The Australian Journal of Mathematical
Analysis and Applications

AJMAA

Volume 16, Issue 1, Article 17, pp. 1-11, 2019

DYNAMICAL ANALYSIS OF HIV/AIDS EPIDEMIC MODEL WITH TWO LATENT
STAGES, VERTICAL TRANSMISSION AND TREATMENT

NUR SHOFIANAH, ISNANI DARTI, SYAIFUL ANAM

Received 30 November, 2018; accepted 13 April, 2019; published 4 June, 20109.

MATHEMATICS DEPARTMENT,FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITY OF
BRAWIJAYA, JL. VETERAN, MALANG 65145, NDONESIA.
nur shoflanah@ub.ac.id, isnanidarti@ub.ac.id, syaiful@ub.ac.id

ABSTRACT. We discuss about dynamical analysis of HIV/AIDS epidemic model with two latent
stages, vertical transmission and treatment. In this model, the spreading of HIV occurs through
both horizontal and vertical transmission. There is also treatment for individual who has been
HIV infected. The latent stage is divided into slow and fast latent stage based on the immune
condition which varies for each individual. Dynamical analysis result shows that the model has
two equilibrium points: the disease-free equilibrium point and the endemic equilibrium point.
The existence and global stability of equilibrium points depend on the basic reproduction number
Ry. WhenR, < 1, only the disease-free equilibrium point exists.Hf > 1, there are two
equilibrium points, which are the disease-free equilibrium point and the endemic equilibrium
point. Based on the result of stability analysis, the disease-free equilibrium point is globally
asymptotically stable iRy < 1, while if Ry > 1 andp = ¢, the endemic equilibrium point will

be globally asymptotically stable. In the end, we show some numerical simulations to support
the analytical result.
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1. INTRODUCTION

Human Immune deficiency Virus (HIV) is virus that cause a disease in human immune sys-
tem called AIDS (Acquired Immune Deficiency Syndrome). AIDS developed into a global pan-
demic since it was first identified as a disease in 1981. The spreading of HIV occurred through
horizontal transmission, e.g., blood transfusion, contaminated equipment in blood transfusion,
sexual intercoursé [1]. Beside that, HIV also spread through vertical transmission from infected
mother to her baby during pregnancy, the birth of her baby, or breastfeedirg [2, 3].

There is no medical cure for HIV/AIDS. However, there are some options, such as prevention
(avoid the direct and indirect contact with the virus) and understanding the spread of the virus.
This understanding also can be obtained from mathematical models; this represents the HIV /
AIDS model. Many researchers have worked on development of the HIV/AIDS model. The
first one was introduced by May and Anderson [4] in 1986.

The progression rate of HIV to AIDS depends on the condition of immune system. The
latent period for the individual that has good immune system may be longer than the individual
with an immune system in a worse condition. One of the factors that can reduce the immune
condition is chronic disease, e.g., TBC and diabetes. Based on this consideration, at 2013, Huo
and Feng([1] constructed and analysed the global stability of HIV/AIDS epidemic model with
different latent stages (slow latent and fast latent stages) and treatment.

As the third biggest method of HIV’s infection, vertical transmission should also be consid-
ered in HIV/AIDS models. Smith et al. [2] discussed about SEIR epidemic model with vertical
transmission. Mahato et all,/[3] proposed a mathematical model SEIA with vertical transmis-
sion of AIDS epidemic. Even though there is still no medicine that can cure this disease, the
treatment is very important step to reduce the number of infected individuals. Cai ét al. [5] and
Huo et al. [6] discussed about HIV/AIDS model with treatment.

This research focuses on HIV/AIDS epidemic model with two latent stages, vertical trans-
mission and treatment. These are all the factors that are considered in spreading of HIV in other
models. We construct the model under some assumptions and then perform dynamical analysis
of the model: find the equilibrium points, find the basic reproduction number, analyse the exis-
tence of the equilibrium points, and analyse the stability of the equilibrium points. Lastly, we
do some numerical simulations to support the analytical result that we have obtained.

2. MATHEMATICAL MODEL

In HIV/AIDS epidemic model with two latent stages, vertical transmission and treatment,
the population is divided into 5 sub population: Susceptiblg Slow Latent (;), Fast Latent
(I2), Symptomatic {) and AIDS (4) subpopulation. Susceptibke consist of individual that
susceptible of the disease, Slow Laténtonsist of individual in latent period / asymptomatic
stage and never have the chronic disease before, Fast Jateonsist of individual in latent
period / asymptomatic stage and have the chronic disease before, Symptdnoatisist of
individual in Symptomatic stage / infected individual, and AlBISsubpopulation consist of
individual that its HIV has been developing progress into AIDS. The model is constructed under
the assumptions:

e The spread of HIV virus is caused by horizontal and vertical transmission. Horizontal
transmission through interaction between susceptible individuals with individuals in fast
latent stage and symptomatic stage, while vertical transmission from mother in fast
latent stage.

e Babies born from infected mother are assumed to be directly infected with HIV. There-
fore, they will enter directly into Symptomatic stagg (
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e Some susceptible individuals have other chronic diseases (TBC, diabetes) that can re-
duce the capacity of the immune system.

e The treatment for infected individual can make the individual condition better

e The number of babies that are infected (from vertical transmission process) is less than
the number of individual that have died because of AIB%, < aA).

The model can be written as the system of differential equations:

ds

E =A—vl — (51]25 + ﬁQJS) — S,
dl,

E = p51[25 + Qﬁzjs + §1J — 014,
dl.

d—; = (1 —p)B1LoS 4 (1 — q)B,JS + eIy + E,J — by,
dJ

= —bely — beJ

dt 542 3Jy

dA

o — b A

dt p2J 4 M

With by = e+ 1,00 = p1 + ., by = § + &5 +pa+ 11, by = p+«, bs = p; + and the parameters
used in the model are described in Table 1.
The feasible domaif® be defined as

Q={S(t), L1(t), I(t), J(t), A(t) € R, S(t) + Li(t) + L(t) + J(t) + At) < =1},

= | >

with S(0) > 0, ,(0) > 0, I5(0) > 0, J(0) > 0, A(0) > 0 as initial condition.
The compartment diagram that represent this model can be depicted in[Rigure 1.

Figure 1: The compartment diagram of HIV/AIDS epidemic model with two latent stages, vertical transmission
and treatment
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Table 1. Parameters of The Model
Parameter Description

A Recruitment rate of the population

B4 Transmission coefficient af

B, Transmission coefficient of

P Fraction ofS being infected by, and entering;
q Fraction ofS being infected by/ and entering;
€ Progression raté, to I,

D1 Progression raté, to .J

Do Progression raté to A

& Treatment rate frony to [

& Treatment rate frory to I,

v Vertical transmission rate

1 Natural death rate

o The disease-related death rate

3. EQUILIBRIUM POINTS AND BASIC REPRODUCTION NUMBER

We find the equilibrium point by using the definition of equilibrium point [7], we set
ds _dl _dl, _dJ _dA_
dt dt dt dt  dt '
We find that the model has two equilibrium points,
(1) The disease-free equilibrium point

A
EY= (S, 10,13, J° A°) = (;,o, 0,0,0).

The disease-free equilibrium point always exist.
(2) The endemic equilibrium point
B = (517,15, J", A7),
with
A —y(B5)
Bl 612‘2J* + By J* "‘/vb’

J b3 Ab5 - ’ngj* ) )
== 2
1= (( i3, *q“) <ﬁlng* By iy ) T8

S*

bs
I*:_ *
2 st,

bs
Jr =

by ’

P2
A*—— *

b4J

Basic reproduction numbeR, is the important number in epidemic model. It represent
the number of new infected individual because of infection that occurred in the population
[8]. Basic reproduction number can show whether the spread of HIV/AIDS has occurred in a
population or not. We use Next Generation Matfix [9] to approximate the basic reproduction

d
numberR,. Letx = (I3, I», J, A), from the model, we hav?j;—( = F(x) — V(x),
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with
pB 2SS +qByJS bl — &
_ (1 - p)ﬁ1—’25 + (1 - Q)52JS _ boly — ('5]1 + §2J)
F(X) - 0 ’ V(X> - bgj _ b5[2 )
0 bsA — poJ

The Jacobian matrix foF andV at disease-free equilibrium poift’,

0 Pﬂ1% QB2% 0 b 0 =& 0

o _ |0 (1—17)51/—\ (1_9)52A 0 on_ | —€ b =& 0
P(EY) = | o o ol VEI=L o S b o
0 0 0 0 0 0 —p2 by

Basic reproduction number can be approximated as spectral raditis of matrix, which is
the biggest modulus of eigen valuesio¥ —* matrix. We obtain,

Ry =

(B1b3((1 = p)br + pe) + Babs (e + (1 — q)br),

b1babs — bs (b1 + &1€)
Basic reproduction numbet, must be positive. Therefore, it is required that

b1b2b3 > b5(b1§2 + 516).

To know the existence of the endemic equilibrium point, we can rewritten the endemic equi-
librium point in term of R, then we get that the endemic equilibrium point existBjf> 1.

4. GLOBAL STABILITY ANALYSIS
(1) Global Stability of Disease-Free Equilibrium Point

Theorem 4.1. The Disease-Free Equilibrium Point is globally asymptotically stable if
Ry < 1.

Proof. We use comparison theorem [10] to analyse the global stability of disease-free
equilibrium. Write the rate of change &f, 1>, J, A in matrix form,

I —by pB1S qB,S + &, 0 I
I _ e (1=p)BiS—ba (1-q)BS+& 0 I
J 0 bs —by 0 J
A 0 0 P2 —b4 A
I, I
I A Iy
=(F-V —(1-8=)F
( ) J ( u> J
| A | A
]
<(F=V) ]J?
- A -

Based on Lemma related with Next Generation Matrix1n [9], all eigen valueB 6t )

matrix have negative real part. Furthermore, the disease-free equilibrium will be locally
asymptotically stable wheR, < 1. Hence, wherRk, < 1,
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(11,15, J,A) — (0,0,0,0) for t — oc.

Then we haves — A becauses(t) + I1(t) + I(t) + J(t) + A(t) <
domain?) and(Il,I;f J,A) — (0,0,0,0).

Here we can writg S, I, 5, J,A) — (—,0,0,0,0) fort — oo whenR, < 1. We

conclude that whe®, < 1, the disease-free equilibrium point will be globally asymp-
totically stable. This conclude the proof of Theoren 4.1.

(the feasible

==

(2) Global Stability of Endemic Equilibrium Point

Theorem 4.2. The Endemic Equilibrium Point is globally asymptotically stablggjf>
landp = g.

Proof. In order to show the global stability of endemic equilibrium point, we use Lyapunov
function that be used in Liet al. [11]

L(S, I, 15, J, A)
= (S=8"=-SIn—)+B(L - I - in—)+C(I— I, — LJin=)+ D(J — J" — J'ln—),
S Iy I3 J*
with B, C, D > 0 such thatl/(S, I, I, J,A) < 0in Q = {(S, 1, I, J, A)|S, I1, I, J, A > 0}.
To know whether the Lyapunov function is weak Lyapunov function or strong Lyapunov func-
tion, we observe some conditions in the Definition of weak and strong Lyapunov function that
explained in Alligood et al.[[12],

(1) L(E*) =0
Itis clear thatL(E*) = 0.
(2) L(F) > 0,VE # E* in W with W is some neighborhood d#*
It is clear thatL(E) > 0,VE # E*in W
(3) L'(E) < 0,VE in W (weak Lyapunov function) of/(E) < 0,VE # E*in W (strong
Lyapunov function)
Based on the chain rule, we get the derivation of L,

! _ g ! _ 5 ! _ 5 ! _ £ !
L'=(1 3 )"+ B(1 7, I+ C(1 ]2)12+D(1 J)J
S* I

= (1 - g)(A -l — (51[25 + 62‘]5) - MS) + B(l - I_i(])ﬁJzS + Q62J5 +&J — blfl)

*

2
Then, by using
N =73+ (8,135 + By J"S7) + pS7,
_ PBIS* + 4By ]S + €,

b

1 ]ik 9

b (L —=p)Bi 35" + (1 = q)ByJ"S" +elf + 50

2 _[; )
bs1

b3 = ;*2 )
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we obtain

*

S
—) (VL3 + (B I5S8* + By " S™) + puS* — Iy — (8118 + 5, JS) — pS)

r=(1-5
1)

Iy I155% + qByJ*S* + & J*
F B0~ W0 DBS +aB,IS + 6] — (7 b qff -
1

*

I
+C1 = NA=p)BihbS+ (1= )y S + el + &)
2
(1 =p)Bi 155" + (1 = q)B,J"S" + el + &, J"

- I
( T )12)
J* bl
D(1— —)(bsIy — J).
+D(1 = =) (bslz = (7))
Let — = z, /s Iz:z,i:u, then we have

A A
1
L'=(1- ;)(7]5‘ + (B 158 + By J*S™) + uS* — vyzIy — (B1zL5xS™ + ByuJ xS™) — uxS*)

PBUS' +aBy S 6T
Let L L)
1

1
F B~ b=l + abyul 25" + u”

1
+C(1=)(1 = p)Bi2l328" + (1 = q)fu] 25" + eyli + Lut®

(1 =p)B 55" + (1 — q)ByJ*S* +ely + 0,
_( G )212)

bs1;
J*
22 )ur),

+ D(1 - )(b5zI* (—=

i ;‘””)2 (-2 1 + i+ - i)mlf;s*a — 22) + B S (1 — wu)]
+B(L= B (52— )+ 5,0°S o — ) + " (w— )
FO(1 = DI =P (02— 2) + (L= q)5 "8 (wu — ) + T3 (y — 2) + 6" (u — 2)]
D1 = D)lbaT3 (=~ u).

Simplify L’ such that we get some coefficients with positive variables and vanish the coeffi-
cients so that we obtain B, C and D,

g b1 ble 515* —|—’}/

= 7C: 7D_ -
ep+b1(1—p) ep+bi(1 —p) bs(ep + b1(1 —p)) bs
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with p = ¢. Substitute B,C, D intd/, we get

1 —l')z bl 1
L' = S*( 1— LS*(2—x——
o . 6p+bl(1—p)( p)B135™( Z )
by Uz by 1 2u =z
JH2——-Z= 1—q)B,J° 8" (3———— -2
€p+b1<1_p>£2 ( P u) €p+b1(1_p)( q)ﬁQ ( P )
5 1 zz gy
Ls*3—-—=-———-2
€p+b1<1— )pﬁl 2 ( T y Z>
€ 1 zu z
JS4—-————-=—==
ep + b1 (1 —p)qﬁ2 ( r Yy oz u)
€ . Yooz u
JB-F——-—-—
prh-p Gy
By using the Theorem in Peter [13], that the arithmetical mean is greater than or equal to the
. 1 Uz 1 xz y 1 xz g
geometrical mean,we gét>r - —-;2> - - —-3> - - ——-%3> - — — — % 4 >
T zZ u T Y z T Y z
1 . .
o Y 25 Y 2 Yandthe equal sign will be dts*, I7, I;, J*}, then we can

r oy oz o u oz u y

conclude that/(E) < 0,VE # E*in W, (Lyapunov function is strong Lyapunov function).
Therefore, wherzy, > 1 andp = ¢, the endemic equilibrium point is globally asymptotically
stable. This conclude the proof of Theorgem 42.

The stability of endemic equilibrium point 8, > 1 andp # ¢ will be illustrated numerically
in numerical simulation.

5. NUMERICAL SIMULATIONS

To support the analytical results, we show three numerical simulations: Simulation 1 to illus-
trate the stability of disease-free equilibrium point whén< 1, Simulation 2 to illustrate the
stability of endemic equilibrium point wheR, > 1 andp = ¢ and Simulation 3 to illustrate
the stability of endemic equilibrium point whegy, > 1 andp # q.

The parameter that be used in Simulation 1, Simulation 2 and Simulation 3 can be shown in
Table 2.

Table 2. Parameters for Each Simulation
Parameter Simulation 1 Simulation 2 Simulation 3

A 0.545 0.545 0.545
B, 0.0001 0.0001 0.0001
B, 0.0006 0.006 0.006
n 0.01 0.01 0.01
D 1.73 0.03 0.03

e 0.002 0.002 0.002
a 0.01 0.01 0.01
[ 0.01 0.01 0.01
D 0.9 0.9 0.9

q 0.8 0.9 0.8

3 0.8 0.02 0.02
£, 0.9 0.0019 0.0019
~ 0.005 0.005 0.005
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(1) Simulation 1 : Stability=° for Ry = 0.1313 < 1
In this case, only the disease-free equilibrium point exists. The numerical result of
simulation 1 is depicted in Figufg 2. As time increase, the initial value converge to
E°. We can say that wheR, < 1 no infection occurs in the population. Therefore,
the disease-free equilibrium point is globally asymptotically stable. This conclusion
support the analytical result that we have obtained.

&0 T T

Fit]

Inddeviduals
.
[=]

20

Time t

Figure 2: StabilityE° for Ry = 0.1313 < 1

(2) Simulation 2 : Stability®* for Ry = 1.303 > 1 andp = ¢
In Simulation 2, the disease-free equilibrium point and endemic equilibrium point
exist. From Figur¢]3, we can conclude that the infections occurred in that population.
The initial value converge t&* which is the endemic equilibrium point. Therefore,
we get the same result with the analytical result, wign> 1 andp = ¢ the endemic
equilibrium point is globally asymptotically stable.
(3) Simulation 3 : Stabilityz™ for Ry = 1.4828 > 1 andp # ¢
The result of simulation 3 is almost the same as simulation 2. Fjgure 4 shows that
when R, > 1 andp # ¢, the infection still occurred in that population and the initial
condition converge to endemic equilibrium point.Af > 1 andp # ¢, the numerical
result shows that the endemic equilibrium point is globally asymptotically stable.
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100
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Figure 3: StabilityE* for Ry = 1.303 > 1 andp = ¢

Individuals

0 500 1000 1500 2000 2500
Time t

Figure 4: StabilityE* for Rp = 1.4828 > 1 andp # ¢
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6. CONCLUSION

We can conclude some results about HIV/AIDS model with two latent stages, vertical trans-
mission and treatment. The model has two equilibrium points, which are the disease-free and
the endemic equilibrium points. The existence and stability of equilibrium points depeRg on
If Ry < 1, there is one equilibrium point which is exist, namely the disease-free equilibrium
point. If Ry > 1, there are two equilibrium points, which are the disease-free and the endemic
equilibrium points. Based on stability analysis result, we obtained that the disease-free equi-
librium point will be globally asymptotically stable i®, < 1, while the endemic equilibrium
point will be globally asymptotically stable ik, > 1 andp = ¢. The numerical simulations
support the analytical results.
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