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2 SAADA HAMOUDA

1. INTRODUCTION

Throughout this paper, we assume that the reader is familiar with the fundamental results and
the standard notations of the Nevanlinna value distribution theory (see [6], [7]). In addition, for
a non constant entire function f : C → C, we will use the notations σ (f) , σ2 (f) and τ (f) to
denote respectively the order, hyper-order and type of f, defined by

σ (f) = lim sup
r→+∞

log logM (r, f)

log r
,

σ2 (f) = lim sup
r→+∞

log log logM (r, f)

log r
,

τ (f) = lim sup
r→+∞

logM (r, f)

rσ
,

respectively, where σ = σ (f) and M (r, f) = max
|z|=r
|f (z)|.

Given ε ≥ 0 and θ1, θ2 ∈ [0, 2π) such that ε < θ2−θ1
2

, we will use throughout this paper the
following notations:

S (ε) = {z ∈ C : θ1 + ε ≤ arg z ≤ θ2 − ε} ,
I (ε) = [θ1 + ε, θ2 − ε] .

For n ≥ 2, we consider the linear differential equation

(1.1) f (n) + An−1 (z) f
(n−1)

+ ...+ A0 (z) f = 0

where A0, A1, ..., An−1 are entire functions with A0 6≡ 0. It is well known that all solutions
of (1.1) are entire functions. A classical result due to Wittich shows that all solutions of (1.1)
are of finite order of growth if and only if all coefficients are polynomials. For a complete
analysis of possible orders in the polynomial case, see [5]. If some (or all) of the coefficients
are transcendental, it is natural to ask when and how many solutions of finite order may appear?
Altough some partial answers were given to these questions (see, for example, [2], [3]), the
problem remains open in its full generality.

In [3] Gundersen proved the following results.

Theorem 1.1. [3] Let A0 6≡ 0 and A1 be entire functions such that for real constants α, β, θ1,
θ2 with α > 0, β > 0 and θ1 < θ2, we have

|A0 (z)| ≥ exp
{

(1 + o (1))α |z|β
}
,

and
|A1 (z)| ≤ exp

{
o (1) |z|β

}
,

as z →∞ with θ1 ≤ arg z ≤ θ2. Then every solution f 6≡ 0 of the differential equation

(1.2) f ′′ + A1 (z) f ′ + A0 (z) f = 0

has infinite order.

Theorem 1.2. [3] Let A0 (z) 6≡ 0 and A1 (z) be entire functions such that for real constants α,
β, θ1, θ2 with α > 0, β > 0 and θ1 < θ2, we have

|A1 (z)| ≥ exp
{

(1 + o (1))α |z|β
}

and
|A0 (z)| ≤ exp

{
o (1) |z|β

}
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as z → ∞ with θ1 ≤ arg z ≤ θ2. Given ε > 0 small enough. If f is a nontrivial solution of
(1.2) of finite order, then the following conditions hold:
(i) There exists a constant b 6= 0 such that f (z)→ b as z →∞ in S (ε). Indeed,

|f (z)− b| ≤ exp
{
− (1 + o (1))α |z|β

}
for z ∈ S (ε) with |z| sufficiently large.
(ii) For each integer k ≥ 1 ∣∣f (k) (z)

∣∣ ≤ exp
{
− (1 + o (1))α |z|β

}
for z ∈ S (ε) with |z| sufficiently large.

Theorem 1.1 and Theorem 1.2 have been improved and generalized to the higher order case
by Belaidi, B., Hamouda, S. [1] and Laine, I., Yang, R. [8].

Recently in [9] , Tu, J. and Yi, C-F. investigated the case when most coefficients in (1.1) have
the same order with each other and obtained the following result:

Theorem 1.3. [9] Let Aj (z) (j = 0, ..., n− 1) be entire functions satisfying σ (A0) = σ,
τ (A0) = τ , 0 < σ < ∞, 0 < τ < ∞, and let σ (Aj) ≤ σ, τ (Aj) < τ if σ (Aj) = σ
(j = 1, ..., n− 1) , then every solution f 6≡ 0 of (1.1) satisfies σ2 (f) = σ (A0) .

In this paper, we will investigate the case when most coefficients in (1.1) have the same order
and type with each other.

2. MAIN RESULTS

Theorem 2.1. Let A0 (z) 6≡ 0, A1 (z) , ..., An−1 (z) be entire functions such that for real con-
stants θ1, θ2 with 0 ≤ θ1 < θ2 < 2π and for any K > 0

(2.1)

n−1∑
j=1

|Aj (z)|+ 1

|A0 (z)|
≤ 1

|z|K

for all |z| sufficiently large with θ1 ≤ arg z ≤ θ2. Then every solution f 6≡ 0 of (1.1) is of
infinite order.

From Theorem 2.1 we get the following corollary

Corollary 2.2. Let P1 (z) , ..., Pn−1 (z) be polynomials and let A (z) be a transcendental entire
function with order σ (A) = 0. Then every solution f 6≡ 0 of the differential equation

f (n) + Pn−1 (z) ezf (n−1) + ...+ P1 (z) ezf
′
+ A (z) ezf = 0,

is of infinite order.

Now we are going to present a counterpart of Theorem 2.1 by taking As (z) instead of A0 (z)
as follows:

Theorem 2.3. Let A0 (z) 6≡ 0, A1 (z) , ..., An−1 (z) be entire functions such that for real con-
stants θ1, θ2 with 0 ≤ θ1 < θ2 < 2π and for any K > 0

(2.2)

n−1∑
j=0(j 6=s)

|Aj (z)|+ 1

|As (z)|
≤ 1

|z|K

for all |z| sufficiently large with θ1 ≤ arg z ≤ θ2, where s ∈ {1, ..., n− 1}. Given ε > 0
small enough, if f is a transcendental solution of (1.1) of finite order σ <∞, then the following
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conditions hold:
(i) There exists j ∈ {0, ..., s− 1} and a complex constant bj 6= 0 such that f (j) (z) → bj as
z →∞ in the sector S (ε) . More precisely, for any K > 0 we have∣∣f (j) (z)− bj

∣∣ ≤ 1

|z|K

for all z ∈ S (ε) with |z| sufficiently large.
(ii) For each integer m ≥ j + 1, f (m) (z) → 0 as z → ∞ in S (ε). More precisely, for any
K > 0 we have ∣∣f (m) (z)

∣∣ ≤ 1

|z|K

for all z ∈ S (ε) with |z| sufficiently large.

Corollary 2.4. Let A0 (z) 6≡ 0, A1 (z) , ..., An−1 (z) be entire functions such that, for some
s ∈ {1, ..., n− 1}, As (z) is a transcendental entire function with σ (As) = 0 and for all
j 6= s Aj (z) is a polynomial. If f is a transcendental solution of finite order of the differential
equation

(2.3) f (n) + An−1 (z) ezf (n−1) + ...+ As (z) ezf (s) + ...+ A0 (z) ezf = 0,

then the conditions (i) and (ii) of Theorem 2.3 hold.

Corollary 2.5. Let A0 (z) 6≡ 0, A1 (z) , ..., An−1 (z) be entire functions such that for real con-
stants α, β, µ, θ1, θ2 with 0 ≤ β < α, µ > 0 and 0 ≤ θ1 < θ2 < 2π, we have, for some
s ∈ {1, ..., n− 1} ,

(2.4) |As (z)| ≥ expp {α |z|
µ}

and

(2.5) |Aj (z)| ≤ expp {β |z|
µ} for all j ∈ {0, 1, ..., n− 1} − {s}

for all |z| sufficiently large with θ1 ≤ arg z ≤ θ2, where p ≥ 1 is an integer,(
exp1 (z) = exp (z) and expk+1 (z) = exp {expk (z)} for k ≥ 1

)
. If f is a transcendental

solution of (1.1) of finite order, then the conditions (i) and (ii) of Theorem 2.3 hold.

In order to prove these results, we need the following lemmas.

3. PRELIMINARY LEMMAS

Lemma 3.1. [4] Let f be a transcendental entire function of finite order σ, let
Γ = {(k1, j1) , (k2, j2) , ..., (km, jm)} denote a finite set of distinct pairs of integers that satisfy
ki > ji ≥ 0 (i = 1, ...,m) , and let ε > 0 be a given constant. Then there exists a set
E ⊂ [0, 2π) that has linear measure zero, such that if ψ0 ∈ [0, 2π) − E, then there is a
constant R0 = R0 (ψ0) > 1 such that for all z satisfying arg z = ψ0 and |z| ≥ R0, and for
all (k, j) ∈ Γ, we have

(3.1)
∣∣∣∣f (k) (z)

f (j) (z)

∣∣∣∣ ≤ |z|(k−j)(σ−1+ε) .

Remark 3.1. It is easy to show that Lemma 3.1 is valid in the case when f is a polynomial by
taking σ = 0.
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Lemma 3.2. ([3], [8]) Let f (z) be an entire function and suppose that
∣∣f (k) (z)

∣∣ is unbounded
on some ray arg z = θ. Then there exists an infinite sequence of points zj = rje

i θ (j = 1, 2, ...) ,
where rj → +∞, such that f (k) (zj)→∞ and∣∣∣∣f (q) (zj)

f (k) (zj)

∣∣∣∣ ≤ 1

(k − q)!
(1 + o (1)) |zj|k−q

for all q ∈ {0, ..., k − 1} .

Lemma 3.3. If f is an entire function such that for K > 1 we have∣∣f (reiθ)∣∣ ≤ 1

rK

for all r sufficiently large, then

∞∫
r

∣∣f (teiθ)∣∣ dt converges and we have

∞∫
r

∣∣f (teiθ)∣∣ dt ≤ 1

(K − 1) rK−1

for all r sufficiently large.

Proof. It is easy to show that
∞∫
r

∣∣f (teiθ)∣∣ dt converges. For r large enough, we have

∞∫
r

∣∣f (teiθ)∣∣ dt ≤ ∞∫
r

1

tK
dt =

1

(K − 1) rK−1
.

4. PROOF OF THEOREMS

Proof of theorem 2.1. Suppose that f 6≡ 0 is a solution of (1.1) of finite order σ (f) = σ < ∞.
From Lemma 3.1 and Remark 3.1, there exists a set E ⊂ [0, 2π) that has linear measure zero,
such that if ψ0 ∈ I (0)− E, we have

(4.1)
∣∣∣∣f (k) (z)

f (z)

∣∣∣∣ ≤ |z|kσ , for all k ∈ {1, ..., n} ,

for all z such that |z| sufficiently large and arg z = ψ0. From (1.1) we can write

1 ≤ 1

|A0 (z)|

∣∣∣∣f (n) (z)

f (z)

∣∣∣∣+
|An−1 (z)|
|A0 (z)|

∣∣∣∣f (n−1) (z)

f (z)

∣∣∣∣+ ...(4.2)

+
|A1 (z)|
|A0 (z)|

∣∣∣∣f ′ (z)

f (z)

∣∣∣∣ .
Using (2.1), (4.1) and (4.2) and taking the limit as z →∞ with arg z = ψ0 ∈ I (0)−E, we get
a contradiction. So, every solution f 6≡ 0 of (1.1) is of infinite order.

Proof of theorem 2.2. First we prove that f (s) (z) is bounded in S (ε) , for ε > 0 small enough.
Given ε ∈ (0, 1) , from Lemma 3.1 it follows that there exists a set E ⊂ [0, 2π) that has linear
measure zero, such that for all k ∈ {s+ 1, ..., n}

(4.3)
∣∣∣∣f (k) (z)

f (s) (z)

∣∣∣∣ ≤ |z|(k−s)(σ−1+ε) ≤ |z|nσ ,
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for any z such that arg z ∈ I (0) − E and |z| sufficiently large. If we suppose that f (s) (z) is
unbounded on some ray arg z = φ ∈ S (0) − E, then by Lemma 3.2 there exists an infinite
sequence of points zj = rje

i φ (j = 1, 2, ...) , with rj → +∞, such that f (s) (zj)→∞ and

(4.4)
∣∣∣∣f (q) (zj)

f (s) (zj)

∣∣∣∣ ≤ 1

(s− q)!
(1 + o (1)) |zj|s−q ≤ |zj|n

for every q ∈ {0, ..., s− 1} and j large enough. From (1.1), we can write

1 ≤ 1

|As (z)|

∣∣∣∣f (n) (z)

f (s) (z)

∣∣∣∣+
|An−1 (z)|
|As (z)|

∣∣∣∣f (n−1) (z)

f (s) (z)

∣∣∣∣+ ...(4.5)

...+
|As+1 (z)|
|As (z)|

∣∣∣∣f (s+1) (z)

f (s) (z)

∣∣∣∣+
|As−1 (z)|
|As (z)|

∣∣∣∣f (s−1) (z)

f (s) (z)

∣∣∣∣+ ...

...+
|A0 (z)|
|As (z)|

∣∣∣∣ f (z)

f (s) (z)

∣∣∣∣ .
Combining (2.2), (4.3), (4.4) and (4.5) and letting j → +∞ we obtain a contradiction. There-
fore, f (s) (z) remains bounded on all rays arg z = φ ∈ I (0) − E. By Phragmen-Lindelöf
theorem, we conclude that f (s) (z) is bounded, say

∣∣f (s) (z)
∣∣ ≤M , in a whole sector S

(
ε
2

)
, for

some ε > 0 small enough.
For an integer m ≤ s, by integrating s−m times along the line segment [0, z] in S

(
ε
2

)
, we

have

f (m) (z) = f (m) (0) + f (m+1) (0) z + ...

+
1

(s−m− 1)!
f (s−1) (0) zs−m−1 +

z∫
0

...

z∫
0

f (s)
(
teiφ
)
dt...dt,

and therefore we get

(4.6)
∣∣f (m) (z)

∣∣ ≤M ′ |z|s−m ,

for a certain constant M ′ > 0.
Using (1.1), we can write∣∣f (s) (z)

∣∣ ≤ |f (z)|
|As (z)|

(∣∣∣∣f (n) (z)

f (z)

∣∣∣∣+ |An−1 (z)|
∣∣∣∣f (n−1) (z)

f (z)

∣∣∣∣+ ...(4.7)

...+
|As+1 (z)|
|As (z)|

∣∣∣∣f (s+1) (z)

f (z)

∣∣∣∣+
|As−1 (z)|
|As (z)|

∣∣∣∣f (s−1) (z)

f (z)

∣∣∣∣+ ...

...+ |A1 (z)|
∣∣∣∣f ′ (z)

f (z)

∣∣∣∣+ |A0 (z)|
)
.

Using Lemma 3.1, (4.6) (for m = 0), (4.7) and the hypothesis (2.2), we conclude that for any
K > 0

(4.8)
∣∣f (s) (z)

∣∣ ≤ 1

|z|K

for any z with |z| sufficiently large and arg z = φ ∈ I
(
ε
2

)
− E.
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For m > s, consider z = reiθ ∈ S (ε) such that the circle Γ (z) centered at z and of radius
ρ = ((m− s)!)1/(m−s) is contained in S

(
ε
2

)
, i.e. consider r ≥ ρ/ sin ε

2
. By the Cauchy formula

applied to the function f (s) (z) we have

f (m) (z) =
(m− s)!

2π

∫
Γ(z)

f (s) (µ)

(z − µ)m−s+1dµ,

and using (4.8), we get

(4.9)
∣∣f (m) (z)

∣∣ ≤ 1

|z|K

for any K > 0 and all z ∈ S (ε) with |z| sufficiently large.
Until now, we have proved the second assertion for m ≥ s.
We start to prove the first assertion for j = s− 1. Set

as =

+∞∫
0

f (s)
(
teiθ
)
eiθdt.

By (4.8), it is easy to see that
+∞∫
0

f (s)
(
teiθ
)
eiθdt converges. Moreover, as is independent of θ,

because by using (4.8), the integral of f (s) (µ) over the arc Reiθ, θ ∈ (φ, ϕ) ⊂ I
(
ε
2

)
, tends to

zero as R→∞. Define now bs−1 = f (s−1) (0) + as, and suppose that bs−1 6= 0. Let z = reiθ (
r large enough ) be an arbitrary point in S (ε). Then by applying (4.8) and Lemma 3.3, we get

∣∣f (s−1) (z)− bs−1

∣∣ =

∣∣∣∣∣∣
|z|∫

+∞

f (s)
(
teiθ
)
eiθdt

∣∣∣∣∣∣(4.10)

≤
+∞∫
|z|

∣∣f (s)
(
teiθ
)∣∣ dt ≤ 1

|z|K

for any K > 0 and all z ∈ S (ε) with |z| sufficiently large. Thus, we have completed the proof
in the case bs−1 6= 0.

If bs−1 = 0, we define as−1 =
+∞∫
0

f (s−1)
(
teiθ
)
eiθdt and bs−2 = f (s−2) (0) + as−1 and we apply

Lemma 3.3 with (4.10) to obtain, for any K > 0,∣∣f (s−2) (z)− bs−2

∣∣ ≤ 1

|z|K

for all z ∈ S (ε) with |z| sufficiently large. By the same method, if bs−1 = bs−2 = ... = bj+1 =
0 and bj 6= 0 (j ∈ {0, ..., s− 1}) , then for any K > 0∣∣f (j) (z)− bj

∣∣ ≤ 1

|z|K

and

(4.11)
∣∣f (m) (z)

∣∣ ≤ 1

|z|K
( for all m ≥ j + 1)
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for all z ∈ S (ε) with |z| sufficiently large. Now it remains to show that the case bs−1 = bs−2 =
... = b0 = 0 is not possible. In this case we have, for any K > 0

(4.12)
∣∣f (m) (z)

∣∣ ≤ 1

|z|K
( for all m ≥ 0)

for all z ∈ S (ε) with |z| sufficiently large; i.e. for m ≥ 0 and any K > 0, there exists
r0 (K,m) > 0 such that if |z| ≥ r0 then

∣∣f (m) (z)
∣∣ ≤ 1

|z|K . Now we take z ∈ S (ε) such that
|z| ≥ r1 (K) = max

m=0,...,s
r0 (K,m) ; we remark here that if z is fixed then (4.12) is valid for only

some K > 0 and not for any K > 0. From (1.1) we can write∣∣f (s) (z)
∣∣

|f (z)|
≤

(
1

|As (z)|

∣∣f (n) (z)
∣∣

|f (z)|
+
|An−1 (z)|
|As (z)|

∣∣f (n−1) (z)
∣∣

|f (z)|
+(4.13)

...+
|As+1 (z)|
|As (z)|

∣∣∣∣f (s+1) (z)

f (z)

∣∣∣∣+
|As−1 (z)|
|As (z)|

∣∣∣∣f (s−1) (z)

f (z)

∣∣∣∣+

...+
|A1 (z)|
|As (z)|

|f ′ (z)|
|f (z)|

+
|A0 (z)|
|As (z)|

)
,

and by using (2.2) and Lemma 3.1 in (4.13), we obtain

(4.14)

∣∣f (s) (z)
∣∣

|f (z)|
≤ 1

|z|K
;

and by using also (4.12) for m = 0 in (4.14), we get

(4.15)
∣∣f (s) (z)

∣∣ ≤ 1

|z|2K

for |z| ≥ r1 (K) and arg z ∈ I (ε) − E, hence in S
(
ε+ ε

2

)
by Phragmén-Lindelöf principle.

Repeating the reasoning of (4.10)–(4.11) with (4.15), we obtain

|f (z)| ≤ 1

|z|2K
;

and by combining with (4.14), we get ∣∣f (s) (z)
∣∣ ≤ 1

|z|3K

in S
(
ε+ ε

2
+ ε

22

)
. Inductively, by the same reasoning, after (T − 1) steps, we obtain

(4.16)
∣∣f (s) (z)

∣∣ ≤ 1

|z|TK

in S
(
ε+ ε

2
+ ε

22
+ ...+ ε

2T−1

)
= S

(
ε
(
2− 1

2T−1

))
with |z| ≥ r1 (K) . Thus we have proved,

in this special case of bs−1 = bs−2 = ... = b0 = 0, that (4.16) is valid in S (2ε) for all T ∈ N,
provided |z| ≥ r1. Now if we fix a point z ∈ S (2ε) with |z| ≥ r1, then by taking T → ∞
in (4.16) we will see that f (s) vanishes at this point. Thus, we conclude that f (s) vanishes
identically on all z ∈ S (2ε) with |z| ≥ r1. Therefore, by the standard uniqueness theorem of
entire functions, f has to be a polynomial, a contradiction.
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