral poly-
nomialsf andg of degreen; i.e. f(x) =

∑n
r=0 crx

n−r, g(x) =
∑n

r=0 erx
n−r, with integer

coefficientscr ander. If cr ≡ er (modm) for eachr ∈ [0, . . . , n], then “we say thatf(x)
andg(x) are congruent to modulusm, and writef(x) ≡ g(x) (modm)” (Hardy & Wright [5],
page 82). Thus, the symbol “≡” is used in two different senses: Gauß’s meaning for a relation
between integers, and the sense just defined, in which it expresses a relation between polyno-
mials which does not imply any particular value (or type) for the variablex. Hardy & Wright

3In 1908, L. E. Dickson [2] stated the special case witha1 = 0; but that very muddled note considered only the
case of distinct roots for the monic polynomial equation.
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explained that “there should be no confusion because, except in the phrase ‘the congruence
f(x) ≡ 0’, the variablex will occur only when the symbol is used in the second sense. When
we assert thatf(x) ≡ g(x), or f(x) ≡ 0, we are using it in this sense, and there is no reference
to any numerical value ofx. But when we make an assertion about ‘the roots of the congruence
f(x) ≡ 0’, or discuss ‘the solution of the congruence’, it is naturally the first sense which we
have in mind” ([5], p. 83).

For instance, Comtet writes that for primep, “(1 + x)p ≡ 1 + xp (mod p); which means
that these two polynomials have the same coefficients inZ/pZ" ([1], p. 14]). With that definition
of “≡” for integral polynomials, it does follow that “(x1+x2+ · · ·+xm)p ≡ xp1+xp2+ · · ·+xpm
mod(p)” (Comtet [1], p. 29). But ifx1, x2, . . . , xm are not integer variables then that is nota
standard Gauß–type congruence of integers (unless the expressions on left and right of the
congruence happen to have integer values).

Some authors do seem to have become confused by the two meanings of “≡”. For instance,
B. H. Neumann & L. G. Wilson [10] published D. H. Lehmer’s purported proof of (2.15) for
the special casea1 = 0 (with d = 4) — but Lehmer’s proof is valid only if the rootsx, y, z, t of
his monic polynomial equation are all integers.

The proof (Tee [12], Theorem 1) of (2.15) applies for a general monic polynomial equation
with integer coefficients, whose roots (called algebraic integers) will in general be irrational or
complex.

Hereafter, in this paper, “≡” always denotes congruence of integers.

Edouard Lucas in 1878 ([6], p. 230) attributed to Euler the more general result that ifq is any
positive integer then

(2.18) Spq ≡ Sq (mod p),

which reduces to the congruence (2.15) whenq = 1. But Lucas did not give any reference,
and it has not been possible to locate that generalized congruence (2.18) within Euler’s colossal
output.

The congruence (2.15) generalizes readily to give (2.18). For the monic polynomial whose
zeros are theq-th powers of the zeros ofP:

(2.19) R(µ)
def
= µd + r1µ

d−1 + rrµ
d−2 + · · ·+ rd

Vieta’s Rule (2.5) becomes:∑
αq = −r1,

∑
αqβq = r2,

∑
αqβqγq = −r3,

. . . ,
∑

αqβqγq . . . ωq = αqβqγq . . . ωq = (−1)drd.(2.20)

Each of those symmetric functions is a sigma function for the monic polynomialP with in-
teger coefficients, and hence (Dickson [3], p.67) each coefficientr1, r2, . . . , rd of the monic
polynomialR is an integer. Therefore, the congruence (2.15) forP can be applied toR, to
give:

(2.21) Spq ≡ −r1 (mod p).

Now (cf. (2.20))Sq = −r1, and hence the generalized congruence (2.18) does follow from
(2.15).
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6 G. J. TEE

If n is any non-negative multiple ofp with n = pmq, wherem > 0, then it follows from
(2.9) and (2.18) by induction onm that

Sn = Spmq ≡ Sq =∑ q.(r1 + r2 + · · ·+ rd − 1)!

r1!r2! . . . rd!
(−a1)

r1(−a2)
r2 . . . (−ad)rd

(mod p),(2.22)

with r1, . . . , rd as in (2.10). The congruence (2.22) also holds trivially withm = 0, so that
n = q.

It follows from (2.8) and (2.22) that for primep and positive integerm:

Spm ≡ −a1 (mod p),

S2pm ≡ a2
1 − 2a2 (mod p),

S3pm ≡ −a3
1 + 3a1a2 − 3a3 (mod p),

S4pm ≡ a4
1 − 4a2

1a2 + 4a1a3 + 2a2
2 − 4a4 (mod p), et cetera,(2.23)

with aj = 0 for j > d.
Likewise, for odd or even monic polynomials,

σpm ≡ −a2 (mod p),

σ2pm ≡ a2
2 − 2a4 (mod p),

σ3pm ≡ −a3
2 + 3a2a4 − 3a6 (mod p),

σ4pm ≡ a4
2 − 4a2

2a4 + 4a2a6 + 2a2
4 − 4a8 (mod p), et cetera.(2.24)

2.1.1. Fermat’s Little Theorem for Algebraic Integers.Ford = 1 the polynomial equation (2.2)
reduces to

(2.25) x+ a1 = 0,

and (2.15) becomes(−a1)
p ≡ −a1 (mod p). For odd primep, this becomes−ap1 ≡ −a1

(mod p), and forp = 2 this becomesa2
! ≡ −a1 ≡ a1 (mod 2).

Hence, for all primesp, (2.15) reduces to Fermat’s Little Theorem for primep and integera1:

(2.26) ap1 ≡ a1 (mod p);

so that the congruence (2.15) is a generalization of Fermat’s Little Theorem from arithmetic
integers to algebraic integers.

Fermat’s Little Theorem is frequently given in the (p− 1)–power version:

(2.27) ap−1 ≡ 1 (mod p)

for integera which is not a multiple ofp. Can this (p − 1)–power version of Fermat’s Little
Theorem be generalized to algebraic integers, as thep–power version can?

If the d rootsα, β, . . . , ω of (2.2) are all integers which are not multiples ofp, then

(2.28) Sp−1 = αp−1 + βp−1 + · · ·+ ωp−1 ≡ 1 + 1 + · · ·+ 1 ≡ d (mod p).

But consider the monic polynomial of degreed = 2 with integer coefficients:

(2.29) x2 − x+ a2 = 0,

whose roots are not integers ifa2 is any integer not of the formb(1− b) with integerb. With the
primep = 2 we get that

(2.30) Sp−1 = S1 = α+ β = 1 ≡ d− 1 (mod p),
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which is incompatible with the general result (2.28) for roots which are all integers not divisible
by p.

Therefore, the (p − 1)–power version of Fermat’s Little Theorem does notgeneralize in any
simple manner from arithmetic integers to algebraic integers, as does thep–power version.

2.2. Non-monic Polynomials With Integer Coefficients.The case of a polynomialQ with
general integer coefficients(c0 6= 0) can be reduced to the case of a monic polynomial with
integer coefficients, as follows.

Theorem 2.1.For a polynomialQ with general integer coefficients(c0 6= 0), let b be such that
c0|bici (for i = 1, 2, . . . , d). ThenbkSk is an integer, for positive integerk.

Proof. Putx = z/b so thatz = xb, and hence (2.1) becomes

(2.31)
c0
bd
zd +

c1
bd−1

zd−1 +
c2
bd−2

zd−2 + · · · + cd = 0.

Multiply (2.31) bybd/c0 to get the monic equation

(2.32) zd + a1z
d−1 + a2z

d−2 + · · ·+ ad = 0,

where each coefficient

(2.33) ai =
bdci
c0bd−i

=
ci
c0
bi (i = 1, 2, . . . , d)

is an integer, by hypothesis.
Thus, the general polynomial equation (2.1) inx with integer coefficients is converted to the

monic equation (2.32) inz with integer coefficients.
Denote the roots of the monic equation (2.32) byz = α1, . . . , αd, so that the roots of the

general equation (2.1) arex = z/b = γ1, . . . , γd, where

(2.34) αi = bγi (i = 1, 2, . . . , d).

Hence withSk for equation (2.1) we get that

(2.35) bkSk =
(
bγ1

)k
+
(
bγ2

)k
+ · · ·+

(
bγd
)k

= αk1 + αk2 + · · ·+ αkd;

and that has integer value, since it is the sum ofkth powers of roots of the monic equation (2.32)
with integer coefficients.

Corollary 2.2. If (2.1) is an odd or even polynomial, then (2.33) holds for all oddi and hence
it need be tested only for eveni. Then,b2kσk has integer value.

Corollary 2.3. For any equation (2.1),c0 satisfies the condition forb; sincez = c0x satisfies
the monic polynomial equation

(2.36) zd + c1z
d−1 + c0c2z

d−2 + c20c3z
d−3 + · · ·+ cd−1

0 cd = 0,

and henceck0Sk has integer value.
If (2.1) is an odd or even polynomial, then fromb2 = c0 we get thatck0σk has integer value.

Corollary 2.4. If k is a primep, then it follows from (2.23), (2.32) and (2.33) that

(2.37) bp
m

Spm ≡ −a1 ≡
−bc1
c0

(mod p);

In the caseb = c0, which works for every polynomial with integer coefficients, this reduces to

(2.38) cp
m

0 Spm ≡ −c1 (mod p).

If a value ofb less thanc0 (in modulus) can be found which satisfies the conditions for
Theorem 2.1, then (2.37) will give results stronger than (2.38) concerningSp for equation (2.1).
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Corollary 2.5. If b satisfies the conditions for Theorem 2.1, thenbp
m
Spm is an integer multiple

of p for all primesp and positive integersm, if and only ifc1 = 0.
For an odd or even polynomial with integer coefficients,cp

m

0 σpm is an integer multiple ofp
for all primesp, if and only ifc2 = 0.

Corollary 2.6. For a general polynomial with integer coefficients, corresponding to (2.23) we
get:

bp
m

Spm ≡ −bc1
c0

(mod p),

b2p
m

S2pm ≡

((
c1
c0

)2

− 2c2
c0

)
b2 (mod p),

b3p
m

S3pm ≡

(
−
(
c1
c0

)3

+
3c1c2
c20

3c3
c0

)
b3 (mod p),

b4p
m

S4pm ≡

((
c1
c0

)4

− 4c21c2
c30

+
4c1c2 + 2c22

c20
− 4c4

c0

)
b4

(mod p), et cetera,(2.39)

with cj = 0 for j > d.
Takingc0 for b, these become:

cp
m

0 Spm ≡ −c1 (mod p),

c2p
m

0 S2pm ≡ c21 − 2c2c0 (mod p),

c3p
m

0 S3pm ≡ −c31 + 3c1c2c0 − 3c3c
2
0 (mod p),

c4p
m

0 S4pm ≡ c41 − 4c21c2c0 + (4c1c2 + 2c22)c
2
0 − 4c4c

3
0

(mod p), et cetera.(2.40)

Similarly, for odd or even polynomials with integer coefficients, thenb2 = c0 gives

cp
m

0 σpm ≡ −c2 (mod p),

c2p
m

0 σ2pm ≡ c22 − c4c0 (mod p),

c3p
m

0 σ3pm ≡ −c32 + 3c2c4c0 − 3c6c
2
0 (mod p),

c4p
m

0 σ4pm ≡ c42 − 4c22c4c0 + (4c2c4 + 2c24)c
2
0 − 4c8c

3
0

(mod p), et cetera,(2.41)

with cj = 0 for j > d.

2.3. Sums of Negative Powers of Roots.If cd 6= 0, the polynomial equation inverse to (2.1):

(2.42) ydQ

(
1

y

)
= c0 + c1y + c2y

2 + · · ·+ cd−1y
d−1 + cdy

d = 0

has rootsω1, . . . , ωd which are the inverses of the rootsγ1, . . . , γd of (2.1), including multiplic-
ity. Hence for integerk > 0,

(2.43) S−k = γ−k1 + · · ·+ γ−kd = ωk1 + · · ·+ ωkd,

which is related to the coefficients of the inverse polynomial (2.42) by Newton’s Rule. (This
holds, even if the coefficients of (2.1) are not integers.)

If cd = ±1, then the inverse polynomial (2.42) is a monic polynomial with integer coeffi-
cients; and accordingly, for integerk > 0, S−k has integer value.
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Applying Theorem 2.1 and its Corollaries to the inverse polynomial (2.42), we get the fol-
lowing results for sums of negative powers of roots of (2.1):

Theorem 2.7. Let b be any integer such thatcd|bicd−i (for i = 1, 2, . . . , d). ThenbkS−k is an
integer, for positive integerk.

Corollary 2.8. If (2.1) is an odd or even polynomial, thenb2kσ−k has integer value.

Note that the definition (2.15) ofσn excludes the root 0 for an odd polynomial, and soσ−k is
defined for an odd polynomial.

Corollary 2.9. For any equation (2.42),cd satisfies the conditions forb; for z = ycd satisfies
the monic polynomial equation

(2.44) cd−1
d c0 + cd−2

d c1z + · · ·+ cdcd−2z
d−2 + cd−1z

d−1 + zd = 0,

and henceckdS−k has integer value. If (2.1) is an odd or even polynomial, thenckdσ−k has integer
value.

Corollary 2.10. If k is a primep andm is a positive integer, then

(2.45) bp
m

S−pm ≡ −bcd−1

cd
(mod p).

In the caseb = cd, which works for every polynomial with integer coefficients, this reduces
to

(2.46) cp
m

d S−pm ≡ −cd−1 (mod p).

Corollary 2.11. If b satisfies the conditions for Theorem 2.7, thenbp
m
S−pm is an integer multiple

of p for all primesp and positive integersm, if and only ifcd−1 = 0.

Corollary 2.12. Applying (2.39) to the inverse (2.42) of a polynomial with integer coefficients,
we get that

bp
m

S−pm ≡ −bcd−1

cd
(mod p),

b2p
m

S−2pm ≡

((
cd−1

cd

)2

− 2cd−2

cd

)
b2 (mod p) (d ≥ 2),

b3p
m

S−3pm ≡

(
−
(
cd−1

cd

)3

+
3cd−1cd−2

c2d
− 3cd−3

cd

)
b3

(mod p) (d ≥ 3), et cetera,(2.47)

with cj = 0 for j < 0; and likewise in the other formulæ for sums of negative powers.

With cd for b, (2.47) becomes:

cp
m

d S−pm ≡ −cd−1 (mod p),

c2p
m

d S−2pm ≡ c2d−1 − 2cd−2cd (mod p) (d ≥ 2),

c3p
m

d S−3pm ≡ −c3d−1 + 3cd−2cd−1cd − 3cd−3c
2
d

(mod p) (d ≥ 3), et cetera.(2.48)
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Applying (2.41) to the inverse of an even or odd polynomial of degree2j or 2j + 1, with
b2 = c2j we get:

cp
m

2j σ−pm ≡ −c2j−2 (mod p),

c2p
m

2j σ−2pm ≡ c22j−2 − 2c2j−4c2j (mod p) (j ≥ 2),

c3p
m

2j σ−3pm ≡ −c32j−2 + 3c2j−4c2j−2c2j − 3c2j−6c
2
2j

(mod p) (j ≥ 3), et cetera.(2.49)

More generally (cf. (2.22)), ifp is any prime factor ofn and the polynomialQ has integer
coefficients, then bothcn0Sn and cndS−n have integer values which are congruent (modp) to
polynomials in the coefficientsc0, c1, . . . , cd−1, cd (cf. (2.40) and (2.48)). Similarly, ifQ is also
odd or even, then bothcn0σn andcn2jσ−n have integer values which are congruent (modp) to
polynomials in the coefficientsc0, c2, . . . , c2j−2, c2j (cf. (2.41) and (2.49)).

3. CHEBYSHEV POLYNOMIALS OF FIRST TYPE

The Chebyshev polynomial of the first typeTd is defined by the initial values

(3.1) T0(x) = 1, T1(x) = x,

with the 3–term recurrence relation forn > 1:

(3.2) Tn(x) = 2xTn−1(x)− Tn−2(x).

By induction onn in (3.2), it follows from (3.1) that, for all integersd ≥ 0, Td(x) is a polyno-
mial in x of degreed with integer coefficients. Moreover,Td is an even polynomial for evend
and an odd polynomial for oddd.

The integer coefficients ofTd are given explicitly ford > 0 by the formula4 (Mason &
Handscomb [9], p. 24):

Td(x) =
d÷2∑
k=0

(−1)k
2d−2k−1d(d− k − 1)!

k!(d− 2k)!
xd−2k =

2d−1xd − 2d−3dxd−2 + 2d−6d(d− 3)xd−4 − 2d−8

3
d(d− 4)(d− 5)xd−6 + · · ·

· · ·+
{

(−1)d÷2 (for evend),
(−1)(d−1)÷2 dx (for oddd).

(3.3)

If d = 2j + 1 is odd, thenTd(x) is an odd polynomial:

(3.4) T2j+1(x) = (−1)j
[
. . . − 2

3
j(j + 1)(2j + 1)x3 + (2j + 1)x

]
;

and ifd = 2j is even, thenTd(x) is an even polynomial:

(3.5) T2j(x) = (−1)j
[
. . . +

2

3
j2(j2 − 1)x4 − 2j2x2 + 1

]
.

For example (Lyusterniket alia [7], pp. 168–169), in addition to (3.1),

(3.6)
T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x,
T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x .

4The symbol÷ denotes integer division, yielding integer quotient. For integersn andd > 0, q = n ÷ d,
wheren = qd + r, with remainder0 ≤ r < d.
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By induction onn in (3.2), it follows from (3.1) that for all complexx and integern ≥ 0,

with ϑ
def
= cos−1 x,

(3.7) Tn(x) = Tn(cosϑ) = 2 cos ϑ cos((n− 1)ϑ)− cos((n− 2)ϑ) = cos(nϑ).

(Any of the infinitely many values ofcos−1 x can be used forϑ.)
The polynomialsTd(x) are orthogonal on the interval (-1, 1), with weight function1/

√
1− x2.

The zeros of Chebyshev polynomials are known explicitly in terms of cosines, and hence
application of the congruences (2.40), (2.41), (2.48) and (2.49) to various types of Chebyshev
polynomials gives various trigonometric congruences, of a type which seems to be novel.

The significant trigonometric congruences (each in triples) found here are (3.22), (4.13),
(5.18), (5.24), (5.29), (6.7), (6.14) and (6.21) for integer sums of powers of cosines, and (3.26),
(3.28), (4.17), (4.19), (5.20), (5.26), (5.31), (6.9), (6.16), (6.18), (6.23) and (6.25) for integer
sums of powers of secants.

3.1. Modified Chebyshev Polynomial of First Type. The standard Chebyshev polynomials
Td(x) will now be transformed to monic polynomials, to simplify the expressions for sums of
powers of zeros.

The modified Chebyshev polynomialCd of first type is defined by the initial values

(3.8) C0(x) = 2, C1(x) = x,

with the recurrence relation

(3.9) Cn+1(x) = xCn(x)− Cn−1(x).

Comparison the of the 3–term recurrence relations forTd and forCd shews that

(3.10) Cd(x) ≡ 2Td(x/2)

for all d ≥ 1 (Lyusterniket alia [7], p. 163), andCd(x) is a monic polynomial inx of degreed
with integer coefficients. The coefficients (3.3) ofTd(x) convert, by (3.10), to give the integer
coefficients ofCd(x):

Cd(x) = d
d÷2∑
k=0

(−1)k
(d− k − 1)!

k!(d− 2k)!
xd−2k

= xd − dxd−2 +
1

2
d(d− 3)xd−4 − 1

6
d(d− 4)(d− 5)xd−6 + · · · .(3.11)

If d = 2j + 1 is odd, thenCd(x) is an odd polynomial:

C2j+1(x) = (−1)j
[
· · · − 1

5040
j(j2 − 1)(j2 − 4)(j + 3)(2j + 1)x7

+
1

120
j(j2 − 1)(j + 2)(2j + 1)x5 − 1

6
j(j + 1)(2j + 1)x3

+ (2j + 1)x
]
;(3.12)

and ifd = 2j is even, thenCd(x) is an even polynomial:

C2j(x) = (−1)j
[
· · · − 1

360
j2(j2 − 1)(j2 − 4)x6 +

1

12
j2(j2 − 1)x4

(3.13) − j2x2 + 2
]
.
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For example (Lyusterniket alia [7], p. 171), in addition to (3.8),

C2(x) = x2 − 2, C3(x) = x3 − 3x, C4(x) = x4 − 4x2 + 2,

C5(x) = x5 − 5x3 + 5x, C6(x) = x6 − 6x4 + 9x2 − 2.(3.14)

The polynomialsCd(x) are orthogonal on the interval (-2,2), with weight function1/
√

4− x2.
Let

(3.15) x = 2 cosϑ

so that if−2 ≤ x ≤ 2 thenϑ is real. Then it follows from (3.8) and (3.9), by induction onn,
that

(3.16) Cd(2 cosϑ) = 2 cos(dϑ);

and accordingly

(3.17) − 2 ≤ Cd(x) ≤ 2.

The zeros ofCd are given by

(3.18) cos(dϑ) = 0,

so that

(3.19) dϑ =

(
k − 1

2

)
π

with integerk, and hence each zero ofCd is of the form

(3.20) αk = 2 cos

(
[2k − 1]π

2d

)
.

Fork = 1, 2, . . . , d, this formula gives a strictly decreasing sequence of real zeros

(3.21) 2 > α1 > α2 > . . . > αd > −2,

and hence alld zeros ofCd are given byα1, α2, . . . , αd.

3.2. Sums of Even Powers of Cosines.Applying (2.24) to the expansion (3.12) of the monic
Chebyshev polynomialCd (which is even or odd withd), we get trigonometric congruences in
primep and integersd > 0 andm ≥ 0:

σpm = 4p
m
d÷2∑
k=1

cos2pm

(
[2k − 1]π

2d

)
≡ d (mod p) (d ≥ 2),

σ2pm = 16p
m
d÷2∑
k=1

cos4pm

(
[2k − 1]π

2d

)
≡ d2 − d(d− 3) = 3d (mod p) (d ≥ 4),

σ3pm = 64p
m
d÷2∑
k=1

cos6pm

(
[2k − 1]π

2d

)
≡ d3 − 3

2
d2(d− 3) − 1

2
d(d− 4)(d− 5)

= 10d (mod p) (d ≥ 6), et cetera.(3.22)
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3.2.1. Computed examples.Each significant trigonometric congruence has been checked, by
evaluating each of those trigonometric sums numerically for several sets of parameters. The
computations were performed on a Macintosh computer in THINK Pascal, usingextended
arithmetic with about 19 significant decimal figures. One numerical example is printed after
each triple of congruences. In each case (including the many not printed here), the congruence
was verified withinextendedaccuracy.

For example, withp = 5,m = 2 andd = 3,

(3.23)
1

p

[
4p

m
d÷2∑
k=1

cos2pm

(
[2k − 1]π

2d

)
− d

]
= 169457721888.000 .

Hence (Tee [12], Theorem 1), for primep andm ≥ 1, the positive zeros ofCd give the result
thatp|σpm if and only if p|d; p|σ2pm if and only if p|3d, andp|σ3pm if and only if p|10d.

3.3. Sums of Even Powers of Secants.For the Chebyshev polynomialCd, if d = 2j + 1 is
odd then application of (2.49) to (3.12) shews that

(2j + 1)p
m

σ−pm ≡ 1

6
j(j + 1)(2j + 1) (mod p) (j ≥ 1),

(2j + 1)2pm

σ−2pm ≡
(

1

6
j(j + 1)(2j + 1)

)2

− 1

60
j(j2 − 1)(j + 2)(2j + 1)2

=
1

90
j(j + 1)(2j + 1)2(j2 + j + 3) (mod p) (j ≥ 2),

(2j + 1)3pm

σ−3pm ≡
(

1

6
j(j + 1)(2j + 1)

)3

−3× 1

120
j(j2 − 1)(j + 2)(2j + 1).

1

6
j(j + 1)(2j + 1)2

+3× 1

5040
j(j2 − 1)(j2 − 4)(j + 3)(2j + 1).(2j + 1)2

=
1

7560
j(j + 1)(2j + 1)3

(
8j4 + 16j3 + 35j2 + 27j + 54

)
(mod p) (j ≥ 3), et cetera.(3.24)

If d = 2j is even then application of (2.49) to (3.13) shews that

2p
m

σ−pm ≡ j2 (mod p) (j ≥ 1),

4p
m

σ−2pm ≡ j4 − 4

12
j2(j2 − 1) =

1

3
j2(2j2 + 1) (mod p) (j ≥ 2),

8p
m

σ−3pm ≡ j6 − 1

2
j2(j2 − 1) +

1

30
j2(j2 − 1)(j2 − 4)

=
1

15
j2
(
8j4 + 5j2 + 2

)
(mod p) (j ≥ 3), et cetera.(3.25)
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The zeros ofCd are given explicitly by (3.20), and hence (3.24) yields trigonometric congru-
ences for primep and integersj > 0 andm ≥ 0:(

2j + 1

4

)pm j∑
k=1

sec2pm

(
[2k − 1]π

4j + 2

)
≡

1

6
j(j + 1)(2j + 1) (mod p) (j ≥ 1),(

2j + 1

4

)2pm j∑
k=1

sec4pm

(
[2k − 1]π

4j + 2

)
≡

1

90
j(j + 1)(2j + 1)2(j2 + j + 3) (mod p) (j ≥ 2),(

2j + 1

4

)3pm j∑
k=1

sec6pm

(
[2k − 1]π

4j + 2

)
≡

1

7560
j(j + 1)(2j + 1)3

(
8j4 + 16j3 + 35j2 + 27j + 54

)
(mod p) (j ≥ 3), et cetera.(3.26)

For example, withj = 5, p = 5 andm = 1,

1

p

[(
2j + 1

4

)2pm j∑
k=1

sec4pm

(
[2k − 1]π

4j + 2

)
− 1

90
j(j + 1)(2j + 1)2(j2 + j + 3)

]

(3.27) = 498444890400952.000 .

Likewise, (3.25) yields trigonometric congruences for primep and integersj > 0 andm ≥ 0:(
1

2

)pm j∑
k=1

sec2pm

(
[2k − 1]π

4j

)
≡ j2 (mod p) (j ≥ 1),

(
1

4

)pm j∑
k=1

sec4pm

(
[2k − 1]π

4j

)
≡ 1

3
j2(2j2 + 1) (mod p) (j ≥ 2),

(
1

8

)pm j∑
k=1

sec6pm

(
[2k − 1]π

4j

)
≡ 1

15
j2
(
8j4 + 5j2 + 2

)
(mod p) (j ≥ 3), et cetera.(3.28)

For example, withj = 5, p = 11 andm = 1,

(3.29)
1

p

[(
1

2

)pm j∑
k=1

sec2pm

(
[2k − 1]π

4j

)
− j2

]
= 23548521916600.000 .

4. CHEBYSHEV POLYNOMIALS OF SECOND TYPE

The modified Chebyshev polynomialSd(x) of second type is defined by the initial values

(4.1) S0(x) = 1, S1(x) = x,

with the same recurrence relation as forCd:

(4.2) Sn+1(x) = xSn(x)− Sn−1(x).
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By induction onn, it follows that for alld ≥ 0, Sd(x) is a monic polynomial inx of degreed
with integer coefficients:

Sd(x) =
d÷2∑
k=0

(−1)k
(
d− k

k

)
xd−2k

= xd − (d− 1)xd−2 +

(
d− 2

2

)
xd−4 −

(
d− 3

3

)
xd−6 + · · · .(4.3)

For oddd = 2j + 1, Sd(x) is an odd polynomial:

S2j+1(x) =

(4.4) (−1)j−1

[
· · · −

(
j + 4

7

)
x7 +

(
j + 3

5

)
x5 −

(
j + 2

3

)
x3 + (j + 1)x

]
;

and for evend = 2j, Sd(x) is an even polynomial:

(4.5) S2j(x) = (−1)j

[
· · · −

(
j + 3

6

)
x6 +

(
j + 2

4

)
x4 −

(
j + 1

2

)
x2 + 1

]
.

For example (Lyusterniket alia [7], pp. 172–173), in addition to (4.1),

S2(x) = x2 − 1, S3(x) = x3 − 2x, S4(x) = x4 − 3x2 + 1,

S5(x) = x5 − 4x3 + 3x, S6(x) = x6 − 5x4 + 6x2 − 1.(4.6)

The polynomialsSd(x) are orthogonal on the interval (-2,2), with weight function
√

4− x2.
Let

(4.7) x = 2 cosϑ

so that if−2 ≤ x ≤ 2 thenϑ is real. Then it follows from (4.1) and (4.2), by induction onn,
that (Lyusterniket alia [7], p. 163)

(4.8) Sd(2 cosϑ) sinϑ = sin((d+ 1)ϑ).

Accordingly, the zeros ofSd(x) are given by

(4.9) sin((d+ 1)ϑ) = 0,

so that

(4.10) (d+ 1)ϑ = kπ

with integerk, and hence each zero ofSd(x) is of the form

(4.11) αk = 2 cos

(
kπ

d+ 1

)
.

Fork = 1, 2, . . . , d, this formula gives a strictly decreasing sequence of real zeros

(4.12) 2 > α1 > α2 > . . . > αd > −2,

and hence alld zeros ofSd are given byα1, α2, . . . , αd.
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4.1. Sums of Even Powers of Cosines.Applying (2.24) to the expansion (4.3) of the monic
polynomialSd(x), we get trigonometric congruences for primep and integersd > 0 andm ≥ 0:

σpm = 4p
m
d÷2∑
k=1

cos2pm

(
kπ

d+ 1

)
≡ d− 1 (mod p) (d ≥ 2),

σ2pm = 16p
m
d÷2∑
k=1

cos4pm

(
kπ

d+ 1

)
≡ (d− 1)2 − 2

(
d− 2

2

)
= 3d− 5 (mod p) (d ≥ 4),

σ3pm = 64p
m
d÷2∑
k=1

cos6pm

(
kπ

d+ 1

)
≡ (d− 1)3 − 3(d− 1)

(
d− 2

2

)
+ 3

(
d− 3

3

)
= 10d − 22 (mod p) (d ≥ 6), et cetera,(4.13)

in view of (4.3) and (4.11).
For example, withd = 5, p = 3 andm = 3,

(4.14)
1

p

[
4p

m
d÷2∑
k=1

cos2pm

(
kπ

d+ 1

)
− (d− 1)

]
= 2541865828328.000 .

Hence (Tee [12], Theorem 1), the positive zeros ofSd give the result thatp|σpm if and only if
d ≡ 1 (modp); p|σ2pm if and only if p|(3d− 5), andp|σ3pm if and only if p|(10d− 22).

4.2. Sums of Even Powers of Secants.For the Chebyshev polynomialSd(x), if d = 2j + 1 is
odd then application of (2.49) to (4.4) shews that

(j + 1)p
m

σ−pm ≡
(
j + 2

3

)
=

1

6
j(j + 1)(j + 2) (mod p) (j ≥ 1),

(j + 1)2pm

σ−2pm ≡
(
j + 2

3

)2

− 2

(
j + 3

5

)
(j + 1)

=
1

180
j(j + 1)2(j + 2)

(
2j2 + 4j + 9

)
(mod p) (j ≥ 2),

(j + 1)3pm

σ−3pm ≡
(
j + 2

3

)3

− 3

(
j + 3

5

)(
j + 2

3

)
(j + 1)

+ 3

(
j + 4

7

)
(j + 1)2

=
1

7560
j(j + 1)3(j + 2)

(
8j4 + 32j3 + 77j2 + 90j + 108

)
(mod p) (j ≥ 3), et cetera.(4.15)
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If d = 2j is even then the inverse polynomial (scaled by(−1)j) is monic, and application of
(2.49) to (4.5) shews that

σ−pm ≡ 1

2
j(j + 1) (mod p) (j ≥ 1),

σ−2pm ≡
(

1

2
j(j + 1)

)2

− 2

(
j + 2

4

)
=

1

288
j(j + 1)

(
71j2 + 71j + 1

)
(mod p) (j ≥ 2),

σ−3pm ≡
(

1

2
j(j + 1)

)3

− 3

2
j(j + 1)

(
j + 2

4

)
+ 3

(
j + 3

6

)
=

1

120
j(j + 1)

(
8j4 + 16j3 + 19j2 + 11j + 6

)
(mod p) (j ≥ 3), et cetera.(4.16)

The zeros ofSd(x) are given explicitly by (4.11), and hence (4.15) yields trigonometric con-
gruences, for primep and integersj > 0 andm ≥ 0:

(
j + 1

4

)pm j∑
k=1

sec2pm

(
kπ

2(j + 1)

)
≡

1

6
j(j + 1)(j + 2) (mod p) (j ≥ 1),(

j + 1

4

)2pm j∑
k=1

sec4pm

(
kπ

2(j + 1)

)
≡

1

180
j(j + 1)2(j + 2)

(
2j2 + 4j + 9

)
(mod p) (j ≥ 2),(

j + 1

4

)3pm j∑
k=1

sec6pm

(
kπ

2(j + 1)

)
≡

1

7560
j(j + 1)3(j + 2)

(
8j4 + 32j3 + 77j2 + 90j + 108

)
(mod p) (j ≥ 3), et cetera.(4.17)

For example, withj = 3, p = 3 andm = 2,

1

p

[(
j + 1

4

)2pm j∑
k=1

sec4pm

(
kπ

2(j + 1)

)
− 1

180
j(j + 1)2(j + 2)

(
2j2 + 4j + 9

)]

(4.18) = 347256964339012.002 .
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Likewise, (4.16) yields trigonometric congruences, for primep and positive integersj > 0
andm ≥ 0:(

1

4

)pm j∑
k=1

sec2pm

(
kπ

2j + 1

)
≡ 1

2
j(j + 1) (mod p) (j ≥ 1),

(
1

16

)pm j∑
k=1

sec4pm

(
kπ

2j + 1

)
≡ 1

288
j(j + 1)

(
71j2 + 71j + 1

)
(mod p) (j ≥ 2),(

1

64

)pm j∑
k=1

sec6pm

(
kπ

2j + 1

)
≡ 1

120
j(j + 1)

(
8j4 + 16j3 + 19j2 + 11j + 6

)
(mod p) (j ≥ 3), et cetera.(4.19)

For example, withj = 5, p = 13 andm = 1,

(4.20)
1

p

[(
1

4

)pm j∑
k=1

sec2pm

(
kπ

2j + 1

)
− 1

2
j(j + 1)

]
= 11878784041151.000 .

Standard Chebyshev Polynomial of Second Type
The standard Chebyshev polynomial of the second type is

(4.21) Ud(x) = Sd(2x) = (2x)d − · · · ,

(Lyusternik [7], p. 163, Mason & Handscomb [9], pp. 3–4) and the transformation ofUd(x) by
scaling withb = 2 in (2.32) just reproduces the congruences (4.13) forSd(x).

The negative powers of zeros ofUd yield trigonometric congruences which can be obtained
from (4.17) and (4.19) by multiplying both sides by4p

m
et cetera, using the fact that4p

m ≡ 4
(modp), by Fermat’s Little Theorem. The inverse inferences are not so straightforward.

5. ROOTS OF C2j+1(x) + c = 0

If −2 ≤ c ≤ 2, then the equation

(5.1) Cd(x) + c = 0.

hasd real roots in[−2, 2]. Indeed, writingc = 2 cos γ with realγ = arccos(c/2) (γ ∈ [0, π]),
and withx = 2 cosϑ, equation (5.1) becomes:

(5.2) 0 = 2 cos(dϑ) + 2 cos γ = 4 cos

(
1

2
(dϑ+ γ)

)
cos

(
1

2
(dϑ− γ)

)
.

Hence, thed roots of (5.1) are of the formα = 2 cosϑ, where

(5.3) cos

(
1

2
(dϑ± γ)

)
= 0;

so that

(5.4)
1

2
(dϑ± γ) =

(
k − 1

2

)
π

for integerk, and hence

(5.5) ϑ =
(2k − 1)π ∓ γ

d
.
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Now, write

(5.6) γ = βπ,

so that

(5.7) β =
arccos(c/2)

π

with 0 ≤ β ≤ 1, and thed roots of (5.1) are each of the form:

(5.8) α = 2 cos

(
(2k − 1∓ β)π

d

)
.

Hence, for−2 < c < 2 (1 > β > 0), the equation (5.1) hasd distinct roots of the form

(5.9) α = 2 cos
(ιπ
d

)
,

given in decreasing order by

(5.10) ι = 1− β, 1 + β, 3− β, 3 + β, , . . . , 2j − 1− β, 2j − 1 + β, 2j + 1− β

for oddd = 2j + 1, and by

(5.11) ι = 1− β, 1 + β, 3− β, 3 + β, , . . . , 2j − 1− β, 2j − 1 + β,

for evend = 2j.
For c = 2 (β = 0) there arej pairs of double roots, given in decreasing order byι =

1, 1, 3, 3, . . . , 2j − 1, 2j − 1, and then (for oddd = 2j + 1) by ι = 2j + 1 (α = −2).
For c = −2 (β = 1) the j pairs of double roots are given in decreasing order byι =
2, 2, 4, 4, , . . . , 2j, 2j, preceded (for oddd = 2j + 1) by ι = 0 (α = 2).

Hereafter, we shall consider only rationalc = n/r, with r > 0, −2r ≤ n ≤ 2r, and
gcd(n, r) = 1.

Multiply (5.1) by r, to get a polynomial equation inx of degreed with integer coefficients:

(5.12) rCd(x) + n = 0.

If we also restrictβ to be rational with rationalc = 2 cos(βπ), then the only acceptable values
of c in (5.1) are 2, 1, 0,−1 and−2, given byβ = 0, 1

3
, 1

2
, 2

3
, 1. The case ofc = 0 (β = 1

2
) has

been dealt with in (3.8) to (4.20).
SinceCd is an odd polynomial for oddd = 2j + 1, then for all complexx andc and non–

negative integerj, C2j+1(x) + c = −(C2j+1(−x)− c). Therefore, the set of2j + 1 zeros of
C2j+1(x)−c, times−1, is the set of zeros (including multiplicity) ofC2j+1(x)+c. Accordingly,
each sum of powers of zeros ofC2j+1(x) − c equals±1 times the sum of the same powers of
zeros ofC2j+1(x)+ c. Therefore, for the purposes of this paper we need to consider onlyc > 0,
and hence0 < n ≤ 2r with gcd(n, r) = 1.

In view of (3.12), (5.12) becomes the equation with integer coefficients:

rx2j+1 + 0x2j − r(2j + 1)x2j−1 + 0x2j−2 + · · ·

· · · + (−1)j−1 1

6
rj(j + 1)(2j + 1)x3 − 0x2

+(−1)jr(2j + 1)x + n = 0, (j > 1).(5.13)

For j = 0 andj = 1, the polynomialrCd(x) + n reduces to:

(5.14) rC1(x) + n = rx+ n, rC3(x) + n = rx3 − 3rx+ n.
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. For those polynomials (5.13) and (5.14), the congruences (2.40) become:

rp
m

Spm ≡ 0 (mod p) (j > 0),

r2pm

S2pm ≡ 2r2(2j + 1) (mod p) (j > 0),

r3pm

S3pm ≡ 0 (mod p) (j > 1), et cetera(5.15)

for positive powers; and forj ≥ 0 the congruences (2.48) become:

np
m

S−pm ≡ (−1)j+1r(2j + 1) (mod p),

n2pm

S−2pm ≡
(
r(2j + 1)

)2
(mod p),

n3pm

S−3pm ≡ (−1)j+1

((
r(2j + 1)

)3 − 1

2
rj(j + 1)(2j + 1)n2

)
(mod p), et cetera(5.16)

for negative powers.
From (5.7),

(5.17) β =
arccos(n/2r)

π
,

and we need consider only0 ≤ β < 1
2
.

Sums of Powers of Cosines
In view of (5.8), the congruences (5.15) yield identities in primep and integersj, m ≥ 0, r >

0 andn ∈ [1, . . . , 2r]:
j+1∑
k=1

[
2r cos

(
(2k − 1− β)π

2j + 1

)]pm

+

j∑
k=1

[
2r cos

(
(2k − 1 + β)π

2j + 1

)]pm

≡ 0 (mod p) (j > 0),
j+1∑
k=1

[
2r cos

(
(2k − 1− β)π

2j + 1

)]2pm

+

j∑
k=1

[
2r cos

(
(2k − 1 + β)π

2j + 1

)]2pm

≡ 2r2(2j + 1) (mod p) (j > 0),
j+1∑
k=1

[
2r cos

(
(2k − 1− β)π

2j + 1

)]3pm

+

j∑
k=1

[
2r cos

(
(2k − 1 + β)π

2j + 1

)]3pm

(5.18) ≡ 0 (mod p) (j > 1), et cetera.

For example, withj = 1, p = 3, m = 2, n = 5, r = 4 andβ = arccos(n/(2r))/π,

1

p

[
j+1∑
k=1

(
2r cos

(
(2k − 1− β)π

2j + 1

))pm

+

j∑
k=1

(
2r cos

(
(2k − 1 + β)π

2j + 1

))pm
]

(5.19) = −27054080.000 .

Sums of Powers of Secants
Likewise, the congruences (5.16) yield identities in primep and integersj ≥ 0, m ≥ 0, r >

0 andn ∈ [1, . . . , 2r]:(n
2

)pm
[
j+1∑
k=1

secp
m

(
(2k − 1− β)π

2j + 1

)
+

j∑
k=1

secp
m

(
(2k − 1 + β)π

2j + 1

)]
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≡ (−1)j+1r(2j + 1) (mod p),(n
2

)2pm
[
j+1∑
k=1

sec2pm

(
(2k − 1− β)π

2j + 1

)
+

j∑
k=1

sec2pm

(
(2k − 1 + β)π

2j + 1

)]
≡ (r(2j + 1))2 (mod p),(n

2

)3pm
[
j+1∑
k=1

sec3pm

(
(2k − 1− β)π

2j + 1

)
+

j∑
k=1

sec3pm

(
(2k − 1 + β)π

2j + 1

)]

(5.20) ≡ (−1)j+1r(2j + 1)

(
(r(2j + 1))2 − 1

2
j(j + 1)n2

)
(mod p), etc.

For example, withj = 4, p = 3, m = 1, n = 4, r = 3 andβ = arccos
(
n
2r

)
/π,

1

p

[(n
2

)3pm
(
j+1∑
k=1

sec3pm

(
(2k − 1− β)π

2j + 1

)
+

j∑
k=1

sec3pm

(
(2k − 1 + β)π

2j + 1

))

− (−1)j+1r(2j + 1)

(
(r(2j + 1))2 − 1

2
j(j + 1)n2

)]

(5.21) = −1138092652296.000 .

5.1. Roots of C2j+1(x) + 2 = 0. As was noted above, if we want rationalc with rationalβ
then the only values arec = 2, 1, 0,−1,−2, given byβ = 0, 1

3
, 1

2
, 2

3
, 1; and we need only

considerc = 2 (β = 0) andc = 1 (β = 1
3
).

With c = 2, r = 1, n = 2 andβ = 0, the identities (5.18) and (5.20) yield identities in prime
p and non–negative integersj andm, for sums of powers of cosines and of secants ofrational
multiples ofπ.

5.1.1. Sums of Powers of Cosines.From (5.17), (5.18) and (5.20), there arej double roots of
(5.12) given byk = 1, . . . , j, and the simple root−2 given byk = j+1. Hence the congruences
(5.18) become:

2×
j∑

k=1

[
2 cos

(
(2k − 1)π

2j + 1

)]pm

+ (−2)p
m ≡ 0 (mod p) (j > 0),

2×
j∑

k=1

[
2 cos

(
(2k − 1)π

2j + 1

)]2pm

+ (−2)2pm ≡ 4j + 2 (mod p) (j > 0),

2×
j∑

k=1

[
2 cos

(
(2k − 1)π

2j + 1

)]3pm

+ (−2)3pm ≡ 0 (mod p) (j > 1),(5.22)

et cetera.
But, by Fermat’s Little Theorem,

(−2)p
m ≡ −2, (−2)2pm

= 4p
m ≡ 4, (−2)3pm

= (−8)p
m ≡ −8,

(5.23) (mod p),
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and hence (5.22) simplifies to the identities in primep and integersm ≥ 0 andj:

2p
m+1

j∑
k=1

cosp
m

(
(2k − 1)π

2j + 1

)
≡ 2 (mod p) (j > 0),

22pm+1

j∑
k=1

cos2pm

(
(2k − 1)π

2j + 1

)
≡ 4j − 2 (mod p) (j > 0),

23pm+1

j∑
k=1

cos3pm

(
(2k − 1)π

2j + 1

)
≡ 8 (mod p) (j > 1),(5.24)

et cetera.
For example, withj = 2, p = 3 andm = 3,

(5.25)
1

p

[
2×

j∑
k=1

[
2 cos

(
(2k − 1)π

2j + 1

)]3pm

− 8

]
= 56481679380052848.000 .

5.1.2. Sums of Powers of Secants.The congruences (5.20) become identities in primep and
integersm ≥ 0 andj > 0:

2×
j∑

k=1

secp
m

(
(2k − 1)π

2j + 1

)
≡ 1 + (−1)j+1(2j + 1) (mod p),

2×
j∑

k=1

sec2pm

(
(2k − 1)π

2j + 1

)
≡ 4j(j + 1) (mod p),

2×
j∑

k=1

sec3pm

(
(2k − 1)π

2j + 1

)
≡ 1 + (−1)j+1(2j + 1)(2j2 + 2j + 1)

(mod p), et cetera.(5.26)

For example, withj = 5, p = 11 andm = 1,

(5.27)
1

p

[
2×

j∑
k=1

secp
m

(
(2k − 1)π

2j + 1

)
− (1 − (−1)j(2j + 1))

]
= 374871132.000 .

5.2. Roots ofC2j+1(x) + 1 = 0. Here,c = 1, r = 1, n = 1 andβ = 1
3
, so that the roots are

given (cf. (5.9) and (5.10), in decreasing order, as

α = 2 cos

((
2k − 1∓ 1

3

)
π

2j + 1

)

= 2 cos

(
(6k − 3∓ 1)π

6j + 3

)
= 2 cos

(
ιπ

6j + 3

)
,

ι = 2, 4, 8, 10, 14, 16, . . . , 6j − 4, 6j − 2, 6j + 2.(5.28)
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5.2.1. Sums of Powers of Cosines.Hence the congruences (5.18) yield identities in primep and
integersm ≥ 0 andj:

j+1∑
k=1

[
2 cos

(
(6k − 4)π

6j + 3

)]pm

+

j∑
k=1

[
2 cos

(
(6k − 2)π

6j + 3

)]pm

≡ 0 (mod p) (j > 0),

j+1∑
k=1

[
2 cos

(
(6k − 4)π

6j + 3

)]2pm

+

j∑
k=1

[
2 cos

(
(6k − 2)π

6j + 3

)]2pm

≡ 4j + 2 (mod p) (j > 0),

j+1∑
k=1

[
2 cos

(
(6k − 4)π

6j + 3

)]3pm

+

j∑
k=1

[
2 cos

(
(6k − 2)π

6j + 3

)]3pm

≡ 0 (mod p) (j > 1), et cetera.(5.29)

For example, withj = 4, p = 11 andm = 1,

1

p

[
j∑

k=1

[
2 cos

(
(6k − 2)π

6j + 3

)]3pm

+

j+1∑
k=1

[
2 cos

(
(6k − 4)π

6j + 3

)]3pm
]

(5.30) = −290296152.000 .

5.2.2. Sums of Powers of Secants.The congruences (5.20) yield identities in primep and non-
negative integersm andj:(

1

2

)pm
[
j+1∑
k=1

secp
m

(
(6k − 4)π

6j + 3

)
+

j∑
k=1

secp
m

(
(6k − 2)π

6j + 3

)]
≡ (−1)j+1(2j + 1) (mod p),

(
1

4

)pm
[
j+1∑
k=1

sec2pm

(
(6k − 4)π

6j + 3

)
+

j∑
k=1

sec2pm

(
(6k − 2)π

6j + 3

)]
≡ (2j + 1)2 (mod p),

(
1

8

)pm
[
j+1∑
k=1

sec3pm

(
(6k − 4)π

6j + 3

)
+

j∑
k=1

sec3pm

(
(6k − 2)π

6j + 3

)]

≡ (−1)j+1 1

2
(2j + 1)(7j2 + 7j + 2) (mod p), etc.(5.31)

For example, withj = 5, p = 3 andm = 2,

1

p

[
j∑

k=1

[
2 cos

(
(6k − 2)π

6j + 3

)]−pm

+

j+1∑
k=1

[
2 cos

(
(6k − 4)π

6j + 3

)]−pm

+ (−1)j(2j + 1)

]
= 520752892.000 .(5.32)
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6. ROOTS OF C2j(x) + c = 0

For evend = 2j, in view of (3.13), (5.12) becomes the equation with integer coefficients:

rx2j − 2rjx2j−2 + rj(2j − 3)x2j−4 − 1

3
rj(2j − 4)(2j − 5)x2j−6 + · · ·

− 1

360
(−1)jrj2(j2 − 1)(j2 − 4)x6 +

1

12
(−1)jrj2(j2 − 1)x4 − (−1)jrj2x2

+
[
(−1)j2r + n

]
= 0, (j > 2),(6.1)

wherer > 0, n ∈ [−2r, . . . , 2r], and gcd(n, r) = 1. For j = 1 andj = 2, the polynomial
equation (5.12) reduces to:

(6.2) rx2 + [n− 2r] = 0. rx4 − 4rx2 + [2r + n] = 0.

For those even polynomials (6.1) and (6.2), the congruences (2.41) become:

rp
m

σpm ≡ 2rj (mod p) (j > 1),

r2pm

σ2pm ≡ 6r2j (mod p) (j > 2),

r3pm

σ3pm ≡ 20r3j (mod p) (j > 3), et cetera.(6.3)

For (6.1) and (6.2) we get from (2.49) the congruences[
(−1)j2r + n

]pm

σ−pm ≡ (−1)jrj2 (mod p),[
(−1)j2r + n

]2pm

σ−2pm ≡ r2j4 − 1

6
(−1)jrj2(j2 − 1)

[
(−1)j2r + n

]
(mod p),[

(−1)j2r + n
]3pm

σ−3pm ≡ (−1)jr3j6 − 1

4
r2j4(j2 − 1)

[
(−1)j2r + n

]
+

1

120
(−1)jrj2(j2 − 1)(j2 − 4)

[
(−1)j2r + n

]2
(mod p), et cetera,(6.4)

unless[(−1)j2r + n] = 0, which occurs withc = 2(−1)j+1.
With β as in (5.7), in view of (5.9) and (5.11), thej pairs of roots of the even equation (5.12)

are given by:

2 cos

(
(2j − 1− β)π

2j

)
= −2 cos

(
(1 + β)π

2j

)
,

2 cos

(
(2j − 3− β)π

2j

)
= −2 cos

(
(3 + β)π

2j

)
,

...

2 cos

(
(1− β)π

2j

)
= −2 cos

(
(2j − 1 + β)π

2j

)
;(6.5)

and hence

(6.6) σq = 1
2
S2q =

j∑
k=1

[
2 cos

(
(2k − 1− β)π

2j

)]2q

.

Sums of Even Powers of Cosines
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Hence, the congruences (6.3) become identities in primep and integersj ≥ 2, r > 0, n ∈
[−2r, . . . , 2r]:

(4r)p
m

j∑
k=1

cos2pm

(
(2k − 1− β)π

2j

)
≡ 2rj (mod p) (j > 1),

(4r)2pm

j∑
k=1

cos4pm

(
(2k − 1− β)π

2j

)
≡ 6r2j (mod p) (j > 2),

(4r)3pm

j∑
k=1

cos6pm

(
(2k − 1− β)π

2j

)
≡ 20r3j (mod p) (j > 3),(6.7)

et cetera.
For example, withj = 5, p = 7, m = 1, n = 5, r = 3 andβ = arccos(n/(2r))/π,

(6.8)
1

p

[
(4r)2pm

j∑
k=1

cos4pm

(
(2k + 1− β)π

2j

)
− 6r2j

]
= 97781053802265.000 .

Sums of Even Powers of Secants
Likewise, the congruences (6.4) become:[

(−1)j2r + n

4

]pm j∑
k=1

sec2pm

(
(2k − 1− β)π

2j

)
≡ (−1)jrj2 (mod p),

[
(−1)j2r + n

4

]2pm j∑
k=1

sec4pm

(
(2k − 1− β)π

2j

)
≡ r2j4 − 1

6
(−1)jrj2(j2 − 1)

[
(−1)j2r + n

]
(mod p),

[
(−1)j2r + n

4

]3pm j∑
k=1

sec6pm

(
(2k − 1− β)π

2j

)
≡ (−1)jr3j6 − 1

4
r2j4(j2 − 1)×

×
[
(−1)j2r + n

]
+

1

120
(−1)jrj2(j2 − 1)(j2 − 4)

[
(−1)j2r + n

]2
(mod p),(6.9)

et cetera.
For example, withj = 3, p = 3, m = 1, n = 2, r = 3 andβ = arccos(n/(2r))/π,

1

p

[(
(−1)j2r + n

4

)3pm j∑
k=1

sec6pm

(
(2k + 1− β)π

2j

)
−
(
(−1)jr3j6 − 1

4
r2j4(j2 − 1)

[
(−1)j2r + n

]
+

1

120
(−1)jrj2(j2 − 1)(j2 − 4)

[
(−1)j2r + n

]2 )]
= −912284487672.000 .(6.10)
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For bothc andβ to be rational,c = 2, 1, 0,−1,−2 with β = 0, 1
3
, 1

2
, 2

3
, 1. The casec = 0

has been treated in (3.8)–(4.20).
If c = 2 with evend = 2j andx = 2 cosϑ, then (5.12) becomes

(6.11) 0 = 2 (cos(2jϑ) + 1) = 4 cos2(jϑ),

so that the zeros ofC2j(x) + 2 are given by those of cos(jϑ), each with multiplicity 2. Those
zeros have been treated in (3.18)–(3.26). Ifc = −2 with evend = 2j andx = 2 cosϑ, then
(5.12) becomes

(6.12) 0 = 2 (cos(2jϑ)− 1) = −4 sin2(jϑ),

so that the zeros ofC2j(x) − 2 are given by those of sin(jϑ), each with multiplicity 2. Those
zeros have been treated in (4.2)–(4.10).

Accordingly, the only new congruences of the forms (6.7) and (6.8) with cosines and secants
of rational multiples ofπ are given byc = ±1.

As was noted after (6.4), the congruences (6.9) do not apply forc = 2(−1)j+1 — that case is
covered by (6.11) and (6.12).

6.1. Roots ofC2j(x)+1 = 0. Herec = 1, n = 1, r = 1 andβ = 1
3
, so that the even equation

C2j(x)+1 = 0 has roots (in± pairs), which are given in decreasing order (cf. (5.9) and (5.11)),
as

α = 2 cos

((
2k − 1∓ 1

3

)
π

2j

)
= 2 cos

(
(6k − 3∓ 1)π

6j

)
= 2 cos

(
ιπ

3j

)
,

ι = 1, 2, 4, 5, 7, 8, , . . . , 3j − 8, 3j − 7, 3j − 5, 3j − 4, 3j − 2, 3j − 1.(6.13)

6.1.1. Sums of Even Powers of Cosines.Hence, the congruences (6.7) become identities in
primep and integersj > 0 andm ≥ 0:

4p
m

j∑
k=1

cos2pm

(
(3k − 2)π

3j

)
≡ 2j (mod p) (j > 1),

16p
m

j∑
k=1

cos4pm

(
(3k − 2)π

3j

)
≡ 6j (mod p) (j > 2),

64p
m

j∑
k=1

cos6pm

(
(3k − 2)π

3j

)
≡ 20j (mod p) (j > 3),(6.14)

et cetera.
For example, withj = 5, p = 11 andm = 1,

(6.15)
1

p

[
16p

m

j∑
k=1

cos4pm

(
(3k − 2)π

3j

)
− 6j

]
= 634877783325.000 .

6.1.2. Sums of Even Powers of Secants.Substituting (6.13) in (6.9) withn = r = 1 and even
j = 2i, for which [(−1)j2r + n] = 3, we get identities in primep and integersi > 0 and
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m ≥ 0: (
3

4

)pm 2i∑
k=1

sec2pm

(
(3k − 2)π

6i

)
≡ 4i2 (mod p),

(
3

4

)2pm 2i∑
k=1

sec4pm

(
(3k − 2)π

6i

)
≡ 2i2(4i2 + 1) (mod p),

(
3

4

)3pm 2i∑
k=1

sec6pm

(
(3k − 2)π

6i

)
≡ 2

5
i2
(
52i4 + 15i2 + 3

)
(mod p),(6.16)

et cetera.
For example, withi = 3, p = 3 andm = 1,

(6.17)
1

p

[(
3

4

)pm 2i∑
k=1

sec2pm

(
(3k − 2)π

6i

)
− 4i2

]
= 1214417894460.000 .

Substituting (6.13) in (6.8) withn = r = 1 and oddj = 2i+1, for which[(−1)j2r+n] = −1,
we get identities in primep and integersi ≥ 0 andm ≥ 0:(

1

4

)pm 2i+1∑
k=1

sec2pm

(
(3k − 2)π

6i+ 3

)
≡ (2i+ 1)2 (mod p),

(
1

16

)pm 2i+1∑
k=1

sec4pm

(
(3k − 2)π

6i+ 3

)
≡ 1

6
(2i+ 1)2

(
5(2i+ 1)2 + 1

)
(mod p),

(
1

64

)pm 2i+1∑
k=1

sec6pm

(
(3k − 2)π

6i+ 3

)
≡

(6.18)
1

120
(2i+ 1)2

(
91(2i+ 1)4 + 25(2i+ 1)2 + 4

)
(mod p), et cetera.

For example, withi = 3, p = 3 andm = 1,

1

p

[(
1

64

)pm 2i+1∑
k=1

sec6pm

(
(3k − 2)π

6i+ 3

)

− 1

120
(2i+ 1)2

(
91(2i+ 1)4 + 25(2i+ 1)2 + 4

) ]
= 240668556344496.001 .(6.19)

6.2. Roots ofC2j(x) − 1 = 0. Herec = 1, n = −1, r = 1 andβ = 2
3
, so that the even

equationC2j(x) − 1 = 0 has roots (in± pairs), which are given in decreasing order (cf. (5.9)
and (5.10)), as

α = 2 cos

(
(2k − 1∓ 2

3
)π

2j

)
= 2 cos

(
(6k − 3∓ 2)π

6j

)
= 2 cos

(
ιπ

6j

)
, ι = 1, 5, 7, 11, 13, , . . .

. . . , 6j − 13, 6j − 11, 6j − 7, 6j − 5, 6j − 1.(6.20)
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6.2.1. Sums of Even Powers of Cosines.Hence, the congruences (6.7) become identities in
primep and integersj > 0 andm ≥ 0:

4p
m

j∑
k=1

cos2pm

(
(6k − 5)π

6j

)
≡ 2j (mod p) (j > 1),

16p
m

j∑
k=1

cos4pm

(
(6k − 5)π

6j

)
≡ 6j (mod p) (j > 2),

64p
m

j∑
k=1

cos6pm

(
(6k − 5)π

6j

)
≡ 20j (mod p) (j > 3),(6.21)

et cetera.
For example, withj = 5, p = 7 andm = 1,

(6.22)
1

p

[
64p

m

j∑
k=1

cos6pm

(
(6k − 5)π

6j

)
− 20j

]
= 500340387880.000 .

6.2.2. Sums of Even Powers of Secants.Substituting (6.20) in (6.9) withn = −1, r = 1 and
evenj = 2i, for which [(−1)j2r + n] = 1, we get identities in primep and integersi > 0 and
m ≥ 0:(

1

4

)pm 2i∑
k=1

sec2pm

(
(6k − 5)π

12i

)
≡ 4i2 (mod p),

(
1

16

)pm 2i∑
k=1

sec4pm

(
(6k − 5)π

12i

)
≡ 2

3
i2(20i2 + 1) (mod p),

(
1

64

)pm 2i∑
k=1

sec6pm

(
(6k − 5)π

12i

)
≡ 2

15
i2
(
364i4 + 25i2 + 1

)
(mod p),(6.23)

et cetera.
For example, withi = 2, p = 5 andm = 1,

(6.24)
1

p

[(
1

16

)pm 2i∑
k=1

sec4pm

(
(6k − 5)π

12i

)
− 2

3
i2(20i2 + 1)

]
= 92571373536.000 .

Substituting (6.20) in (6.9) withn = −1, r = 1 and oddj = 2i + 1, for which [(−1)j2r +
n] = −3, we get identities in primep and integersi ≥ 0 andm ≥ 0:(

3

4

)pm 2i+1∑
k=1

sec2pm

(
(6k − 5)π

12i+ 6

)
≡ (2i+ 1)2 (mod p),

(
3

4

)2pm 2i+1∑
k=1

sec4pm

(
(6k − 5)π

12i+ 6

)
≡ (2i+ 1)2

(
2i2 + 2i+ 1

)
(mod p),

(
3

4

)3pm 2i+1∑
k=1

sec6pm

(
(6k − 5)π

12i+ 6

)
≡

(6.25)
1

40
(2i+ 1)2

(
13(2i+ 1)4 + 15(2i+ 1)2 + 12

)
(mod p),
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et cetera.
For example, withi = 3, p = 3 andm = 2,

1

p

[(
3

4

)pm 2i+1∑
k=1

sec2pm

(
(6k − 5)π

12i+ 6

)
− (2i+ 1)2

]
= 19004748528710.000 .(6.26)

7. ZEROS OFCd(x)± Ce(x)

The significant trigonometric congruences (each in triples) which have been derived are
(3.22), (4.13), (5.18), (5.24), (5.29), (6.7), (6.14) and (6.21) for integer sums of powers of
cosines, and (3.26), (3.28), (4.17), 4.19), (5.20), (5.26),(5.31), (6.9), (6.16), (6.18), (6.23) and
(6.25) for integer sums of powers of secants, each followed by a numerical example.

For integersd > e ≥ 0, with x = 2 cosϑ,

Cd(x) + Ce(x) = 2(cos(dϑ) + cos(eϑ))

= 4 cos

(
1

2
(d+ e)ϑ

)
cos

(
1

2
(d− e)ϑ

)
,(7.1)

so thatSk is the sum ofkth powers of cosines corresponding to the zeros of
cos
(

1
2
(d+ e)ϑ

)
, plus those corresponding to the zeros of cos

(
1
2
(d− e)ϑ

)
.

If d ande are both odd or both even, then

(7.2) Cd(x) + Ce(x) = 4 cos(fϑ) cos(gϑ) = Cf (x)Cg(x)

for positive integersf = (d+ e)÷ 2 andg = (d− e)÷ 2, and the zeros ofCk(x) for integerk
have been treated in (3.8)–(4.20).

Otherwise, withd ande of different parity,

(7.3) Cd(x) + Ce(x) = 4 cos

((
h− 1

2

)
ϑ

)
cos

((
i− 1

2

)
ϑ

)
for positive integersh = (d+e+1)÷2 andi = (d−e+1)÷2, and the zeros of cos

((
n− 1

2

)
ϑ
)

for integern have been treated in (5.3) and (5.4) (withγ = 0 in (5.5)).
Likewise,

Cd(x)− Ce(x) = 2(cos(dϑ)− cos(eϑ))

= −4 sin

(
1

2
(d+ e)ϑ

)
sin

(
1

2
(d− e)ϑ

)
,(7.4)

so thatSk is the sum ofkth powers of cosines corresponding to the zeros of
sin
(

1
2
(d+ e)ϑ

)
, plus those corresponding to the zeros of sin

(
1
2
(d− e)ϑ

)
.

If d ande are both odd or both even, then

(7.5) Cd(x)− Ce(x) = −4 sin(fϑ) sin(gϑ)

for positive integersf andg, and the zeros of sin(kϑ) for integerk have been treated in (4.10).
Otherwise, ifd is even ande is odd then

(7.6) Cd(x)− Ce(x) = Cd(−x) + Ce(−x);
but if d is odd ande is even then

(7.7) Cd(x)− Ce(x) = −
(
Cd(−x) + Ce(−x)

)
.

Thus, ford and e of opposite parity, the zeros ofCd(x) − Ce(x) are−1 times the zeros of
Cd(x) + Ce(x), as in (7.3),
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Thus,Cd(x) ± Ce(x) is a polynomial of degreed with integer coefficients whose zeros are
known explicitly, but the congruences for sums of powers of its zeros do not yield any new
result.

And similarly forSd(x)± Se(x), with Chebyshev polynomials of the second type.
The transformation ofTd(x) to a monic polynomial, as in Corollary 2.2, involves scaling

with b = 2 in (2.33), to getCd(z) as in (3.11). Accordingly, the relation (2.39) forσp for the
non–monic polynomialTd just reproduces the congruences (3.22) for the monic polynomialCd.

Application of (2.49) to (3.4) yields congruences which can be obtained by multiplying (3.26)
by 4p

m
(or 16p

m
, 64p

m
,. . . ), bearing in mind that4p

m ≡ 4 (modp) (or 16p
m ≡ 16 (modp) et

cetera), by Fermat’s Little Theorem. Likewise, application of (2.49) to (3.5) yields congruences
which can be obtained by multiplying (3.28) by2p

m
(or 4p

m
, 8p

m
, et cetera). The inverse

inferences are not so straightforward.

8. TANGENTS OF M ULTIPLE ANGLES

For complexz = x+ iy and positive integern.

(8.1) zn = (x+ iy)n =
n∑
j=0

(
n

j

)
ijxn−jyj = H(0)

n (x, y) + iH(1)
n (x, y) ,

where the real and imaginary parts ofzn are given by the harmonic polynomials (Lyusterniket
alia [7], Appendix 1 §2.1):

H(0)
n (x, y) =

n÷2∑
k=0

(−1)k
(
n

2k

)
xn−2ky2k(8.2)

H(1)
n (x, y) =

(n−1)÷2∑
k=0

(−1)k
(

n

2k + 1

)
xn−2k−1y2k+1 .(8.3)

For allψ ∈ C| ,

(8.4) cos ψ + i sin ψ = eiψ

(by Cotes’s Theorem); and hence (De Moivre’s Theorem) for integern ≥ 0

(8.5) cos(nψ) + i sin(nψ) = einψ = (cos ψ + i sin ψ)n.

Therefore

cos(nψ) + i sin(nψ) = (cos ψ + i sin ψ)n

= H(0)
n (cos ψ, sin ψ) + iH(1)

n (cos ψ, sin ψ) .(8.6)

Equating real and imaginary parts (for realψ), we get that

(8.7) cos(nψ) = H(0)
n (cos ψ, sin ψ), sin(nψ) = H(1)

n (cos ψ, sin ψ);

and hence

(8.8) tan(nψ) =
sin(nψ)

cos(nψ)
=

H
(1)
n (cos ψ, sin ψ)

H
(0)
n (cos ψ, sin ψ)

.
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Dividing numerator and denominator in (8.8) bycosn ψ, we get (Lyusterniket alia [7], p. 172)
tan(nψ) as a rational function oftan ψ, with integer coefficients:

(8.9) tan(nψ) =
H

(1)
n (1, tan ψ)

H
(0)
n (1, tan ψ)

=

∑(n−1)÷2
k=0

(
n

2k + 1

)
(−1)k tan2k+1 ψ

∑n÷2
k=0

(
n

2k

)
(−1)k tan2k ψ

.

Denote

(8.10) t
def
= tan ψ, z

def
= −t2 = − tan2 ψ.

Then, it follows from (8.8) that

(8.11) tan(nψ) = gn(tan ψ),

wheregn(t) is a rational function with positive integer coefficients

(8.12) gn(t) =
H

(1)
n (1, t)

H
(0)
n (1, t)

= t
An(z)

Bn(z)
,

(except thatA0(t) = 0), with :

(8.13) An(z) =

(n−1)÷2∑
k=0

(
n

2k + 1

)
zk, Bn(z) =

n÷2∑
k=0

(
n

2k

)
zk,

andBn(0) = 1.
In more detail, for oddn = 2j + 1:

g2j+1(t) = t
A2j+1(z)

B2j+1(z)

=

t

(
2j + 1 +

(
2j + 1

3

)
z +

(
2j + 1

5

)
z2 + · · ·

(
2j + 1

2

)
zj−1 + zj

)
1 +

(
2j + 1

2

)
z +

(
2j + 1

4

)
z2 + · · ·+

(
2j + 1

3

)
zj−1 + (2j + 1)zj

,(8.14)

where the polynomialsA2j+1 andB2j+1 are mutually reciprocal:

(8.15) zjA2j+1

(
1

z

)
= B2j+1(z), zjB2j+1

(
1

z

)
= A2j+1(z)

for all z 6= 0. For evenn = 2j:

g2j(t) = t
A2j(z)

B2j(z)

= t

2j +

(
2j

3

)
z +

(
2j

5

)
z2 + · · ·+

(
2j

3

)
zj−3 + 2jzj−1

1 +

(
2j

2

)
z +

(
2j

4

)
z2 + · · ·+

(
2j

2

)
zj−1 + zj

,(8.16)

where bothA2j andB2j are self–reciprocal polynomials:

(8.17) A2j(z) = zj−1A2j

(
1

z

)
, B2j(z) = zjB2j

(
1

z

)
,

for all z 6= 0.
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For example,

(8.18)

g0(t) = t
0

1
= 0 , g1(t) = t

1

1
= t ,

g2(t) = t
2

1 + z
, g3(t) = t

3 + z

1 + 3z
,

g4(t) = t
4 + 4z

1 + 6z + z2
, g5(t) = t

5 + 10z + z2

1 + 10z + 5z2
,

g6(t) = t
6 + 20z + 6z2

1 + 15z + 15z2 + z3
, g7(t) = t

7 + 35z + 21z2 + z3

1 + 21z + 35z2 + 7z3
,

g8(t) = t
8 + 56z + 56z2 + 8z3

1 + 28z + 70z2 + 28z3 + z4
, et cetera.

For all integersm ≥ 0 andn ≥ 0 and complext, with ψ = tan−1 t

gm+n(t) = gm+n(tan ψ) = tan((m+ n)ψ) = tan(mψ + nψ)

=
tan(mψ) + tan(nψ)

1 − tan(mψ) tan(nψ)
=

gm(t) + gn(t)

1− gm(t)gn(t)
.(8.19)

In particular,

(8.20) gn+1(t) =
t+ gn(t)

1 − t gn(t)
.

This recurrence relation (8.20) could be used to define the sequence of rational functions{gn}
by induction onn, starting withg0(t) = 0.

8.1. Even binomial coefficients.

Theorem 8.1. If n > u > 0, andq | n but q andu are co–prime, thenq |
(
n
u

)
Proof. For integerk > 0, the product ofk consecutive integers is divisible byk!. Indeed, for
q ≥ k,

(8.21)
q(q − 1) . . . (q − k + 1)

k!
=

(
q

k

)
,

which is an integer. For−k < q < k thosek consecutive integers include 0, so thatq(q −
1) . . . (q − k + 1) = k! × 0; and forq ≤ −k that product is(−1)k times the product ofk
consecutive positive integers, which is divisible byk!

Hence,

(8.22)

(
n

u

)
=

n(n− 1) . . . (n− u+ 1)

u!
=

n(n− 1) . . . (n− u+ 1)

u(u− 1)!
=

na

u
,

wherea =
(
n−1
u−1

)
is an integer. Now,n = bq for integerb, and therefore

(8.23) u

(
n

u

)
= abq,

so thatq dividesu
(
n
u

)
.

By hypothesis, gcd(u, q) = 1, and thereforeq does divide
(
n
u

)
.

Corollary 8.2. For integersn > u > 0,
(
n
u

)
is divisible byn÷ gcd(n, u).
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Corollary 8.3. If p is prime andµ > 0 and pµ dividesn but p does not divideu, thenpµ

divides the binomial coefficient
(
n
u

)
.

Corollary 8.4. If 2µ | n with µ > 0 andu is odd, then2µ |
(
n
u

)
.

Thus, ifn is even andu is odd, then
(
n
u

)
is even.

Hence, withj = 2β(2α + 1) whereα, β ≥ 0 (cf. (8.16)), it follows from Corollary 8.4 that
every coefficient in the polynomialA2j (of degreej − 1) is divisible by2β+1. Therefore the
polynomial(

1

2

)β+1

A2j(z) = 2α+ 1 +

(
1

2

)β+1(
2j

3

)
z +

(
1

2

)β+1(
2j

5

)
z2 + · · ·

· · ·+
(

1

2

)β+1(
2j

5

)
zn−3 +

(
1

2

)β+1(
2j

3

)
zj−2 + (2α+ 1)zj−1(8.24)

has integer coefficients. Thus, (8.18) may be rewritten as:

(8.25)

g0(t) = t
0

1
= 0 , g1(t) = t

1

1
= t ,

g2(t) = 2t
1

1 + z
, g3(t) = t

3 + z

1 + 3z
,

g4(t) = 4t
1 + z

1 + 6z + z2
, g5(t) = t

5 + 10z + z2

1 + 10z + 5z2
,

g6(t) = 2t
3 + 10z + 3z2

1 + 15z + 15z2 + z3
, g7(t) = t

7 + 35z + 21z2 + z3

1 + 21z + 35z2 + 7z3
,

g8(t) = 8t
1 + 7z + 7z2 + z3

1 + 28z + 70z2 + 28z3 + z4
, et cetera.

9. ZEROS OF tan(nψ)

The equation

(9.1) tan(nψ) = 0

has the solution

(9.2) nψ = kπ

for integerk, and hence

(9.3) ψ =
kπ

n
.

From (8.12) and (8.13),tan(nψ) = 0 if and only if eithert = 0, orAn(z) = 0 or elseBn(z) =
∞ (which requirest = ∞). If t = ∞ thenψ = (h + 1

2
)π for integerh, so that tan(2jψ) =

tan((2h+ 1)jπ) = 0 andtan((2j + 1)ψ) = tan
((

2jh+ j + h+ 1
2

)
π
)

= ∞.

Hence, the roots of the rational equationgn(t) = 0 are of the formst = 0 andt = tan(kπ/n)
(the zeros ofAn); and for evenn = 2j there is also the roott = ∞.

Therefore, the polynomial equationA2j+1(z) = 0 hasj distinct roots, which are given by

(9.4) uk = − tan2

(
kπ

2j + 1

)
(k = 1, 2, . . . , j),
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with 0 > u1 > u2 > · · · > uj−1 > uj; and the polynomial equationA2j(z) = 0 hasj − 1
distinct roots, which are given by

(9.5) zk = − tan2

(
kπ

2j

)
(k = 1, 2, . . . , j − 1),

with 0 > z1 > z2 > · · · > zj−2 > zj−1.

9.1. Positive Powers of Zeros ofA2j+1. Apply Newton’s Rules to the zerosuk of the monic
polynomialA2j+1 in (8.14) and it follows that, for all integersj > 0 andq ≥ 0,

∑j
k=1 tan2q(kπ/(2j+

1)) has integer value.
For example, withj = 3 andq = 10,

(9.6)
j∑

k=1

tan2q

(
kπ

2j + 1

)
= 6792546291251.001 .

For all integersj > 0, f ≥ 0 and primep, the integer congruences (2.23), for positive powers
of zeros of the monic polynomialA2j+1 in (8.14), yield the congruence identities:

j∑
k=1

up
f

k ≡ −
(

2j + 1

2

)
(mod p),

j∑
k=1

u2pf

k ≡
(

2j + 1

2

)2

− 2

(
2j + 1

4

)
(mod p),

j∑
k=1

u3pf

k ≡ −
(

2j + 1

2

)3

+ 3

(
2j + 1

2

)(
2j + 1

4

)
− 3

(
2j + 1

6

)
(mod p), et cetera.(9.7)

These simplify to give the following congruence identities:

j∑
k=1

tan2pf

(
kπ

2j + 1

)
≡ j(2j + 1) (mod p),

j∑
k=1

tan4pf

(
kπ

2j + 1

)
≡ 1

3
j(2j + 1)(4j2 + 6j − 1) (mod p),

j∑
k=1

tan6pf

(
kπ

2j + 1

)
≡ 1

15
j(2j + 1)(32j4 + 80j3 + 40j2 − 20j + 3)

(mod p), et cetera.(9.8)

For example, withj = 3, p = 3 andf = 2,

(9.9)
1

p

[
j∑

k=1

tan2pf

(
kπ

2j + 1

)
− j(2j + 1)

]
= 117952755648.000 .
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9.2. Positive Powers of Zeros ofA2j. Apply Newton’s Rules to the zeroszk of
(

1
2

)β+1
A2j

in (2.38), and it follows that, for all positive integersq andj = (2α + 1)2β (with α, β ≥ 0),
(2α+ 1)q

∑j−1
k=1(kπ/(2j)) has integer value.

For example, withj = 40, α = 2, β = 3, q = 3,

(9.10) (2α+ 1)q
j−1∑
k=1

tan2q

(
kπ

2j

)
= 34561553975.000 .

In particular, for positive integersβ, q (with α = 0),
∑2β−1

j=1 tan2q
(
kπ/2β+1

)
has integer

value. For example, withβ = 5 andq = 4,

(9.11)
2β−1∑
j=1

tan2q

(
kπ

2(β+1)

)
= 29592340127.000 .

For all positive integersj = 2β(2α+1), withα, β, f ≥ 0 and primep, the integer congruences
(2.23), for positive powers of zeros of the polynomial

(
1
2

)β+1
A2j in (8.16), yield the congruence

identities:
j−1∑
k=1

((2α+ 1)zk)
pf ≡ −

(
1

2

)β+1(
2j

3

)
(mod p),

j−1∑
k=1

((2α+ 1)zk)
2pf ≡

(
1

2

)2β+2(
2j

3

)2

− 2(2α+ 1)

(
1

2

)β+1(
2j

5

)
(mod p),

j−1∑
k=1

((2α+ 1)zk)
3pf ≡ −

(
1

2

)3β+3(
2j

3

)3

+ 3(2α+ 1)

(
1

2

)2β+2(
2j

3

)(
2j

5

)

−3(2α+ 1)2

(
1

2

)β+1(
2j

7

)
(mod p), et cetera.(9.12)

For all positive integersj = 2β(2α + 1), with α, β, f ≥ 0 and primep, these simplify to give
the identities:

(2α+ 1)p
f

j−1∑
k=1

tan2pf

(
kπ

2j

)
≡ 1

3
(2α+ 1)(j − 1)(2j − 1) (mod p),

(2α+ 1)2pf

j−1∑
k=1

tan4pf

(
kπ

2j

)
≡ 1

45
(2α+ 1)2(j − 1)(2j − 1)(4j2 + 6j − 13)

(mod p),

(2α+ 1)3pf

j−1∑
k=1

tan6pf

(
kπ

2j

)
≡ 1

945
(2α+ 1)3(j − 1)(2j − 1)×

×(32j4 + 48j3 − 112j2 − 192j + 251)

(mod p), et cetera.(9.13)

For example, withj = 6, α = 1, β = 1, f = 1 and primep = 3,

1

p

[
(2α+ 1)2pf

j−1∑
k=1

tan4pf

(
kπ

2j

)
− 1

45
(2α+ 1)2(j − 1)(2j − 1)(4j2 + 6j − 13)

]
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(9.14) = 1774271664.000 .

With α = 0, we get that for all integersβ > 0, f ≥ 0 and primep,

2β−1∑
k=1

tan2pf

(
kπ

2(β+1)

)
≡ 1

3
(2β − 1)(2β+1 − 1) (mod p),

2β−1∑
k=1

tan4pf

(
kπ

2(β+1)

)
≡ 1

45
(2β − 1)(2β+1 − 1)(22β+2 + 3× 2β+1 − 13)

(mod p),

2β−1∑
k=1

tan6pf

(
kπ

2(β+1)

)
≡ 1

945
(2β − 1)(2β+1 − 1)×

×(24β+5 + 3× 23β+4 − 7× 22β+4 − 3× 2β+6 + 251)

(mod p), et cetera.(9.15)

For example, withβ = 2, f = 2 and primep = 3,

1

p

2β−1∑
k=1

tanp
f

(
kπ

2(β+1)

)
− 1

45
(2β − 1)(2β+1 − 1)(22β+2 + 3× 2β+1 − 13)


(9.16) = 20081836064256.001 .

Newton’s Rules for negative powers, applied to the self-reciprocal polynomialA2j, reproduce
(9.14) and (9.15).

9.3. Negative Powers of Zeros ofA2j+1. Apply Newton’s Rules to the zeros1/uk of the poly-
nomial (i.e. B2j+1) which is reciprocal toA2j+1. It follows that, for all integersj ≥ 0 and
q ≥ 0,
(2j + 1)q

∑j
k=1 cot2q(kπ/(2j + 1)) has integer value.

For example, withj = 4 andq = 4,

(9.17) (2j + 1)q
j∑

k=1

cot2q

(
kπ

2j + 1

)
= 36269685127325.999 .

For all integersj ≥ 0, f ≥ 0 and primep,

(2j + 1)p
f

j∑
k=1

cot2pf

(
kπ

2j + 1

)
≡ 1

3
j(2j + 1)(2j − 1) (mod p),

(2j + 1)2pf

j∑
k=1

cot4pf

(
kπ

2j + 1

)
≡ 1

45
j(2j + 1)2(2j − 1)(4j2 + 10j − 9)

(mod p),

(2j + 1)3pf

j∑
k=1

cot6pf

(
kπ

2j + 1

)
≡ 1

945
j(2j + 1)3(2j − 1)×

×(32j4 + 112j3 + 8j2 − 252j + 135)

(mod p), et cetera.(9.18)
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For all integersj ≥ 0, f ≥ 0 and primep the integer congruences (2.48), for negative powers
of the zerosuk of the integer polynomialA2j+1, yield the congruence identities:

j∑
k=1

(
2j + 1

vk

)pf

≡ −
(

2j + 1

3

)
(mod p),

j∑
k=1

(
2j + 1

vk

)2pf

≡
(

2j + 1

3

)2

− 2(2j + 1)

(
2j + 1

5

)
(mod p),

j∑
k=1

(
2j + 1

vk

)3pf

≡ −
(

2j + 1

3

)3

+ 3(2j + 1)

(
2j + 1

3

)(
2j + 1

5

)
−3(2j + 1)2

(
2j + 1

7

)
(mod p), et cetera.(9.19)

These simplify to give the following congruence identities:

(2j + 1)p
f

j∑
k=1

cot2pf

(
kπ

2j + 1

)
≡ 1

3
j(2j + 1)(2j − 1) (mod p),

(2j + 1)2pf

j∑
k=1

cot4pf

(
kπ

2j + 1

)
≡ 1

45
j(2j + 1)2(2j − 1)(4j2 + 10j − 9)

(mod p),

(2j + 1)3pf

j∑
k=1

cot6pf

(
kπ

2j + 1

)
≡ 1

945
j(2j + 1)3(2j − 1)×

×(32j4 + 112j3 + 8j2 − 252j + 135)

(mod p), et cetera.(9.20)

For example, withj = 2, p = 7 andf = 1,

1

p

[
(2j + 1)2pf

j∑
k=1

cot4pf

(
kπ

2j + 1

)
− 1

45
j(2j + 1)2(2j − 1)(4j2 + 10j − 9)

]

(9.21) = 6686100200879.999 .

9.4. Zeros of cot(nψ). The equation

(9.22) cot(nψ) = 0

has the solution

(9.23) nψ =
(
k − 1

2

)
π

for integerk, and hence

(9.24) ψ =
(2k − 1)π

2n
,

From (8.13) and (2.9),

(9.25) cot(nψ) =
Bn(z)

t An(z)
,
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and hencecot(nψ) = 0 if and only if eitherBn(z) = 0, or elset = ∞, or elseAn(z) = ∞
(which requirest = ∞). If t = ∞ thenψ = (h + 1

2
)π for integerh, so thatcot(2jψ) =

cot((2h+ 1)jπ) = ∞ andcot((2j + 1)ψ) = cot
((

2jh+ j + h+ 1
2

)
π
)

= 0.

Hence, the roots of the rational equation1/gn(t) = 0 are of the form t =
tan((2k− 1)π/(2n)) (the zeros of the polynomialBn); and for oddn = 2j+ 1 there is also the
root t = ∞.

Therefore, the polynomial equationB2j(z) = 0 hasj distinct roots, which are given by

(9.26) vk = − tan2

(
(2k − 1)π

4j

)
(k = 1, . . . , j)

with 0 > v1 > v2 > · · · > vj−1 > vj; and the polynomial equationB2j+1(z) = 0 hasj distinct
roots, which are given by

(9.27) wk = − tan2

(
(2k − 1)π

4j + 2

)
(k = 1, . . . , j)

with 0 > w1 > w2 > · · · > wj−1 > wj.

9.4.1. Positive Powers of Zeros ofB2j. Apply Newton’s Rules to the zerosvk of the monic
polynomialB2j in (8.16), and it follows that for integersj > 0 andq ≥ 0,

∑j
k=1 tan2q((2k −

1)π/(4j)) has integer value.
For example, withj = 4 andq = 9,

(9.28)
j∑

k=1

tan2q

(
(2k − 1)π

4j

)
= 4208117405212.000 .

The zeros ofB2j+1 are the inverses of the zeros ofA2j+1, and those inverses have been dealt
with in (9.20).

For all integersj > 0, f ≥ 0 and primep, the integer congruences (2.23) for positive powers
of the zerosvk of the monic polynomialB2j, yield the congruence identities:

j∑
k=1

vp
f

k ≡ −
(

2j

2

)
(mod p),

j∑
k=1

v2pf

k ≡
(

2j

2

)2

− 2

(
2j

4

)
(mod p),

j∑
k=1

v3pf

k ≡ −
(

2j

2

)3

+ 3

(
2j

4

)(
2j

2

)
− 3

(
2j

6

)
(mod p), et cetera.(9.29)

These simplify to give the following congruence identities:
j∑

k=1

tan2pf

(
(2k − 1)π

4j

)
≡ j(2j − 1) (mod p),

j∑
k=1

tan4pf

(
(2k − 1)π

4j

)
≡ 1

3
j(2j − 1)(4j2 + 2j − 3) (mod p),

j∑
k=1

tan6pf

(
(2k − 1)π

4j

)
≡ 1

15
j(2j − 1)(32j4 + 16j3 − 32j2 − 16j + 15)

(mod p), et cetera.(9.30)
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For example, withj = 2, p = 5 andf = 1,

1

p

[
j∑

k=1

tan6pf

(
(2k − 1)π

4j

)
− 1

15
j(2j − 1)(32j4 + 16j3 − 32j2 − 16j + 15)

]
= 60855600960.000 .(9.31)

The congruences (2.40) for negative powers, applied to the self-reciprocal polynomialB2j,
yield exactly the same congruences as in (9.30). The zeros ofB2j+1 are the inverses of the zeros
of A2j+1, which have been dealt with in (9.20).

10. ZEROS OF tan(nψ)− c

For realt, denote the principal value oftan−1 t by arctan t,with

(10.1) − 1
2
π < arctan t < 1

2
π.

For realc, the equation

(10.2) tan(nψ)− c = 0

has the solution

(10.3) nψ = kπ + ζ,

for integerk, where

(10.4) ζ = arctan c.

Denote

(10.5) λ =
ζ

π
,

so that

(10.6) − 1
2
< λ < 1

2
,

and

(10.7) nψ = (k + λ)π.

Thus, the equation (10.2) has the general solution

(10.8) ψ =
k + λ

n
π.

Thus, for allψ satisfying the equation (10.2),t = tan ψ has one of then distinct values

(10.9) tk = tan

(
(k + λ)π

n

)
, (k = 1, 2, . . . , n)

Reduction to Polynomial Equations
The function tan is an odd function, and so changing the sign ofc changes the sign of the

solution (10.9) of (10.2). Hence, for our purposes it is sufficient to considerc ≥ 0; and since the
casec = 0 has been dealt with in (9.1) to (9.31), we need only considerc > 0 and0 < λ < 1

2
.

We shall consider rationalc = m/r, with m andr co–prime. The only positive rationalc
giving rationalλ is 1/1 = tan(π/4).

In terms of the rational functiongn, (10.2) becomes

(10.10)
m

r
= c = gn(t) = t

An(z)

Bn(z)
,

AJMAA, Vol. 5, No. 2, Art. 11, pp. 1-44, 2009 AJMAA

http://ajmaa.org


40 G. J. TEE

and that reduces to the polynomialequation int = tan ψ, with integer coefficients:

(10.11) rtAn(z) = mBn(z).

For oddn = 2j + 1, this gives the integer polynomial equation of degree2j + 1 in t:

(−1)j−1×

×
[
rt2j+1 −m(2j + 1)t2j − rj(2j + 1)t2j−1 +

1

3
mj(2j + 1)(2j − 1)t2j−2 + · · ·

]
· · ·+ 1

3
rj(2j + 1)(2j − 1)t3 −mj(2j + 1)t2 − r(2j + 1)t+m = 0.(10.12)

For evenn = 2j, this gives the polynomial equation of degree2j in t:

(−1)j−1

[
mt2j + 2rjt2j−1 −mj(2j − 1)t2j−2 − 2

3
rj(j − 1)(2j − 1)t2j−3 + · · ·

]
· · ·+ 2

3
rj(j − 1)(2j − 1)t3 −mj(2j − 1)t2 − 2rjt+m = 0 .(10.13)

For alln > 0, the low–order terms of the polynomial equation (10.11) are of the form

(10.14) · · ·+ r

(
n

3

)
t3 −m

(
n

2

)
t2 − r

(
n

1

)
t+m = 0 .

The rootstk of the polynomial equations (10.12) and (10.13) are given by (10.9), with

(10.15) λ =
arctan(m/r)

π
.

10.1. Sums of Powers of Tangents.Apply Newton’s Rules for positive powers of thetkto
the integer polynomial equations (10.12) and (10.13). It follows that, for all positive integers
m,n, q, r, if n is even thenmq

∑n
k=1 tanq((k + λ)π)/n has integer value; and ifn is odd then

rq
∑n

k=1 tanq((k + λ)π/n) has integer value, whereλ = arctan(m/r)π.
For example, with evenn = 4, q = 5, m = 5 andr = 3,

(10.16) mq

n∑
k=1

tanq
(

(k + λ)π

n

)
= −2416332.000 ;

and with oddn = 3, q = 5, m = 5 andr = 3,

(10.17) rq
n∑
k=1

tanq
(

(k + λ)π

n

)
= 1212975.000 .

With m = ±1, r = 1 andλ = ±1
4
, this shews that both

(10.18)
n∑
k=1

tanq
(

(4k + 1)π

4n

)
and

n∑
k=1

tanq
(

(4k − 1)π

4n

)
have integer values for all positive integersq andn. Indeed, for evenq those sums are equal,
and for oddq each is the negative of the other.

For example, withn = 18 andq = 9,

(10.19)
n∑
k=1

tanq
(

(4k + 1)π

4n

)
= −

n∑
k=1

tanq
(

(4k − 1)π

4n

)
= −1734367456242.000 .
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10.1.1. Zeros of tan((2j + 1)ψ − c. For all integersf ≥ 0, j ≥ 0, m > 0, r > 0 and prime
p, the congruences (2.31) for positive powers of the rootstk of the integer polynomial equation
(10.11) (scaled by(−1)j−1) yield the congruences:

2j+1∑
k=1

(rtk)
pf ≡ m(2j + 1) (mod p),

2j+1∑
k=1

(rtk)
2pf ≡ (m(2j + 1))2 + 2r2j(2j + 1) (mod p),

2j+1∑
k=1

(rtk)
3pf ≡ (m(2j + 1))3 + 3mr2j(2j + 1)2 − 3r2 1

3
mj(2j + 1)(2j − 1)

(mod p), et cetera.(10.20)

These simplify to give the following congruence identities:

rp
f

2j+1∑
k=1

tanp
f

(
(k + λ)π

2j + 1

)
≡ m(2j + 1) (mod p),

r2pf

2j+1∑
k=1

tan2pf

(
(k + λ)π

2j + 1

)
≡ (2j + 1)(2(m2 + r2)j +m2) (mod p),

r3pf

2j+1∑
k=1

tan3pf

(
(k + λ)π

2j + 1

)
≡ m(2j + 1)(4(m2 + r2)j(j + 1) +m2)

(mod p), et cetera.(10.21)

For example, withm = 1, r = 2, j = 3, f = 1 andp = 3,

1

p

[
r3pf

2j+1∑
k=1

tan3pf

(
(k + λ)π

2j + 1

)
−m(2j + 1)(4(m2 + r2)j(j + 1) +m2)

]
= 2546108880.000 .(10.22)

10.1.2. Zeros of tan(2jψ) − c. For all integersf ≥ 0, j > 0, m > 0, r > 0 and primep,
the congruences (2.31) for positive powers of the rootstk of the integer polynomial equation
(10.13) (scaled by(−1)j−1) yield the congruences:

2j∑
k=1

(mtk)
pf ≡ −2rj (mod p),

2j∑
k=1

(mtk)
2pf ≡ (2rj)2 + 2m2j(2j − 1) (mod p),

2j∑
k=1

(mtk)
3pf ≡ −(2rj)3 − 6m2rj2(2j − 1) + 3m2 2

3
rj(j − 1)(2j − 1)

(mod p) et cetera.(10.23)
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These simplify to give the following congruence identities:

mpf

2j∑
k=1

tanp
f

(
(k + λ)π

2j

)
≡ −2rj (mod p),

m2pf

2j∑
k=1

tan2pf

(
(k + λ)π

2j

)
≡ 2j(2(m2 + r2)j −m2) (mod p),

m3pf

2j∑
k=1

tan3pf

(
(k + λ)π

2j

)
≡ 2rj(m2 − 4(m2 + r2)j2) (mod p),(10.24)

et cetera.
For example, withm = 2, r = 1, j = 3, f = 1 andp = 13,

(10.25)
1

p

[
mpf

2j∑
k=1

tanp
f

(
(k + λ)π

2j

)
+ 2rj

]
= −1888127879010.000 .

10.2. Sums of Powers of Cotangents.Apply Newton’s Rules to the zeros1/tk of the polyno-
mial which is reciprocal to (10.11). It follows that for all positive integersn, m, r andq,
mq
∑n

k=1 cotq((k + λ)π/n) has integer value, withλ = arctan(m/r)/π.
For example, withn = 9, q = 3, m = 5 andr = 3,

(10.26) mq

n∑
k=1

cotq
(

(k + λ)π

n

)
= 6844029489.000 .

For all integersn > 0. f ≥ 0, m > 0, r > 0 and primep, the congruences (2.32) for negative
powers of the rootstk of the integer polynomial equation (10.11) yield the congruences:

n∑
k=1

(
m

tk

)pf

≡ rn (mod p),

n∑
k=1

(
m

tk

)2pf

≡ r2n2 + 2m2

(
n

2

)
(mod p),

n∑
k=1

(
m

tk

)3pf

≡ r3n3 + 3rm2n

(
n

2

)
− 3m2r

(
n

3

)
(mod p), et cetera.(10.27)

These simplify to give the following congruence identities:

mpf
n∑
k=1

cotp
f

(
(k + λ)π

n

)
≡ rn (mod p),

m2pf
n∑
k=1

cot2pf

(
(k + λ)π

n

)
≡ n((m2 + r2)n−m2) (mod p),

m3pf
n∑
k=1

cot3pf

(
(k + λ)π

n

)
≡ rn((m2 + r2)n2 −m2) (mod p),(10.28)

et cetera.
For example, withm = 3, r = 2, n = 4, f = 2 andp = 3,

(10.29)
1

p

[
mpf

n∑
k=1

cotp
f

(
(k + λ)π

n

)
− rn

]
= 1672622592.000 .
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With m = ±1, r = 1 andλ = ±1
4
, this shews that for integersn > 0, f ≥ 0 and primep,

n∑
k=1

cotp
f

(
(4k ± 1)π

4n

)
≡ ±n (mod p),

n∑
k=1

cot2pf

(
(4k ± 1)π

4n

)
≡ n(2n− 1) (mod p),

n∑
k=1

cot3pf

(
(4k ± 1)π

4n

)
≡ ±n(2n2 − 1) (mod p), et cetera.(10.30)

For example, withn = 3, f = 1 andp = 7,

(10.31)
1

p

[
n∑
k=1

cot3pf

(
(4k ± 1)π

4n

)
∓ n(2n2 − 1)

]
= ±146487463200.000 .

With m = ±1, r = 1 andλ = ±1
4
,

n∑
k=1

cotq
(

(4k ± 1)π

4n

)
=

n∑
k=1

tanq
(
π

2
− (4k ± 1)π

4n

)

=
n∑
k=1

tanq
(

(4j + 2∓ 1− 4k)π

4n

)
=

n∑
h=1

tanq
(

(4h± 1)π

4n

)
.(10.32)

Hence, for this case (10.26) gives sums of powers of tangents which are equal to the sums of
powers of cotangents in (10.28) for oddn = 2j + 1, (10.23) gives sums of powers of tangents
which are equal to the sums of powers of cotangents in (10.32) for evenn = 2j, and (10.26)
gives the same sums as in (10.24).

The many congruence identities, derived in this paper for integer sums of powers of the
trigonometric functions, provide highly sensitive tests for the accuracy of software for evalua-
tion of trigonometric and inverse trigonometric functions, as in the numerical examples com-
puted in this paper. In each case the result must have integer value, within the errors for com-
putation with rounded arithmetic and finite approximations to those functions.

Similar identities have been constructed for integer sums of powers of Jacobian elliptic func-
tions (Tee [13]), and for the Weierstraß elliptic function℘ (Tee [14]).
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