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2 G. J. TEE

1. INTRODUCTION

The zeros of Chebyshev polynomials (with integer coefficients) can be expressed in terms of
cosines.

Consequently, application of Vieta’s Rule and Newton’s Rule to those polynomials gives in-
teger expressions for various sums of powers (positive and negative) of trigonometric functions.
For example,

3 5 7
(1.1) sect <g> + sec? <§) + sec? (g) + sec? (g) = 1120,

and

(1.2) 3 {COSG& (g) + cosed (2%) 4 ...+ cosed <(71T—1) %>} _ n22— 1

for oddn > 3 (Durell & Robson[[4], p. 206 & p. 211).
For a monic polynomial equation with integer coefficients

(1.3) ¥+ axt f a4+t ay =0,

and primep, the sumsS, of the pth powers of the roots of (1.3) satisfigs (2.15) the integer
congruenceS, = —a; modp (cf. Tee [13], Theorem 1). More generally (2,18)gifs any
positive integer the,, = .S, modp.

Applied with Vieta’'s Rule and Newton’s Rule to the Chebyshev polynomials, these congru-
ences yield many novel congruences for integer sums of powers of cosines and secants. For
example|(3.2R2), withprimep and integersn > 0 andd > 6,

&3 2k — 1]r
(1.4) 647" ) " cos™” (T) = 10d  (mod p).
k=1

Families of polynomials with integer coefficients are construcited [8.12) whose zeros can
be expressed in terms of tangents. Applied with Vieta’s Rule and Newton’s Rule to those
polynomials, the congruencegs (2.15) and (R.18) yield many novel congruences for integer sums
of powers of tangents and cotangents.

The significant trigonometric congruences (each in triples) found herd are (3.22), (4.13),
(5.18), (5.24),((5.29),[ (6] 7)[ (6.14) and (6.21) for integer sums of powers of codines; (3.26),
(8.28), [4.17),[(4.19) [ (5.20)_(5.26), (5]31), (6.9). (6.1F), (6.18), (6.23)[and] (6.25) for integer

sums of powers of secant§; (0.8), (9.1B), (9.40), (9.80), (10.24) and [10.21) for integer sums of
powers of tangents; and (10]28) apd (10.30) for integer sums of powers of cotangents.

2. SUMS OF PosiTIvE POWERS OF ROOTS

A general polynomial equation of degrée> 1 with complex coefficients

(2.1) Q(x) = cox+ 1zt F x4+ 4y = 0,

with ¢y # 0, has the same roots (and multiplicities) as the monic equation
(2.2) P(z) = Q(z)/co =z + ax™ + agz®? +---+a4 =0,
where

(2.3) a; def ¢i/co, (1 = 1,2,...,d).

1The symbol=- denotes integer division, yielding integer quotient. For integeamidd > 0, ¢ = n +d,
wheren = ¢d + r, with remainded < r < d.
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The d roots of equation (2]1) (and df (2.2)) will be denoteddys, v, . .., 1, w; and those
symmetric functions of the roots which are callégima functions are denoted thus:

So it tw
Z@ﬁ déf Oéﬁ+Oé’Y+"'+OéW+ﬂ’Y+"'+ﬂW+"'+ww,
Za3ﬁ2 def a362+a372+--~+a3w2+
5372—1‘"'4‘53002+"'+¢3w2+ﬂ3062+’73042
+o 4wt + PP+ 4+ WY
(2.4)

The sigma functiond_ o, > af, > afy,...,> afy...w are called thelementary sym-
metric functions of a, 3,7, ...,w; and Vieta’s Rule expresses them in terms of the coefficients

of P:
Za = —ar, Zaﬁ = Qg, ZQﬂ7 = —as,
(2.5) e Zaﬁy...w = afy...w = (=1)%y.

Each symmetric polynomial with integer coefficients can be expressed as a polynomial in the
elementary symmetric functions, with integer coefficients (Dickson [3], p. 67).

Therefore, if all coefficients, ..., a, of the monic polynomialP are integers (positive,
negative or zero), each symmetric polynomial (in the root$ of (2.2)) with integer coefficients
has integer value. In particular, each sigma function then has integer value.

For integerk, denote the sum of thiegh powers of the roots as

(2.6) Sk dzefzozk ="+ -+ wh
which is a sigma function if: > 0. From equation[(2]2), Vieta’s Rule givés = —a,; then
Sy, S3,... may be computed successively by Newton’s Rule:

S = —a1Sp_1 — a2Sk_9 — -+ — ap_1.51 — kay, (k = 1,2,...,d);
(2.7) S = —a1Sk—1 — asSk_2 — *++ — aqgSk_a, (k> d).

From Newton’s Rule, it follows that eac$), can be expressed as a polynomial indhewith
integer coefficients. For example,

Sl = —aq, SQ = CLl 2@2, 53 = —Clzl)’ + 3&1@2 — 3(13,
(2.8) Sy = a1 — 4a1a2 + dajaz + Qag — 4ay,

anda; is taken as 0 fof > d. Girard's formuld of 1629 gives (MacMahon [8] p. 6) the general
expression:

@9 s = N UEREEUE D)t (o
where the sum is taken over all non-negative exponents such that
(2.10) r+2rg+3rs+ -+ drg = q
For an even polynomial equation of degrée: 27,
(2.11) 2 4 a2 a4+ agj_2x2 +ay; = 0,

2Albert Girard, Invention Nouvelle en I'AlgébreAmsterdam, 1629. The formula is often ascribed to Waring,
who gave it without proof in 1782.
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the roots occur in pairsH{«, —«), including multiplicity; and hence,, = 0 for all odd k.
Indeed 2 is a root (with multiplicity twice that for-« in (2.11)) of the equation of degrge

(212) Zj + agzj_l + CL4Zj_2 + -+ A2j—22 + Qo5 = 0.

Accordingly, for all positive integers, S,,, (for the roots of[(2.1]1)) equals twice the sum of the
nth powers of the roots of (2.112).
Similarly, for an odd polynomial of degreé= 25 + 1,

(2.13) 2T 4 apr¥ T 4 ag ¥ TP 4 ag 01 + agyr = 0,

the roots are 0 and pairs-{, —«) including multiplicity; and hencé),, = 0 for all odd k. As
with the even polynomial (2.11)>, (for the roots of[(2.113)) equals twice the sum of tith
powers of the roots of (2.12).

For both even and odd polynomials, define

(2.14) o0 18,

so thatr,, equals the sum of thth powers of the roots of the even or odd polynomial equation,
using each nonzero pai-(, —«) once only. The root O for an odd polynomial is excluded from
the sum in the definition of,,, to facilitate the later treatment of negative powers of roots.

Throughout this papef; denotes any prime, and denotes the non—negative integer expo-
nent inp™.
Hereafter, we shall consider only polynomials with integer coefficients.

2.1. Monic Polynomials With Integer Coefficients. If all coefficients in the monic polyno-

mial P are integers, then its zeros are called algebraic integers. Newton’s Rules (2.7) shew that
Sk then has integer value for all positive integérslt has been proved (Tée 2|12, Theorem 1)
that

(2.15) S, = - (mod p).
Therefore
(2.16) plS, < pla;.

and (Teel[1R2], Theorem 2), is an integer multiple op for all primesp if and only if the
coefficienta; = 0in P.
For both even and odd polynomials, we get that

(2.17) %Sgp =0, = —a (mod p).

Therefore, in an even or odd polynomial, is an integer multiple op for all primesp, if and

only if a; = 0.

N.B. Note that the congruence and mod notations, devised by Gaul} for relations between
integers, have been extended to indicate relations between polynomials. Consider integral poly-
nomialsf andg of degreen; i.e. f(z) = > " jca" ", glxz) = Y, ea"", with integer
coefficientsc, ande,. If ¢, = e, (modm) for eachr € [0,...,n], then “we say thaff(x)

andg(z) are congruent to modulus, and writef (z) = g(z) (modm)” (Hardy & Wright [5],

page 82). Thus, the symbaE” is used in two different senses: Gaul’’s meaning for a relation
between integers, and the sense just defined, in which it expresses a relation between polyno-
mials which does not imply any particular value (or type) for the variablelardy & Wright

3In 1908, L. E. Dickson[[?] stated the special case with= 0; but that very muddled note considered only the
case of distinct roots for the monic polynomial equation.
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explained that “there should be no confusion because, except in the phrase ‘the congruence
f(x) = 0, the variablex will occur only when the symbol is used in the second sense. When
we assert thaf (z) = g(z), or f(x) = 0, we are using it in this sense, and there is no reference

to any numerical value af. But when we make an assertion about ‘the roots of the congruence
f(z) = 0, or discuss ‘the solution of the congruence’, it is naturally the first sense which we
have in mind” ([%], p. 83).

For instance, Comtet writes that for prime*(1 + z)» = 1+2? (mod p); which means
that these two polynomials have the same coefficierdgp@ " ([1], p. 14]). With that definition
of “="for integral polynomials, it does follow thai(ty + xo+- - - +2,,,)P = af+ab+---+aP,
mod({)” (Comtet [1], p. 29). But ifzy,z», ..., z,, are not integer variables then that is aot
standard Gaul3—type congruence of integers (unless the expressions on left and right of the
congruence happen to have integer values).

Some authors do seem to have become confused by the two meaninrgs &bt instance,

B. H. Neumann & L. G. Wilson[[10] published D. H. Lehmer’s purported proof of (2.15) for
the special case; = 0 (with d = 4) — but Lehmer’s proof is valid only if the roots, y, z, ¢ of
his monic polynomial equation are all integers.

The proof (Tee [12], Theorem 1) df (2]15) applies for a general monic polynomial equation
with integer coefficients, whose roots (called algebraic integers) will in general be irrational or
complex.

Hereatfter, in this paper=" always denotes congruence of integers.

Edouard Lucas in 1878 ([6], p. 230) attributed to Euler the more general result ghatihy
positive integer then

(2.18) Spg = 5, (mod p),

which reduces to the congruen¢e (2.15) whes 1. But Lucas did not give any reference,
and it has not been possible to locate that generalized congrfiende (2.18) within Euler’s colossal
output.

The congruence (2.15) generalizes readily to dive (2.18). For the monic polynomial whose
zeros are the-th powers of the zeros @?:

(219) 'R,(Iu) déf /Ld—f-?"l,udil —|—rrljld72_|_ ..._|_7-d

Vieta’s Rule [(2.5) becomes:

Z&q = T, Zaqﬁq = To, Z&qﬁq’yq = —Ts,
(2.20) e Z Q1B Wl = 10wl = (—1)%r,.

Each of those symmetric functions is a sigma function for the monic polynahialth in-
teger coefficients, and hence (Dickson [3], p.67) each coefficient, ..., r4 of the monic
polynomial R is an integer. Therefore, the congruerice (R.15)Aocan be applied t®R, to
give:

(2.21) Spg = —T1 (mod p).

Now (cf. (2.20))S, = —ri, and hence the generalized congruefice [2.18) does follow from
(2.19).
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If n is any non-negative multiple of with n = p™q, wherem > 0, then it follows from
(2.9) and|[(2.1B) by induction om that
STL — Mg = S -
g(ri+ra+---+rqg—1)!
7"1'7"2 Td!
(2.22) (mod p),
with r,...,rq as in [2.10). The congruende (2.22) also holds trivially with= 0, so that
n =q.
It follows from (2.8) and|(2.22) that for primeand positive integenn:

(=a)" (=a2)"™ ... (—aq)™

Spm = - (mod p),
Sopm = a2, (mod p),
Sapm = —a} + 3ajay — 3as (mod p),
(223) Sym = af —4alay + 4ajaz + 2a3 — day (mod p), et cetera,

with a; = 0 for j > d.
Likewise, for odd or even monic polynomials,

Tpm = —a (mod p),
Topm = a3 — 2ay (mod p),
Tgpm = —a)+ 3ayay — 3ag (mod p),
(2.24) o4ym = ay — daday + dagag + 2a; — dag (mod p), et cetera.

2.1.1. Fermat’s Little Theorem for Algebraic Integerford = 1 the polynomial equation (2.2)
reduces to

(2.25) z+a; = 0,

and [2.15) becomels-a;)? = —a;  (mod p). For odd primep, this becomes-a} = —a,
(mod p), and forp = 2 this becomes} = —a; = a; (mod 2).
Hence, for all primegp, (2.13) reduces to Fermat's Little Theorem for pripend integer; :

(2.26) al = a; (mod p);

so that the congruencg (2]15) is a generalization of Fermat’s Little Theorem from arithmetic
integers to algebraic integers.
Fermat’s Little Theorem is frequently given in the- 1)—power version:

(2.27) at =1 (mod p)

for integera which is not a multiple ofp. Can this f — 1)—power version of Fermat’s Little
Theorem be generalized to algebraic integers, ag-tpewer version can?
If the d rootsa, 3, . .., w of (2.9) are all integers which are not multiplesgpthen

(2.28) Sy =P g P = Il bl = d (mod p).
But consider the monic polynomial of degrée- 2 with integer coefficients:
(2.29) * —r4ay = 0,

whose roots are not integersiif is any integer not of the forri(1 — b) with integerb. With the
primep = 2 we get that

(2.30) Spo1 =S =a+pf=1=d-1 (mod p),
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which is incompatible with the general res(ilt (3.28) for roots which are all integers not divisible
by p.

Therefore, they{ — 1)—power version of Fermat's Little Theorem does genheralize in any
simple manner from arithmetic integers to algebraic integers, as dogsfbeer version.

2.2. Non-monic Polynomials With Integer Coefficients. The case of a polynomial with
general integer coefficientg, # 0) can be reduced to the case of a monic polynomial with
integer coefficients, as follows.

Theorem 2.1. For a polynomialQ with general integer coefficients, # 0), letb be such that
colbic; (fori = 1,2,...,d). Thenb*S, is an integer, for positive integer.

Proof. Putz = z/b so that: = xb, and hence (2}1) becomes

C C _ C _
(2.31) b—gzd+bd—ilzd1+bd—;z“+---+cd = 0.
Multiply (2.31) byb?/c, to get the monic equation
(2.32) a2 f a4 ay =0,
where each coefficient

bl Ci

2.33 = LG9 Sy =124
(2.33) a b o (2 )

is an integer, by hypothesis.

Thus, the general polynomial equatipn (2.1)iwith integer coefficients is converted to the
monic equation(2.32) i with integer coefficients.

Denote the roots of the monic equatign (2.32)by= ag,..., a4, So that the roots of the
general equation (4.1) are= z/b = ~,,...,7, Where

(2.34) a; = by, (1=1,2,...,d).
Hence withsS), for equation[(2.]L) we get that
(2.35) VS, = (b’yl)k + (b’yz)k + (b’yd)k =" +ab 4+ +ak

and that has integer value, since itis the surhtbfpowers of roots of the monic equatijn (3.32)
with integer coefficientsa

Corollary 2.2. If (2.1 is an odd or even polynomial, thgn (2.33) holds for all edehd hence
it need be tested only for evenThenb?* o, has integer value.

Corollary 2.3. For any equation[(2]1), satisfies the condition fdr, sincez = ¢,z satisfies
the monic polynomial equation

(2.36) 24+ 27+ cgeeztT? + cgcgzd_3 + e+ cg_lcd = 0,

and hence} S;, has integer value.
If @) is an odd or even polynomial, then fréf= ¢, we get thatto; has integer value.

Corollary 2.4. If k is a primep, then it follows from[(2.23)[ (2.32) and (2]33) that

(e _b
(2.37) W Spm = —a; = CC1 (mod p);
0
In the casé = ¢,, which works for every polynomial with integer coefficients, this reduces to
(2.38) A" Sym = —c; (mod p).

If a value ofb less thanc, (in modulus) can be found which satisfies the conditions for

Theoren 2]1, thef (2.37) will give results stronger than (2.38) concesjiigr equation[(2.11).
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Corollary 2.5. If b satisfies the conditions for Theor2.1, thens,~ is an integer multiple
of p for all primesp and positive integers:, if and only ifc; = 0.

For an odd or even polynomial with integer coeﬁiciemﬁg,ap7yl is an integer multiple op
for all primesp, if and only ifcy = 0.

Corollary 2.6. For a general polynomial with integer coefficients, corresponding to [2.23) we
get:

m _b
¥Sm = “ (mod p),
Co
e\’ 2c
b Sopm = (—1> — —2> b’ (mod p),
Co Co
3
m 3 3
b7 Sapm = — <ﬂ> + 01262 E) v (mod p),
Co Co Co
4
YIS, _ (ﬁ) B 46%302 N 40162;—2c3 B @) "
(2.39) (mod p), et cetera,
withc; = 0forj > d.
Takingc, for b, these become:
&S = —q (mod p),
i Sogm = & — 260 (mod p),
P Sy = =+ 3e1ca00 — sl (mod p),
" Spm = — 4Py + (derey + 23)E — deycd
(2.40) (mod p), et cetera.
Similarly, for odd or even polynomials with integer coefficients, fitea ¢, gives
o = —c (mod p),
oy = — (mod p),
A ogm = =6 + 3cacacy — 3cpcl (mod p),
& ogm =y —A4Acicucy + (degey + 263N — Adescy
(2.41) (mod p), et cetera,

with¢; = 0 for j > d.

2.3. Sums of Negative Powers of Rootslf ¢; # 0, the polynomial equation inverse {o (P.1):

1
(2.42) y'Q (5) = ot ay+ey’ ooyt ey =0
has rootsus, . . ., w, Which are the inverses of the roots, . . ., v, of (2.), including multiplic-
ity. Hence for integek > 0,
(2.43) Sk =4+t = Wi+ 4

which is related to the coefficients of the inverse polynonjial (2.42) by Newton’s Rule. (This
holds, even if the coefficients df (2.1) are not integers.)

If ¢, = £1, then the inverse polynomidl (2}42) is a monic polynomial with integer coeffi-
cients; and accordingly, for integér> 0, S_, has integer value.
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Applying Theorenj 2]1 and its Corollaries to the inverse polynorhial [2.42), we get the fol-
lowing results for sums of negative powers of rootg of|(2.1):

Theorem 2.7. Letb be any integer such that|bcy_; (fori = 1,2,...,d). Thenb*S_, is an
integer, for positive integetk.

Corollary 2.8. If (]2:1]) is an odd or even polynomial, thétfo_;, has integer value.

Note that the definitior] (2.15) af,, excludes the root O for an odd polynomial, andsq is
defined for an odd polynomial.

Corollary 2.9. For any equation[(2.42);, satisfies the conditions fdx for = = yc, satisfies
the monic polynomial equation

(2.44) cj’lco + 0272612 oot cgg_02T  Feg 2 420 =0,

and hence’S_; has integer value. I1) is an odd or even polynomial, tHen ;. has integer
value.

Corollary 2.10. If £ is a primep andm is a positive integer, then

—bcg—

(2.45) V'S g = (mod p).

Cd

In the case = ¢4, which works for every polynomial with integer coefficients, this reduces
to

(2.46) &S g = —cq (mod p).

Corollary 2.11. If b satisfies the conditions for Theor2.7, thens_ . is an integer multiple
of p for all primesp and positive integers:, if and only ifc;_; = 0.

Corollary 2.12. Applying [2.39) to the inversg (2]42) of a polynomial with integer coefficients,
we get that

—bcg—1

V'S m = . (mod p),
c 2 2c
DS = ((iTl) - 5;2) ? (modp) (d>2),
3
S g = (- (@) y SeaiCaz 3cd3) b
Cq Cq Cq
(2.47) (mod p) (d > 3), et cetera,

with ¢; = 0 for j < 0; and likewise in the other formulae for sums of negative powers.

With ¢, for b, (2.47) becomes:

&S = —caa (mod p),
S gm =y — 2asca  (modp) (d>2),
czpmS,gpm = —cg,l 4+ 3Cg_2Ci—1Cq — BCd,gcfl
(2.48) (mod p) (d > 3), et cetera.
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Applying (2.41) to the inverse of an even or odd polynomial of deg@reer 2; + 1, with
b* = cy; We get:

m

Chj O—pm = —C2j2 (mod p),
ci?’”a,zpm = c§H — 2¢9j_4C; (mod p) (5 >2),
ci’gma,gpm = —cgj_z + 3Cgj-_4Cj_2C2j — 362_7'76633'
(2.49) (mod p) (5 > 3), et cetera.

More generally (cf. [(2.22)), ip is any prime factor of. and the polynomial has integer
coefficients, then botky.S,, andc];S_,, have integer values which are congruent (mddo
polynomials in the coefficients), ci, . . ., ca—1, cq (cf. (2.40) and[(2.48)). Similarly, i® is also
odd or even, then bottfjo,, andcy;o_,, have integer values which are congruent (nmppdo
polynomials in the coefficients), co, . . ., c25_2, co; (cf. (2.41) and[(2.49)).

3. CHEBYSHEV POLYNOMIALS OF FIRST TYPE

The Chebyshev polynomial of the first typg is defined by the initial values

(3.1) To(z) = 1, Ti(z) = =,
with the 3—term recurrence relation for> 1:
(3.2) T.(x) = 22T, 1(x) — T, _a(x).

By induction onn in (3.2), it follows from 3.1) that, for all integer > 0, T,(z) is a polyno-
mial in z of degreed with integer coefficients. Moreover,; is an even polynomial for even
and an odd polynomial for odd

The integer coefficients df}; are given explicitly ford > 0 by the formuld (Mason &
Handscomb [9], p. 24):

d+2
: 24=2k=1d(d — k — 1)!
T _ _1)* d—2k _
(@) T R
k=0
2d—8
20 1 pd — 247372 4 2976q(d — 3)29™* — Td(d —4)(d —5)x? 5 ...
(—1)d+2 (for evend),
(3.3) ce 4 { (—1)@=D+2 4z (for oddd).
If d =25 + 1is odd, theri;(z) is an odd polynomial:
; 2. . .
(3.4) Tyn(@) = (<[ ... = Z3G+ D@+ 1" + 25+ 1e];
and ifd = 2j is even, therf;(x) is an even polynomial:
(3.5) Toj(z) = (—1)7 { Lo %f(ﬁ — 1)zt — 2% + 1] .
For example (Lyusternikt alia[7], pp. 168-169), in addition t¢ (3.1),
_ 2 _ _ 3 _
(3.6) Tr(x) = 2z° — 1, Ts(x) = 42° — 3z,

Ty(z) = 8zt —8x* +1, Ts(x) = 162° — 2023 + 5z .

4The symbol+ denotes integer division, yielding integer quotient. For integeandd > 0, ¢ = n = d,
wheren = ¢d + r, with remainded < r < d.
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By induction onn in (3.3), it follows from [3.1) that for all complex and integem > 0,
with 9 & cos! x,

(3.7) T.(z) = T,(cosv) = 2 cos ¥ cos((n — 1)) — cos((n —2)J) = cos(n?).

(Any of the infinitely many values afos~! 2 can be used fof.)

The polynomiald;(z) are orthogonal on the interval (-1, 1), with weight function/1 — z2.

The zeros of Chebyshev polynomials are known explicitly in terms of cosines, and hence
application of the congruencds (2.40), (2.4), (R.48) and|(2.49) to various types of Chebyshev
polynomials gives various trigonometric congruences, of a type which seems to be novel.

The significant trigonometric congruences (each in triples) found herg are (3.22), (4.13),
(5.18), (5.24),[(5.29)[ (61 7), (6.114) anjd (6.21) for integer sums of powers of cosine§, arjd (3.26),
@28). [A.17).[(319) [ (5.20)_ (526, (5]31), 16.9). (6.16), (6.18, 16.23)[and (6.25) for integer

sums of powers of secants.

3.1. Modified Chebyshev Polynomial of First Type. The standard Chebyshev polynomials
Ta(x) will now be transformed to monic polynomials, to simplify the expressions for sums of
powers of zeros.

The modified Chebyshev polynomi@}; of first type is defined by the initial values

(3.8) Co(z) = 2, Ci(x) = =,
with the recurrence relation
(3.9) Cri1(x) = 2Ch(x) — Choq(2).
Comparison the of the 3—term recurrence relationgfand forC; shews that
(3.10) Cy(z) = 2Ty(z/2)

forall d > 1 (Lyusterniket alia[7], p. 163), and”;(z) is a monic polynomial inc of degreed
with integer coefficients. The coefficienfs (3.3)Bf(x) convert, by|(3.10), to give the integer
coefficients ofCy(z):

_ d k — 1) d—2k
Cy(z) = dz —_ o)1 x
(3.11) = 2% — da*? + 5d(d —3)dt — éd(d —4)(d —5)xT 0+ ...
If d =25 + 1is odd, therC,(x) is an odd polynomial:
: 1
. = (=1yY!... — —/— _ 2 ; : 7
Coja(@) = (<1)[ -+ = o2 = D2 = ) +3)(2j + D
1 I :
+ 15dU° = DU +2)(2) + D2’ = 2+ 1)(2) + 1)a’
(3.12) (2 + 1):1;];
and ifd = 2j is even, therC,(z) is an even polynomial:
. 1 1
) — (1M ... 2 i 2 4
Coj(z) = (=1) [ T A A e A Al VY
(3.13) ~ ey 2].

AIJMAA Vol. 5, No. 2, Art. 11, pp. 1-44, 2009 AJMAA


http://ajmaa.org

12 G.J. TEE

For example (Lyusternilt alia[7], p. 171), in addition to[(3]8),
Co(z) = 2* -2, Cs(z) = 2 — 3u, Cy(z) = a* —42® + 2,
(3.14) Cs(z) = 2° — 52® + b, Co(z) = 2° — 62" + 927 — 2.

The polynomialg”;(x) are orthogonal on the interval (-2,2), with weight functigh/4 — 2.
Let

(3.15) x = 2cos?

so that if—2 < 2 < 2 then? is real. Then it follows from[(3]8) andl (3.9), by induction on
that

(3.16) Ca(2cos?) = 2cos(dv);
and accordingly
The zeros of”, are given by
(3.18) cos(d) = 0,
so that
1
(3.19) dy = (k; - 5) T
with integerk, and hence each zero ©f; is of the form
2k — 1]m
3.20 =2 — .
( ) Qg cos < 57
Fork =1,2,...,d, this formula gives a strictly decreasing sequence of real zeros
(3.21) 2> a1 > ay >..0> g > —2,
and hence alf zeros ofC; are given by, as, . . ., ag.

3.2. Sums of Even Powers of CosinesApplying (2.24) to the expansiop (3]12) of the monic
Chebyshev polynomial’; (which is even or odd witld), we get trigonometric congruences in
primep and integergl > 0 andm > 0:

o = 4" ZCOS (M)

d (mod P) (d>2),

2k — 1]
Oopm = 167" ZCO (—])

d? —d(d—S) = 3d (mod p) (d > 4),

2k — 1]
Ozpm = 647" Zco (—])

- ng(d— 3) — 5d(d— 1)(d—5)
(3.22) = 10d (mod p) (d > 6), et cetera.
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3.2.1. Computed exampled€ach significant trigonometric congruence has been checked, by
evaluating each of those trigonometric sums numerically for several sets of parameters. The
computations were performed on a Macintosh computer in THINK Pascal, estegded
arithmetic with about 19 significant decimal figures. One numerical example is printed after
each triple of congruences. In each case (including the many not printed here), the congruence
was verified withinextendedaccuracy.

For example, withp = 5, m = 2 andd = 3,

(3.23) ~ 4P Zcos% (—) —d| = 169457721888:000 .
P Py 2d

Hence (Tee [12], Theorem 1), for primpeandm > 1, the positive zeros af’; give the result
thatp|o,~ if and only if p|d; p|oa,m if and only if p|3d, andp|os,= if and only if p|10d.

3.3. Sums of Even Powers of Secants-or the Chebyshev polynomiél,, if d = 2j + 1 is
odd then application of (2.49) tp (3]12) shews that

LG+ (modp) (5> 1),

(25 + 1)P" 0 _pm 5

(396 + D@ +D) = i = DG + 22 + 17

(27 + D)*" 0 _gpm )

_ %;(9+1)(2j+1)232+j+3) (mod p) (j > 2),

m 1
(2 + 1) 0_gpm = (6”+1 2j+1)
1., . .
—3 x —1203(3 — D0 +2)2) + 1) 5i 0+ 125 + 1)

3% i = DG~ 4G+ 3)(2 + 125+ 17

1
= %m +1)(25 + 1)% (85" + 1657 + 3557 + 275 + 54)
(3.24) (mod p) (5 >3), et cetera.

If d = 2j is even then application df (2.49) fo (3]13) shews that

2o m = j°  (modp) (j=1),
, 4 1., .
P g = jt - oL (P -1) = 3 (2°+1)  (modp) (j=>2),
1 1
8" o3, 75 (j )+3OJ (7 )(J )
1
(3.25) = 1—5j2 (85" + 55 +2) (mod p) (5 >3), et cetera.
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The zeros of”,; are given explicitly by[(3.20), and henge (3.24) yields trigonometric congru-
ences for prime and integerg > 0 andm > 0:

25+ 1\ &~ o ([2k—Um _
( 1 > z_:sec W =

—JU+1DE2j+1)  (modp)(j=1),

2j + 1N e (12k— 17\ _
( 1 > ZSGC m =

k=1
1 . . . .
%J(J+1)(23+1)2(32+j+3) (mod p) (j >2),
2j + INY" e (12— _
( 4 > ;SGC W =

1
%](] +1)(25 + 1)* (85" + 1657 + 3557 + 275 + 54)

(3.26) (mod p) (j > 3), et cetera.

For example, withy = 5, p = 5 andm = 1,

L2+ 1\ e (26— 1n 1 e

- s L - 1)(25 + 1 3

;. ( 7 ) ];Sec T 5/ U+ DI+ 1)’(+5+3)
(3.27) = 498444890400952-000 .

Likewise, [3.2%) yields trigonometric congruences for primaad integerg > 0 andm > 0:

(%)Z (B ) = 7 wedn G2,

k=1
G) D> sec” (@) = §j2<2f+1> (mod p) (j = 2),
k=1
(%) Zsec (@) = 115 (85 +55% +2)
(3.28) (mod p) (j > 3), et cetera.

For example, withy =5, p =11 andm =1,

1[/1\"" < w (2k — 17
(3.29) () Y see Q — 2| = 23548521916600-000 .
p|\2 — 47

4. CHEBYSHEV POLYNOMIALS OF SECOND TYPE

The modified Chebyshev polynomigj(z) of second type is defined by the initial values

(4.1) So(z) = 1, Si(x) = «z,
with the same recurrence relation as €6y
(42) Sn-i—l(x) = xsn(x) - Sn—l('r)'
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By induction onn, it follows that for alld > 0, S,(z) is a monic polynomial inc of degreed
with integer coefficients:

d=2

Sa(z) = ;0 (—D’“(d B k) 2%

k

(4.3) = 24— (d—1)a2%? + (d;Z) e (d;i)))xd_ﬁ +

For oddd = 25 + 1, Sy(z) is an odd polynomial:
Saja(x) =

(4.4) (—1)11[~- — (‘j;r[l)aﬂ + (j—g?))x“r’ - (jgz):c3+(j+1)x

and for evenl = 2j, S;(x) is an even polynomial:

(45 Syl = <—1)f'[--~— (58 (57)e - (75 )

For example (Lyusternikt alia[7], pp. 172-173), in addition t¢ (4.1),

Y

Sy(z) = 2* — 1, Ss(z) = 2 — 2m, Sy(z) = a* —32* +1,
(4.6) Ss(z) = a° — 42° + 3w, Se(z) = 2% — 5t + 622 — 1.

The polynomialsS,(x) are orthogonal on the interval (-2,2), with weight functign — z2.
Let

4.7) x = 2cosv

so that if—2 < = < 2 thend is real. Then it follows from[(4]1) andl (4.2), by induction on
that (Lyusterniket alia[7], p. 163)

(4.8) Sa(2cosV)sint = sin((d + 1)v).

Accordingly, the zeros of,;(x) are given by

(4.9) sin((d+ 1)9) = 0,

so that

(4.10) (d+1)9 = kn

with integerk, and hence each zero §f(x) is of the form

(4.11) ap = 2cos (dl:irl) )

Fork =1,2,...,d, this formula gives a strictly decreasing sequence of real zeros
(4.12) 2> a1 > ay >..0> g > —2,

and hence alf zeros ofS,; are given by, as, . . ., ag.
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4.1. Sums of Even Powers of CosinesApplying (2.24) to the expansioh (4.3) of the monic
polynomialS,(x), we get trigonometric congruences for primand integerd > 0 andm > 0:

d=2 kn
opm = 477 cos®” ( ) =d-1 (mod p) (d > 2),

2
m m [k d—2
_ E 4 2
0-2p'm — 16p COS P <d 1) (d - 1) - 2( 2 )

=3d—-5 (mod p) (d>4),

d+2 -
Ogpm = 64P™ Zcos6pm <d+ 1)

k=1
B d—2 d—3
= (d—1)3—3(d—1)< ) >+3( 5 )
(4.13) = 10d — 22 (mod p) (d>6), et cetera,
in view of (4.3) and[(4.11).

For example, withl = 5, p = 3 andm = 3,

= 2541865828328-000 .

1 d=+2 -
(4.14) 5[@”§:amw“(d+l)—»u—1)

k=1

Hence (Te€el[12], Theorem 1), the positive zeros pgive the result thap|o,~ if and only if
d = 1 (modp); p|og,m if and only if p|(3d — 5), andp|os,= if and only if p|(10d — 22).

4.2. Sums of Even Powers of Secantd-or the Chebyshev polynomidl;(z), if d = 25+ 1 is
odd then application of (2.49) tp (4.4) shews that

G o = (T5F) = GG+ medp) G2,

(+1)* 0o = C;32—2€§30+U
= U TG +2) (27 +45+9)  (modp) (> 2),
G+ 0 gm = <J§23 64%3(j;2)g+1)
+3G¢A)@+U2

1
=E%Wu+¢)u+2mwﬁ+wf+7m?+%¢+m&

(4.15) (mod p) (j >3), et cetera.
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If d = 25 is even then the inverse polynomial (scaled(byl)?) is monic, and application of

(2.49) to [4.5) shews that

—_

5iG+1)  (modp) (j=1),

(oo} (1)

= LiGr A T 41 (medp) (> 2),

288

Q

<
3
Il

DO

Q

b

S
3
Il

Q
d
3
3
Il
BO | =

j(j+1))3 - gj(j+1)(j::2) + 3(3'23)

1
= on(j +1) (85" + 165”4+ 195% + 11 + 6)

(4.16) (mod p) (j > 3), et cetera.

The zeros of5,(x) are given explicitly by[(4.1]1), and hende (4.15) yields trigonometric con-
gruences, for prime and integerg > 0 andm > 0:

e A A
() e (aen) =

%j(j +1)(+2) (modp) (j=1),

() g ()

k=1

ﬁj(y 1’0 +2) (2" +45+9)  (modp) (j = 2),

. 3pm
jt1 Zsepom kT =
1
o0+ 1P +2) (85" + 32% + 777 + 90 + 108)
(4.17) (mod p) (j >3), et cetera.

For example, withy = 3, p = 3 andm = 2,

27+ 1)

SRR

JHNY e (kT Lo e .
(—) Zsec4p — 1—80](3—1-1)2(3—1—2) (25> + 45 +9)

(4.18) = 347256964339012-002 .
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Likewise, [4.16) yields trigonometric congruences, for pripnend positive integerg > 0
andm > 0:

1\"" & oym [ KT
- p =
(6) = (35) =

k=1

! pmzj: (AT = LG+ 1) (7152 4+ 715 + 1)
16 S \gjr1) T s J J

) (mod p) (j > 2)

N o [k 1
— P = 1) (8j* +165% + 1952+ 11§+ 6
(64) ;sec <2j+1) 120(+)(]+ 7 4+ 195% + 115 + 6)

(4.19) (mod p) (j >3), et cetera.
For example, withy = 5, p = 13 andm =1,

() Fror (7)o

Standard Chebyshev Polynomial of Second Type
The standard Chebyshev polynomial of the second type is

(4.21) Uy(z) = Sy(2z) = (22)4— -+,

(Lyusternik [7], p. 163, Mason & Handscomb [9], pp. 3—4) and the transformatiéf (af) by
scaling withb = 2 in (2.32) just reproduces the congruenges (4.13pfdr ).

The negative powers of zeros Gf yield trigonometric congruences which can be obtained
from (4.17) and[(4.19) by multiplying both sides /" et cetera using the fact that”™ = 4
(modp), by Fermat's Little Theorem. The inverse inferences are not so straightforward.

jG+1)  (modp) (j=1),

N | —

4.20) =
p

= 11878784041151-000 .

5. ROOTS OF Cyj41(x) + ¢ =0
If —2 < ¢ < 2, then the equation
(5.1) Ca(z) + ¢ = 0.

hasd real roots in[—2, 2]. Indeed, writinge = 2 cosy with real~ = arccos¢/2) (y € [0, 7)),
and withz = 2 cos ¥, equation|[(5]1) becomes:

(5.2) 0 = 2 cos(dy) + 2 cosy =4 cos (%(dﬁ + ’y)) cos (%(dﬁ - 7)) :

Hence, thel roots of [5.1) are of the form = 2 cos ¥, where

(5.3) Cos (%(dﬁ + 7)) = 0;
so that
(5.4) Yaory) = (k-1

. 5 Y) = 5 ™
for integerk, and hence
(5.5) PR 3” it
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Now, write
(56) v = O,
so that

arccos(c/2)

g = e
(5.7) g .
with 0 < g < 1, and thed roots of [5.1) are each of the form:
(5.8) a = 2 cos (W) .

Hence, for-2 < ¢ < 2 (1 > 3 > 0), the equatior| (5]1) haédistinct roots of the form

LT

(5.9) a = 2 cos <E> ,
given in decreasing order by
foroddd = 25 + 1, and by
(511) L = 1_671_‘_57 3_573+ﬁ7 PRI 2j_1_ﬁ723_1+ﬁa

for evend = 2j.
Forc = 2 (8 = 0) there arej pairs of double roots, given in decreasing order.by=

1,1, 3,3, ..., 25 — 1,25 — 1, and then (for oddl = 25 + 1) by . = 25 + 1 (a« = —2).
Forc¢ = —2 (f = 1) the j pairs of double roots are given in decreasing order by=
2,2, 4,4, ..., 24,27, preceded (forodd = 2j + 1) byt = 0 (a = 2).

Hereafter, we shall consider only rational = n/r, with» > 0, —2r < n < 2r, and

gcdn,r) = 1.
Multiply (B.1)) by r, to get a polynomial equation inof degreei with integer coefficients:

(5.12) rCy(z) +n = 0.

If we also restricfi to be rational with rational = 2 cos(ﬁ ), then the only acceptable values
of cin (5.1) are 2, 1, 0--1 and—2, given by3 = 0,4,3,2,1. The case of = 0 (3 = 3) has
been dealt with in[(3]8) tg (4.20).

SinceCy is an odd polynomial for odd = 25 + 1, then for all complex: and¢ and non—
negative integey, Cyji1(x) +c = —(Cyj41(—2) — ¢). Therefore, the set &fj + 1 zeros of
Cyj41(x) —c, times—1, is the set of zeros (including multiplicity) @f;;.; (z)+c. Accordingly,
each sum of powers of zeros 6%,.(x) — ¢ equalst1 times the sum of the same powers of
zeros ofCs;. 1 (z) + c. Therefore, for the purposes of this paper we need to consider:only,
and henc® < n < 2r with gcdn,r) = 1.

In view of (3.12), [5.1R) becomes the equation with integer coefficients:

re® 4 00% — (25 + D2t 4 02¥ 72 4

1
-+ (—1)J_16rj(j+1)(2j+1)x3 — 02°

(5.13) +(=1Yr(2j + Da + n = 0, (j > 1).
Forj = 0andj = 1, the polynomial-Cy(x) + n reduces to:
(5.14) rCi(x) +n = ro+n, rCs(x) +n = ra® — 3rx +n.
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. For those polynomial$ (5.1L3) ar{d (5].14), the congruerces| (2.40) become:

P Sm = 0 (mod p) (j > 0),
72" Sopm = 2r%(25 + 1) (mod p) (5 >0),
(5.15) " Sy =0 (mod p) (j >1), et cetera
for positive powers; and fof > 0 the congruence$ (2.48) become:
WS = (Z1PMR(2j 1) (mod p),
S o = (r(2j+ 1))2 (mod p),
m - 1
n**" S gm = (—1)7*1 ((r(zj + 1))3 — 5rj(j +1)(25 + 1)n2)
(5.16) (mod p), et cetera
for negative powers.
From (5.7),
2
(5.17) 5 = arccos(n/ 7")7
s

i 1
and we need consider only< 3 < 3.

Sums of Powers of Cosines
In view of (5.8), the congruences (5]15) yield identities in prinaad integerg, m > 0, r >
Oandn € [1,...,2r]:

m

J+1 i .
2k —1—-p)r\1” 2k —14+8)m\ "
; [27" coS (—Qj T )] + ; _27“ coS (—Zj 1 )

| =0 (mod p) (G >0),
(B2 E s (B2
| = 2°(2j+1)  (modp) (j>0),

2 o (5] (B

(5.18) =0 (mod p) (5 >1), et cetera.
For example, withhy =1, p =3, m =2, n =5, r =4 andg = arccos(n/(2r))/x,

LS (oo (2552)) 5 (o255

k=1

m

(5.19) = —27054080-000 .

Sums of Powers of Secants
Likewise, the congruences (5]16) yield identities in prigand integerg > 0, m > 0, r >
0Oandn € [1,...,2r]:

B [ (2557) + S (2552)]

k=1
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(1) (2) + 1) (mod p),
(g>2”m [Z soc2?" ((Zk 2—(71+—1ﬁ)ﬂ) +5 sect” <<2k Q—Jl;rlﬁ)ﬂ)]

= (r(2j +1))° (mod p),

spm [I11 - —1-0)n ! 3pm — 7r
(5) [; se <(2k 2j1+ 15) ) * ;Sec ((% 2j1++1ﬁ) )]
(5.20) = (=1 (25 +1) ((7’(2]' +1))* — %j(j - 1)n2) (mod p), etc.

For example, withy =4, p=3, m =1, n =4, r = 3and = arccos (%) /m,
2k—1-7 2k — 1+ p)n
[( ) (Zse ( 27+ 1 ) Zse ( 27+ 1 ))
—w—mﬂ%@j+n(w@j+nf—§ﬂj+n#)]

(5.21) = —1138092652296-000 .

5.1. Roots of Cy;4(z) +2 = 0. As was noted above, if we want rationaith rational 3
then the only values are = 2,1,0,—1,—-2, given by = 0,3, 3,2,1; and we need only
considerc =2 (f=0)andc=1 (= 3)

Withc =2, r =1, n = 2andf = 0, the identities[(5.18) anf (5.R0) yield identities in prime
p and non—negative integefsandm, for sums of powers of cosines and of secantsatbnal
multiples ofr.

5.1.1. Sums of Powers of CosineBrom (5.17),[(5.18) and (5.R0), there greouble roots of
(5.12) given byt = 1, ..., j, and the simple root 2 given byk = j+1. Hence the congruences

(5.18) become:
2 X Z {2(:08 ( % +11)7T>rm + (=2)P"

2><Z[2cos(%_1) )] m+(—2)2p’" = 45+2 (mod p) (j>0),

Il
o

(mod p) (j > 0),

27 +1
2k — 1w\ 1% "

(5.22) 2 x Z [2 Cos ((QJ—+1)7T>] + (=2 = 0 (mod p) (j >1),

k=1
et cetera
But, by Fermat’s Little Theorem,
(2" = -2 (2 =47 =4 ()7 = (8" = -8
(5.23) (mod p),
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and hencq (5.22) simplifies to the identities in pripnend integersn. > 0 andj:

22 (B2) = 2 wodn G20,

27 +1
J
m m 2k - 1
22"+l ZCOSQP ((27—+1)7T> = 45-2 (mod p) (5 >0),
k=1
m 2k —1)m
(5.24) 23P +1Z:co (2]—_‘_1)> = 8 (mod p) (j > 1),

et cetera
For example, withy = 2, p = 3 andm = 3,

‘7 m
(2k — 1)m
2 2 2 — = 56481679380052848-000 .
(5.25) [ X E [ cos( 21 )] 8] 5

5.1.2. Sums of Powers of SecantBhe congruences (5.20) become identities in primand
integersm > 0 andj > 0:

2 x isecpm (M> = 1+ (—1)25+1) (mod p),

27+1
(2k — 1)r
2 —_ = 450 +1
XZSGC ( 2+ 1 ) jG+1)  (mod p),
(k-1 _ L I
(5.26) (mod p), et cetera.

For example, withy =5, p =11 andm =1,

= 374871132-000 .

(5.27) % [2 X kzzgsecpm (%%fﬂ) — (1 — (=1)Y(2j + 1))

5.2. Roots of Cy41(x) +1 =0. Here,e =1, r =1, n =1 andg = % so that the roots are
given (cf. (5.9) and (5.10), in decreasing order, as

_ Qk—155)
« —2003< 27+ 1

k — 1
= 2 cos w = 2 cos .m ,
67 + 3 67 + 3
(5.28) L = 2,4, 8,10, 14,16, ..., 67 —4,65—2, 65+ 2.
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5.2.1. Sums of Powers of Cosinellence the congruencgs (5.18) yield identities in primaad
integersm > 0 andy:
Jj+1 pm J pm
(6k — 4)m (6k — 2)m
E |:2 COS (W + E: 2 cos W

g[%os (%)rper ZJ: {2(;05 (%)F "
=4+2  (modp) (j>0),
g {QCOS ((6@%4?)1313" + i {2005 ((65%23)7?)}3?

1
(5.29) =0 (mod p) (j >1), et cetera.

m

For example, withh = 4, p = 11 andm =1,

m

o (45220 ()

k=1 k=1
(5.30) = —290296152-000 .

5.2.2. Sums of Powers of SecantBhe congruence§ (5.R0) yield identities in primand non-
negative integers: andy:

@) [Er (4599 + 2o (52

E(—l)]+1(2j+1) (mod p),
(1) e () - S ()
= (2417 (modp),
) e ()« o ()
(

(5.31) = (—1)j+1%(2j + 1)(75% + 75 +2) (mod p), etc.

For example, withy = 5, p = 3 andm = 2,
1< 6k —2)m\] 7" Lo (6k — )7\
- 2 —_— 2
p[;{ COS( 6j +3 )] +Z{ COS( 6j +3 ﬂ

(5.32) + (=125 +1)| = 520752892000 .

AIJMAA Vol. 5, No. 2, Art. 11, pp. 1-44, 2009 AJMAA


http://ajmaa.org

24 G.J. TEE

6. ROOTS OF (yj(x) +¢c =10
For evend = 2j, in view of (3.13), [(5.1R) becomes the equation with integer coefficients:

. . . 1 .
ra® = a4 rj(2) = 3)a¥ T = 2rj(2) = 4)(2 = 5)zV 0 4 -

1 . 1 . .
_ C1Vri2(02 — 1)(52 — 4) 25 V2002 — Dt — (—1)ir 22
360( Yri* (3 )(J )x® + 12( Yri(j Jrt — (=1)rj°x

6.1  +[(-1)Y2r + n] =0, (j > 2),

wherer > 0, n € [-2r,...,2r|, and gcdn,r) = 1. Forj = 1 andj = 2, the polynomial
equation|(5.12) reduces to:

(6.2) re® +[n—2r] = 0. rat —dra® 4+ [2r +n] = 0.
For those even polynomials (6.1) and (6.2), the congruences (2.41) become:
o = 2j  (modp) (j>1),
P oy = 6% (modp) (j>2),
(6.3) oy, = 2007 (mod p) (5 >3), et cetera.
For (6.1) and[(6]2) we get frorh (2}49) the congruences
[(—1)j2r+n}pm ogn = (=1)rj? (mod p),
[(=1Y2r +0)"" g gpm = 1%t - é(—l)jer(f — 1) [(=1)2r + n]
(mod p),

. m . 1 .
[(—1)72r + n] 3p O _3ym (—1)7r350 — Zﬁj‘*(ﬁ — 1) [(—=1)2r + n]

P (C1PG = D~ 4) (12 4 )’

(6.4) (mod p), et cetera,

unless|(—1)72r + n| = 0, which occurs withe = 2(—1)*1,

With 5 as in [5.7), in view of{(5)9) andl (5.]L1), thepairs of roots of the even equati¢n (5.12)

are given by:
2 cos (M) = —2cos (—(1 i ﬁ)ﬂ) )
2j 29
2 cos <M> = —2cos (—(3 ki mﬁ) )
2j 2]
(6.5) 2 cos (M) = —2cos (M) ;
2] 29
and hence
! U —1— 2
(6.6) 0¢ = %qu = Z {2 coS (%)} .

k=1

Sums of Even Powers of Cosines
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Hence, the congruencds (6.3) become identities in ppimed integerg > 2, r > 0, n €
[—2r,...,2r]:

k=1

(4r) ™ Zco (—Qk _21j_ B)m )

(6.7)  (4r)*" icosﬁp (%_;—]_W)

k=1

2rj (mod p) (5 > 1),

6r’j  (modp) (j>2),

20135 (mod p) (j > 3),

et cetera
For example, withh =5, p=17, m =1, n =5, r = 3 andgs = arccos(n/(2r))/x,

1 " w (2 +1—
(6.8) ]3[(4r)2p Zcos4p (%) - 67“2]'] = 97781053802265-000 .
k=1

Sums of Even Powers of Secants
Likewise, the congruencqg]SA) become:

{(—1)2%”} ZSQ (W) = (—1)Yr2  (mod p),

(=1)7rj%(5% — 1) [(-=1)72r +n] (mod p),

[(—1)J’ir+n]3p’”zs Ny ( 2k—21j— B)m )

_— 1 5.4, .
= (-1)/r%5° - 17"2]4(]2 —1) x

|
[N

69) x[(-1P2r +n] + (-G~ DG~ 4) [(-192 +n) (mod p),

et cetera
For example, withy =3, p=3, m =1, n =2, r = 3andg = arccos(n/(2r))/,

L (1) S (2 )

_ <(_1)jr3j6 _ irzjzx(jz —1) [(—1)j2r + n}

120
(6.10) — —912284487672-000 .

s (DI = )G - ) (172 + nf)]
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For bothc and 3 to be rationale = 2,1,0,—1,—2with 3 = 0,3,1,2,1. The case = 0
has been treated ip (3.8)—(420).
If ¢ = 2 with evend = 25 andxz = 2 cos ¢, then [5.1R) becomes

(6.11) 0 = 2(cos(2j9) + 1) = 4 cos*(j1),

so that the zeros afy,;(x) + 2 are given by those of cogf), each with multiplicity 2. Those
zeros have been treated jn (3.18)—(B.26)c ¥ —2 with evend = 25 andz = 2 cos, then

(5.12) becomes
(6.12) 0 = 2(cos(2j0) — 1) = —4 sin®*(599),

so that the zeros af,;(z) — 2 are given by those of sing), each with multiplicity 2. Those
zeros have been treatedfin (4.2)—(4.10).

Accordingly, the only new congruences of the forins|(6.7) (6.8) with cosines and secants
of rational multiples ofr are given by = +1.

As was noted afte.4), the congruen(6.9) do not applyfo2(—1)’*! — that case is

covered by[(6.7]1) and (6.[L2).

6.1. Roots of Cy(z)+1 = 0. Herec=1, n=1, r =1andg = % so that the even equation
Cy;(x)+1 = 0 has roots (int pairs), which are given in decreasing order (cf.|(5.9) and [5.11)),

as
2k —1F1 — 1
a = 2 cos ( _:F?’)ﬂ— = 2 cos M = 2 cos L—ﬂ. ,
2j 67 3J

(6.13) 1= 1,2,4,5 7,8, ,...,3j—83j—7,3j—53j—4, 3j —2,3j — 1.

6.1.1. Sums of Even Powers of Cosinétence, the congruences (6.7) become identities in
primep and integerg > 0 andm > 0:

wzcos (P527) = 2 wdp G0

3j
161’"‘Zco (L‘]Q)ﬂ = 6; (modp) (j>2),
(6.14) 647" Zc (ij> = 205 (modp) (j>3),

et cetera
For example, withy =5, p =11 andm =1,

1] v ((3k —2)1
(6.15) 5 16" " cos™ (T) —6j| = 634877783325-000 .
k=1

6.1.2. Sums of Even Powers of Secarfsibstituting[(6.13) in[(6]9) witlh = » = 1 and even
j = 2i, for which [(—=1)’2r + n] = 3, we get identities in prime and integers > 0 and
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N
B~ W
~_
S
3
)
)]
@
le)
DN
=
3
VR
w
x>
1|
-~
N
3
"
Il

44? (mod p),

N
INgIC
~~_
DO
=
3
\M&?
n
1)
o)
'
£
3
VR
w
ol
1 |
-~
2
3
~_
Il

2i*(4i* +1)  (mod p),

—~
o
'_\
(o))

N

VR
w
~_
w
S
3
s
@]
10’
QO:
S|
3
VR
—~
w
™
1 |
-~
[\
N~—
3
~~
Il

2
32'2 (52i* + 15i* + 3) (mod p),

et cetera
For example, with = 3, p = 3 andm =1,

(6.17) 1[@) Zs (M) — 4@2] = 1214417894460-000 .
P 4

Substituting((6.13) irf (6]8) with = » = 1 and oddj = 2i+1, for which[(—1)72r+n] = —1,
we get identities in prime and integers > 0 andm > 0:

G) MZH“ (%) = (2i+1°  (modp),
(@mgfs (S2D7) = Lo P i) mod ),
(4§ (3) -

1
120(21 +1)% (91(2i + 1)* 4 25(2i + 1)* + 4) (mod p), et cetera.

For example, with = 3, p =3 andm =1,
p™ 2i+1
1 1 (3k —2)m
1 ZS oot Bk = 2)m
P 64 67 + 3

1
— m(zz +1)% (91(2i + 1)* 4 25(2i + 1)* + 4)

(6.19) = 240668556344496-001 .

(6.18)

6.2. Roots of Cyj(z) —1 = 0. Herec =1, n = —1, r = 1 andj = 2, so that the even
equationCy;(z) — 1 = 0 has roots (int pairs), which are given in decreasing order (Ef. |(5.9)

and [5.10)), as
2k —1F2 6k — 3 F 2
= 2 cos (—:!:3)77' = 2 cos (—:F)ﬂ-
2j 67
— 9 cos(m> L= 1,57 11,13, ...
67
(6.20) ..., 6j—13,6j —11, 6j — 7,6 — 5, 6 — 1.
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6.2.1. Sums of Even Powers of Cosinétence, the congruences (6.7) become identities in
primep and integerg’ > 0andm > 0:

" Z o2 (M)

- 2j  (modp) (j>1),

Yo (BoIT) = o) (22

k=1 6‘7

(6k — 5)m
(6.21) 647" ZCOS <—])> = 20j (mod p) (5 > 3),
et cetera

For example, withy =5, p =7 andm =1,
(6k — 5)m .
(6.22) 647" Zco ~ T ) — 205| = 500340387880-000 .
67

6.2.2. Sums of Even Powers of SecarfBabstituting [(6.20) in(6]9) with = —1, » = 1 and
even; = 2i, for which|[(—1)’2r + n] = 1, we get identities in primg and integers > 0 and

m > 0:
P _
(1) e (B527) = w oo
21
" & 6k — 5) 2
( ) Zse (—) = 52’2(202'24-1) (mod p),
2i
1\ & 6k—5)7\ 2 4, . -
(6.23)(6 ) Zsec (—Z) = (364i* + 25i* + 1) (mod p),
et cetera

For example, with = 2, p =5andm =1,

(6.24) ]1) [(116) mzs (@) - §¢2(2o¢2+1)

Substituting[(6.20) |n-9) withh = —1, » = 1 and oddj = 2i + 1, for which [(—1)72r +
n| = -3, we get identities in prime and integerg > 0 andm > 0:

() T (57

G)me 2ZH seci?” (M) = (2i+1)* (2 +2i+1) (mod p),

= 92571373536-000 .

(20 + 1) (mod p),

12¢ +6
§ 3pm 2’L+ SeC "L M pu—
4 P 12i + 6 -
1
(6.25) E(2@ +1)% (13(2i + 1)* + 15(2i + 1)* + 12) (mod p),
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et cetera
For example, with = 3, p = 3 andm = 2,

1| /3\"&R . [(6k—5)r ,
;[(Z) ZSGCQP (W) — (2Z+1)2

k=1

(6.26) = 19004748528710-000 .

7. ZEROS OF Cy(x) £+ Ce(x)

The significant trigonometric congruences (each in triples) which have been derived are

(3.22), [4.18),[(5.18),[(5.24)[ (5.R9], (6.7), (6.14) apd (6.21) for integer sums of powers of
cosines, and (3.26), (3.28), (411[7), 4.19), (5.20), (5/26).(5.81), (6.9)] (6.16), (6.18), (6.23) and
(6.28) for integer sums of powers of secants, each followed by a numerical example.

For integers! > e > 0, with z = 2 cos ¢,

Ca(z) + Ce(x) = 2(cos(di) + cos(er}))
(7.1) = 4 cos <%(d + 6)19) cos (%(d — 6)19) :

so thatSy, is the sum ofith powers of cosines corresponding to the zeros of
cos(1(d + €)v), plus those corresponding to the zeros of(§¢8 — ¢)¥).
If d ande are both odd or both even, then

(7.2) Ci(z) + Ce(x) = 4 cos(fv)cos(g¥) = Cy(z)Cy(x)

for positive integers = (d + ¢) =2 andg = (d — e) = 2, and the zeros df’,(x) for integerk
have been treated ip (3.8)—(4.20).

Otherwise, withi ande of different parity,

(7.3) Cu(x) + Cula) = 4 cos ((h _ %) 19) cos (<z - %) 19)

for positive integerd = (d+e+1)+2andi = (d—e+1)+2, and the zeros of c¢én — 1) )
for integern have been treated i ($.3) and (5.4) (witk= 0 in (5.3)).
Likewise,

Culz) — Cu(z) = 2(cos(dd) — cos(ed))
(7.4) ~ _4sin (%(d + 6)19) sin (%(d _ 6)19> ,

so thatSy, is the sum ofth powers of cosines corresponding to the zeros of
sin(3(d + €)v), plus those corresponding to the zeros of 5@ — ¢)4).

If d ande are both odd or both even, then
(7.5) Ca(z) — Ce(x) = —4 sin(f0)sin(gv)

for positive integerg andg, and the zeros of sik() for integerk have been treated ip (4]10).
Otherwise, ifd is even and is odd then

(7.6) Ca(x) — Ce(z) = Cy(—2) + Ce(—2x);
but if d is odd anct is even then
(77) Cd(x) - Ce(x) = _<Cd(_m) + Ce(_‘r))'

Thus, ford ande of opposite parity, the zeros @f;(x) — C.(x) are —1 times the zeros of

Ca(z) + Ce(x), asin[7.3),
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Thus,Cy(z) £ C.(z) is a polynomial of degre€ with integer coefficients whose zeros are
known explicitly, but the congruences for sums of powers of its zeros do not yield any new
result.

And similarly for S;(z) £ S.(x), with Chebyshev polynomials of the second type.

The transformation of ;(x) to a monic polynomial, as in Corollafy 2.2, involves scaling
with b = 2in (2.33), to getCy(z) as in [3.1]). Accordingly, the relation (2]39) fey, for the
non—monic polynomial’; just reproduces the congruendes (B.22) for the monic polyndarhial

Application of [2.49) to[(3.4) yields congruences which can be obtained by multipJying (3.26)
by 4°™ (or 16", 64P™,...), bearing in mind that*” = 4 (modp) (or 16*" = 16 (modp) et
ceterg, by Fermat's Little Theorem. Likewise, application pf (2.49)t0|3.5) yields congruences
which can be obtained by multiplying (3]128) By™ (or 4™, 8", et ceterd. The inverse
inferences are not so straightforward.

8. TANGENTS OF MULTIPLE ANGLES

For complexz = x + iy and positive integen.

n

8.1) 2= (z+iy) = (ZL) Yoty = HO(x,y) +iHD (z,y)
=0
where the real and imaginary parts:6fare given by the harmonic polynomials (Lyustereik
alia [[7], Appendix 1 .1):

n=+2
2 O _ k([T ) g2k 2k
82 P = S0 (g
(n—1)+2 n
(1) — _1)k n—2k—1, 2k+1
(8.3) H,7(z,y) (=1) <2k+1)w yr
k=0
Forally € €,
(8.4) cos i + isiny = eV

(by Cotes’s Theorem); and hence (De Moivre’s Theorem) for integer0
(8.5) cos(ny) + i sin(nip) = €™ = (cos ¢ + i sin )"
Therefore

cos(ny) + i sin(ny) = (cos ¥ + i sin )"
(8.6) = H9(cos 1, sin ¢) 4+ iHM (cos 1, sin 1)) .

Equating real and imaginary parts (for regl we get that
(8.7) cos(nip) = HO(cos 1,sin 1), sin(nip) = HY(cos 1p,sin 1));
and hence

_ sin(ny) Hfll)(cos ¥, sin 1)
(8.8) tan(ny) = cos(nt) 2O (cos v0.5in 0)
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Dividing numerator and denominator {n (B.8) &y ¢, we get (Lyusternilet alia[7], p. 172)
tan(ny) as a rational function afan ), with integer coefficients:

(n—1)+2( n ><_1)ktan2k+1¢

(8.9) tan(ny) = Z’E‘iﬁﬁjﬁ Zi - = Y %nﬂ
noAD o <2k)(—1)ktan2k¢
Denote
(8.10) t ¥ tan Y, P —tan? .
Then, it follows from [(8.8) that
(8.11) tan(ny) = g,(tan ¥),

whereg, (t) is a rational function with positive integer coefficients
HD(L) _ Auz)

8.12 W (1) = = ,
(8.12) 9-(t) HY(1,1) Bn(2)
(except thatdy(t) = 0), with :
(n—1)+2 n n--2 n

_ k _ k

(8.13) An(z) = Z <2k+1)z , B.(z) = (2k>2 ,
k=0 k=0
andB,(0) = 1.
In more detail, for odch = 25 + 1:
A2J+1( )
a1 (t t ———=
92]+1( ) B2]+1(Z)
t <2j+ 1+ (2‘7;— 1)Z+ (2‘7;_ 1)22 + - (2]; 1>zj_1 +zj>

(8.14) =

N 25+ 1 25 41 25 4+ 1\ . 7
1+(‘72+ )24—(‘]2— )22+~--+<‘7;— )231+(2j+1)zj

where the polynomialsl,;;; andB,;,; are mutually reciprocal:

. 1 . 1
(8.15) ZJA2J'+1 <;) = B2j+1(2), ZJszH (;) = A2j+1(2)
for all z # 0. For evenn = 2j:
Azi(2)
it =1
g2]( ) BQj(Z)
27 27 27\ . ,
27+ <3j)z+ (5‘7)22+---+ <;)zj‘3+2jz9‘1
(8.16) =t

2j 27\ 29\ jo1
1 J J
+(2) +(4)z—|— +<2 z + z

where bothA,; and B,; are self-reciprocal polynomials:

(817) AQj(Z) = ZjilAQj (1) s BQj(Z) = ZjBQj (1) s

z

forall z # 0.
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For example,
0 1
go(t>:t—20, g1<t):t—:t,
1 1
2 3+ =2
t)=t t)=1
9(t) 52 g3(t) 153
444z 5+ 10z + 22
8.18 t) =t —— t) =t —
(8.18) ) =t 52 95() =1 T30, 152
6 + 20z + 622 7+ 35z + 212% + 23

1+ 152+ 1522 + 23 1421243522+ 723"

(1) =1 8 + 562 + 5622 + 823 et
= - , et cetera.
98 1+ 282 + 7022 + 2823 + 22

For all integersn > 0 andn > 0 and complex, with ¢ = tan=1¢

Gmin(t) = Gmen(tan ¢) = tan((m +n)y) = tan(m + nip)
tan(my) + tan(ng)) —_ gm(t) + gn(?)

(8.19) -1 tan(ma) tan(ny) 1 — gm(t)gn(t)
In particular,
(8.20) Gny1(t) = %

This recurrence relation (8.20) could be used to define the sequence of rational fufigtipns
by induction onn, starting withgy(¢) = 0.

8.1. Even binomial coefficients.
Theorem 8.1.1f n >« > 0, andq | n butq andu are co—prime, theq | (7)

Proof. For integerk > 0, the product ofc consecutive integers is divisible l&y. Indeed, for
q=>k,

q(g—1)...(¢—k+1) q
(8.21) o - (k)

which is an integer. For-k < g < k thosek consecutive integers include 0, so thés —
1)...(g—k+1) = k! x0; and forq < —k that product i5—1)* times the product of
consecutive positive integers, which is divisible dy

Hence,

(8.22)

Y

(n) _ nn—1)...(n—u+1) _ nn—1)...(n —u+1) _ na
ul! u(u —1)! u

wherea = (Z 1) is an integer. Nowp = bq for integerb, and therefore

(8.23) u(Z) — abyg,

so thaty dividesu/(").
By hypothesis, gc@:, ¢) = 1, and thereforg does divide("). &

Corollary 8.2.  Forintegersn >« > 0, (7) is divisible byn + gcd(n, u).
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Corollary 8.3.  If pis prime andu > 0 andp* dividesn but p does not divide:, thenp*
divides the binomial coefficierft).

Corollary 8.4.  If 2 | n with 1, > 0 andw is odd, ther2* | (7).

Thus, ifn is even and: is odd, then(") is even.

Hence, withj = 2°(2a + 1) wherea, 3 > 0 (cf. (8.18)), it follows from Corollary 8J4 that
every coefficient in the polynomial,; (of degreej — 1) is divisible by2°+!. Therefore the
polynomial

1 B+1 1 B+1 2 1 B+1 2j ,
(5) A2j<2)22Q+1+(§) <3)z+(§) (5)2 + -
B+1 . B+1 :
(8.24) et <%> (2;)2”_3 + (%) (2;)%—2 + (204 1)z

has integer coefficients. Thup, (8.18) may be rewritten as:

go(t):tgzo’ 91(75):75%:75,
plt) =2 wlt) =10
825) gl =t plt) =1 2
9o(t) =2t 1 —1—31—’5_2132145_5;2—7- z3 gr(t) = 17—:_ 2315;—:_ 3251;22—1_-F 72233 ’
gs(t) =81 2;: +727(J);27i ;852 e ct cetera.

9. ZEROS OF tan(n)

The equation

(9.1) tan(ny) = 0
has the solution

(9.2) ny = krm
for integerk, and hence

(9.3) v = %ﬂ

From (8.12) and (8.13}an(ny) = 0 if and only if eithert = 0, or A,,(z) = 0 or elseB,,(z) =
oo (which requires = co). If t = oo thenty = (h + $)7 for integerh, so that taf2ji)) =

tan((2h + 1)j7) = 0 andtan((2j + 1)1) = tan ((2jh +j+h+ %)w) = o0.
Hence, the roots of the rational equatigsit) = 0 are of the forms = 0 andt = tan(kn/n)

(the zeros ofd,,); and for evem = 2j there is also the rodt= oc.
Therefore, the polynomial equatiofy; . (z) = 0 has; distinct roots, which are given by

k
(9.4) wp = —tanQ( ll > (k=1,2,....5),
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with 0 > w3 > up > --- > u;_1 > u;; and the polynomial equatiod,;(z) = 0 hasj — 1
distinct roots, which are given by

(9.5) 2 = —tanQ(@> (k=1,2,...,5—1),

With 0 > 2y > 29 > -+ - > 2,9 > 2;_1.

9.1. Positive Powers of Zeros ofd,;,,. Apply Newton’s Rules to the zeras, of the monic
polynomialA,; 4 in ) and it follows that, for all integefis> 0 andg > 0, >3 _, tan®?(kw/(2j+
1)) has integer value.

For example, witly = 3 andq = 10,

J
kmw
9.6 tan?? | — = 6792546291251-001 .
(9.6) ; an (%1)

For all integerg > 0, f > 0 and primep, the integer congruences (2] 23), for positive powers
of zeros of the monic polynomial,;. ; in (8.14), yield the congruence identities:

M-
<
>3
I

(Y e

k=
T 2 + 1\ 2 +1
D = (]2 )—2( ' > (mod p),

J . 3 . . .
w (2741 2j+ 1\ (27 +1\ . [(2j+1
u, = ( 5 ) —I—S( 5 4 3 6
k=1
(9.7) (mod p), et cetera.

These simplify to give the following congruence identities:

itan?pf( i ) = j(2j+1)  (modp),

1
3925 + 1)(45°+6j—1)  (mod p),

[~
-+
&
=
g
3.
AN
&
e~
+
—_
~_
|

1
1—5j(2j +1)(325* + 805% + 405% — 205 + 3)

(9.8) (mod p), et cetera.

-
—+
o
B
D
S
2.
N
&
R
+15
—_
~_
|

For example, withh = 3, p =3 andf = 2,

1 J f krm
(9.9) - tan?? (—> —J(25+1)| = 117952755648-000 .
P ; 27 +1 ( )

AIJMAA Vol. 5, No. 2, Art. 11, pp. 1-44, 2009 AJMAA


http://ajmaa.org

INTEGER SUMS OF POWERS OFTRIGONOMETRIC FUNCTIONS (MOD p), FOR PRIMEp 35

9.2. Positive Powers of Zeros ofd,;. Apply Newton’s Rules to the zeros, of ( )/6+1 Ay;
in (2.38), and it follows that, for all positive integegsandj = (2« + 1)2% (with o, 8 > 0),
(20 + 1)2 3771 (km/(25)) has integer value.

For example, withy =40, a =2, =3, ¢ = 3,

(9.10) (2041 Zta ( ) = 34561553975-000 .

In particular, for positive integers, ¢ (with o = 0), 22.6‘1

o1 tan® (km/2°t1) has integer
value. For example, with = 5 andq = 4,

261

(9.11) Ztan < M) = 20592340127-000 .

For all positive integer§ = 2°(2a+1), with o, 8, f > 0 and primep, the integer congruences

2.23), for positive powers of zeros of the polynorr(iél)ﬁ+1 Ay;in (8.186), yield the congruence
identities:

S((2a+ s () mean,

=1
g((za + 1)z = (%)QM (23] )2 — 9220 + 1) (%)BH <259 ) (mod p),
Slowar = ()" () s () ()

(9.12) —3(2a + 1)? (%)BH (27‘7 ) (mod p), et cetera.

For all positive integerg = 2°(2a + 1), with o, 3, f > 0 and primep, these simplify to give
the identities:

—1
(20 + 1) ]z:tan%f kem
2j

%(2a+1)(j—1)(2j—1) (mod p),

k=1
! km 1
(20 + 1)% Ztan4pf( 7 ) = FRa+ 10 - 12— 1(4)° +6j —13)
k=1
(mod p),
j—1
20+ 1% )" tan®’ Y = L a1 - 12— 1) %
£ 2j 945
x (325* 4 4873 — 11252 — 1925 + 251)
(9.13) (mod p), et cetera.

For example, withh =6, a =1, =1, f = 1 and primep = 3,

km 1
20+ 1) S tan®’ 20+ =12/ — 142 +6j—1
S |GatD) Za %) " et U - D - D7+ 65— 13)
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(9.14) = 1774271664-000 .
With o = 0, we get that for all integers > 0, f > 0 and primep,

261

f km 1
Z tan? (W) = 5(2[3 —1)(2°%F — 1) (mod p),
k=1

201
k 1
2 tan4pf(2<ﬁ—7+rl>) = (2D - @ 43 x 27 - 13)
k=1
(mod p),
281

opf (kT _ Lo B+1
Ztanp<m) = 5@ - -1 x
k=1

x (2415 13 x 23074 7 x 2794 3 % 2016 4 951)
(9.15) (mod p), et cetera.

For example, withs = 2, f = 2 and primep = 3,

281
1 of km 1
- D _ (98 _ B+1 _ 28+2 B+1
p kg_l tan (Q(ﬁﬂ)) P (27 —1)(2 1)(2 +3 x2 13)

(9.16) = 20081836064256-001 .

Newton’s Rules for negative powers, applied to the self-reciprocal polynotjateproduce

(©.14) and[(8.15).

9.3. Negative Powers of Zeros ofd,;;. Apply Newton's Rules to the zerds'u,, of the poly-
nomial (i.e. By;+1) Which is reciprocal ta4,;,;. It follows that, for all integerg > 0 and
q=>0, ,
(25 +1)95>°7_ cot®(km /(25 + 1)) has integer value.

For example, withy = 4 andgq = 4,

J
(9.17) (2j+1)q2cot2q( > — 36269685127325:999 .
k=1

2j + 1

For all integerg > 0, f > 0 and primep,

M\)
o
o)
-+
Do
S
3.

2+ 1" (5777) = iCinEi-D  (uodyp)

k
(25 + )% Cot4pf< T )
1

1

<.

1
— (25 +1)*(25 — 1)(45° + 105 — 9)

- 2j +1 45
(mod p),
J
km 1
2j 4+ 1)%’ £6r’ = 27+ 1325 -1
(25 +1) ;CO 1 o0 (20 +1)°(2) = 1) x
x (325* + 1125% + 852 — 2525 + 135)
(9.18) (mod p), et cetera.
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For all integerg > 0, f > 0 and primep the integer congruencgs (2/48), for negative powers
of the zeros;, of the integer polynomiall,;,, yield the congruence identities:

Xj:(ij:1>pf _ _<2j;—1) (mod 5).

k=1

J . 2pf . 2 .
2 1 2 1 2 1
E (‘7+ ) = (]+) —2(2j+1)<y+) (mod p),
Vg 3 5
k=1
/25 + 1\ 27 +1\° , 2j + 1\ (2 + 1
= — 2 1
Z( e ) g ) 3D, 5
k=1
2741
(9.19) —3(2j'—i-1)2(‘7;L ) (mod p), et cetera.

These simplify to give the following congruence identities:

J
km
24 lpf tQPf _
(25 +1)" 3 co 2j + 1

ST -1 (mod p),

k=1
f J f km 1
(2 + 1) cot® (2], " 1) = i+ 1)%(25 — 1)(45%2 + 105 — 9)
k=1
(mod p),
J
, km | :
(25 + 1)* Zcotﬁpf(2j — 1) = oEl+ 1)°%(2j — 1) x
k=1
x (325* + 1125% + 852 — 2525 + 135)
(9.20) (mod p), et cetera.

For example, withh =2, p=7andf =1,

j

, k 1. . . . .

27+ 1> cot4pf(2j—:£1> = 55020+ 1)%(2) = 1)(45° +10j = 9)
k=1

(9.21) = 6686100200879-999 .

9.4. Zeros of cot(n1). The equation

(9.22) cot(ny) = 0
has the solution
(9.23) np = (k—4)7
for integerk, and hence
(9.24) p = G DT
2n
From (8.18) and (2]9),
. By (2)

(9.25) cot(ny) = FAL ()
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and henceot(ny) = 0 if and only if eitherB,(z) = 0, or elset = oo, or elseA, (z) = o
(which requirest = c0). If t = oo theny = (h + 1)7 for integerh, so thatcot(2jy) =
cot((2h + 1)jm) = oo andcot((27 + 1)) = cot ((2jh +j+h+ %)7?) = 0.

Hence, the roots of the rational equatidng,(t) = 0 are of the formt¢ =
tan((2k — 1)7/(2n)) (the zeros of the polynomid®,); and for oddn = 25 + 1 there is also the

roott = oo.
Therefore, the polynomial equatidsy;(z) = 0 has; distinct roots, which are given by

2k — 1

(9.26) vp = —tanQ(u> (k=1,....5)
4j

with 0 > v; > vy > --- > v;_1 > v;; and the polynomial equatiaB,;,(z) = 0 has; distinct
roots, which are given by

2k — 1)
9.27 = —tan? <— k=1,...,7
(0.27) we = —t(ZEHT) =1
with 0 > wy > wy > -+ > w1 > w;.
9.4.1. Positive Powers of Zeros d8,;. Apply Newton’s Rules to the zeras, of the monic
polynomial B,; in (8.16), and it follows that for integers> 0 andq > 0, >7_, tan??((2k —

1)w/(4j)) has integer value.
For example, witly = 4 andg = 9,

2 (2k — )7
(9.28) > tan2q(T) = 4208117405212:000 .
J
k=1

The zeros of3,;,, are the inverses of the zeros 4, ;, and those inverses have been dealt

with in (9.20).
For all integerg > 0, f > 0 and primep, the integer congruences (2]23) for positive powers
of the zerosy;, of the monic polynomiabB,;, yield the congruence identities:

J .
f 27
S = (2) o
J N 2 .
2 2
vipf = (2‘7) - 2( j) (mod p),
k=1

s 21\" (27 (% 2j
3t = —
(9.29) ;vk = <2) +3<4)(2> 3<6> (mod p), et cetera.

These simplify to give the following congruence identities:

Ztn(w) = j2i-1)  (medp),

4j
J
2k — 1w 1. . . .
Ztan‘l”f(%) = 5J(2 - 1)(45°+2j—-3)  (mod p),
k=1
J
2k —1 1
Ztanpr(%> = (2]~ 1)(32%)" + 16 32 — 16 + 15)
k=1
(9.30) (mod p), et cetera.
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For example, withy =2, p=5andf =1,

1 [ % — 1 1
=1 tan®’ u — — (25 — 1)(325* + 165° — 3252 — 165 + 15)
p = 47 15

(9.31) = 60855600960-000 .

The congruence$ (2.40) for negative powers, applied to the self-reciprocal polyngspial
yield exactly the same congruences a$ in (9.30). The zerBg;of are the inverses of the zeros
of Ay;.1, which have been dealt with in (9]20).

10. ZEROS OF tan(ny) — ¢

For realt, denote the principal value ofin~! ¢ by arctan ¢,with

(10.2) — %7? < arctan t < %7?.

For realc, the equation

(10.2) tan(ny) —c = 0
has the solution
(10.3) nY = kr+(,
for integerk, where
(10.4) ( = arctan c.
Denote
(10.5) A= g,
m
so that
(10.6) —1<A<3,
and
(10.7) ny = (k+ \)m.
Thus, the equatiof (10.2) has the general solution
(10.8) b = k:%.
Thus, for ally satisfying the equatiof (10.2) = tan ¢ has one of the: distinct values
(10.9) t, = tan (@) , (k=1,2,...,n)

Reduction to Polynomial Equations

The function tan is an odd function, and so changing the sighatfanges the sign of the
solution [10.9) of[(10]2). Hence, for our purposes it is sufficient to conside®; and since the
casec = 0 has been dealt with ifi (.1) tb (9]31), we need only conside0 and0 < A < 3.

We shall consider rational = m/r, with m andr co—prime. The only positive rational
giving rational\ is 1/1 = tan(w/4).

In terms of the rational functiog,, (10.2) becomes

(10.10) — =c=gy(t) =t
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and that reduces to the polynométjuation int = tan 1, with integer coefficients:
(10.11) rtA,(z2) = mBy,(2).
For oddn = 25 + 1, this gives the integer polynomial equation of degg¢e- 1 in ¢:
(=1)77"x

. . . 1 .
X {rﬂf“ —m(2j + DY —rj(25 + Dt + 3mi(27 +1)(2) = 72 4 1

1
(10.12) -+ 57"]‘(2]’ +1)(27 — Dt —mj(2j + D> —r(2j + 1)t +m = 0.

For evenn = 27, this gives the polynomial equation of degtgein ¢:
, . 4 . 2 .
(—=1)7 ! [thJ + 27t — my(25 — 1)t — grj(j —1)(25 — )t + - }

2
(10.13) co §rj(j —1)(25 = D —mj(2j — Dt* = 2rjt +m = 0.

For alln > 0, the low—order terms of the polynomial equatipn (10.11) are of the form

(10.14) ~-—i—7’(§)t3—m<g)t2—r(?)t—l—m ~- 0.

The roots/;, of the polynomial equation§ (10]12) and (10.13) are giverj by(10.9), with

(10.15) N = ctan(m/r)
T
10.1. Sums of Powers of TangentsApply Newton’s Rules for positive powers of thgto
the integer polynomial equations (10.12) apd (Ip.13). It follows that, for all positive integers
m,n,q,r, if nis eventherm? "7, tan?((k + \)m)/n has integer value; andif is odd then
ray ., tan?((k 4+ X\)m/n) has integer value, wheve= arctan(m/r)m.
For example, with even =4, ¢ =5, m = 5 andr = 3,

(10.16) m? > tan? (@) — _2416332:000 :
k=1

and with oddn = 3, ¢ =5, m =5 andr = 3,

(10.17) 3 tant (@) — 1212975:000 .
k=1

With m = +1, r = 1 andX = +1, this shews that both

~ . fk+ D ~, k=D
(1018) Ztan (T) and kz:;tan (T)

k=1

have integer values for all positive integerandn. Indeed, for every those sums are equal,
and for oddy each is the negative of the other.
For example, witm = 18 andg = 9,

n

a (4k + )7 (4k — V)7
10.19 tan?( ——2= ] = — ) tan?( ——2= ) = —1734367456242-000 .
( ) ; an ( ym ; an ™
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10.1.1. Zeros of tan((2j + 1)y — c. For all integersf > 0, 7 > 0, m > 0, » > 0 and prime
p, the congruencep (2]31) for positive powers of the roptsf the integer polynomial equation
(10.11) (scaled by—1)7~') yield the congruences:

2j+1
> (et
k=1
2j+1
> (rte)™ !
k=1
2541
> (rte)™ !
k=1

(10.20) (mod p), et cetera.

m(25 + 1) (mod p),

(m(27 +1))* +2r%(25 + 1) (mod p),

(m(2j + 1)) + 3mr?j(25 + 1)> — 3r’Imj(25 + 1)(25 — 1)

These simplify to give the following congruence identities:

2541
(k4 X\ :
P Zt ( 2]—1—1 ) = m(25+1) (mod p),

o Zt (’;;ﬁ) = 2+ 1)EmE+r)j+m?)  (mod p),

o Zt (AT = gz ) (a0n + 20+ 1)+ )

(10.21) (mod p), et cetera.

For example, withn =1, r =2, 7 =3, f =1 andp = 3,

- [ " Zt < . ) —m(2j + D(A(m* +79)j(j + 1) +m?)

27+1
(10.22) = 2546108880-000 .

10.1.2. Zeros of tan(2jv) — ¢. For all integersf > 0, 5 > 0, m > 0, » > 0 and primep,
the congruence$ (2.31) for positive powers of the reptsf the integer polynomial equation
(10.13) (scaled by—1)’!) yield the congruences:

2j
Z(mtk)pf = —2rj (mod p),
k=1
2

N (mtn)? = (2rj)? +2m%i(2j — 1) (mod p),

k=1
2
S (mtp) = —(2r5)® — 6mPrj?(2) — 1) + 3m*2rj(j — 1)(2j — 1)
k=1
(10.23) (mod p) et cetera.
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These simplify to give the following congruence identities:

mprt (’”A)) = —2j  (modp),
2! Zt (’”A) > = 2j(2(m* +1?)j —m?)  (mod p),

(10.24)  m?’ Zt (’”A) )

et cetera
For example, withm =2, r =1, j =3, f =1andp = 13,

27
|
(10.25) = " S tan” EENTY L ori| = —1888127879010-000
p 2j

27’]’(m2 - 4(m2 + 7“2)]'2) (mod p),

10.2. Sums of Powers of CotangentsApply Newton’s Rules to the zerds't, of the polyno-
mial which is reciprocal tg (10.11). It follows that for all positive integersm, » andg,
m?y p_, cot?((k + \)w/n) has integer value, with = arctan(m/r)/m.

For example, witm =9, ¢ = 3, m =5 andr = 3,

& k+ A
(10.26) m? > cot! (u) = 6844029489000 .
— n

For all integers: > 0. f > 0, m > 0, r > 0 and primep, the congruencep (2.32) for negative
powers of the roots; of the integer polynomial equation (10]11) yield the congruences:

i (g)pf = rn (mod p),
i (g)w‘ = r'n®+2m’ (Z) (mod p),

k=1

n 3
(10.27) Z (g) = °n® + 3rm’n <Z) — 3m*r (g) (mod p), et cetera.
k=1

These simplify to give the following congruence identities:

o (BEATY = o ),

k=1 n
m?’ cotpr(M) = n((m?+1r")n—m?) (mod p),
k=1 n
(10.28)  m*’ Z cot3pf(w) = r((m?+rH)n® —m?) (mod p),
n
k=1
et cetera
For example, withn =3, r =2, n =4, f =2andp = 3,
(10.29) ! [m”f > cotpf<w) . m] — 1672622592:000 .
p k=1 n
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Withm = 41, r = 1and\ = i}—l, this shews that for integefs> 0, f > 0 and primep,

Z tﬂ(ﬁ) = +n  (mod p),

21:;: tQPf(M) = n@2n—1)  (mod p),

k=

- Ak £ 1)m
(10.30) ; Ot3pf<%) = +n(2n*-1) (mod p), et cetera.

For example, with =3, f =1 andp =7,

(10.31) % [z”: cotSpf(M) Fn(2n? —1)

7 = +146487463200-000 .
n
k=1

Withm = £1, r = 1 and\ = +1,
= (4k + 1) = T (4k+ D
tq N — t q - N "~ "7

= (45 +2F 1 —4k)7 & (4h £ )7
10.32 = tan? = tan?| —— | .
(1032) > (M S

Hence, for this cas¢ (10.26) gives sums of powers of tangents which are equal to the sums of
powers of cotangents in (10]28) for odd= 2j + 1, (10.23) gives sums of powers of tangents
which are equal to the sums of powers of cotangents in (1L0.32) forever2;, and [10.2p)

gives the same sums as|in (10.24).

The many congruence identities, derived in this paper for integer sums of powers of the
trigonometric functions, provide highly sensitive tests for the accuracy of software for evalua-
tion of trigonometric and inverse trigonometric functions, as in the numerical examples com-
puted in this paper. In each case the result must have integer value, within the errors for com-
putation with rounded arithmetic and finite approximations to those functions.

Similar identities have been constructed for integer sums of powers of Jacobian elliptic func-
tions (Teel[13]), and for the Weierstral} elliptic functipriTee [14]).
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