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2 NAOKANT DEO

1. INTRODUCTION

A family of linear positive operators, from a mappi6g0, co) into C' [0, c0) , the class of all
bounded and continuous functions noo), is called Beta operators which is denotedify
and defined as

where
1 v

B(’U + ]_7 n) (1 + x)n—i—v—&-l’

bn,v(-r) = T e [O, OO)

andB(v + 1,n) denotes the Beta function given byv + 1) - I" (n) /I'(v + n + 1).

Let f be a function defined o), o) then we define a sequence of linear positive operators
3, as

(1.1) (Bl (@) =+ 3 busl) /O et (O (Bt + (14 2)"1£(0).
The operatorg (I]1) may a_lso be written as

B, (f(t):2) = / " Ko(to) f()dt,
where .
Kot 2) = -3 b ()b () + (1 42) 7 5(0),

d(t) being the Dirac delta function.

A lot of work has been done on such type operators by Gupta et al. (seele.gl. [6], [7], [8], [9]).
To approximate Lebesgue integrable functiongono), the space”,, [0, o) is normed by

1], = s el +n.

Note that the order of approximation by these opera (1.1) is atijest'), howsoever
smooth the function may be. Thus to improve the order of approximation, we use the technique
of linear combination of the operatofs ([L.1). Actually May [3] and Rathore [5] first consid-
ered the linear combinations to improve the rate of convergence for exponential type operators,
which include the well known Bernstein, Szasz and Baskakov operators as special cases. We
consider the linear combination of operat¢rsj(1.1) as described below.

For dy, dy,ds, ....,d, arbitrary but fixed distinct positive integers, the linear combination
G, (f, k,x) of ﬁdjn(f;x),j =0,1,2,...,nis defined by

k
(1.2) Bulf k) =D Clj, ) B, (f52),

where

k 4
[l 72, fork#0

1, fork=0
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Letm € Nand0 < a < b < co. Forf € Lyla,b], 1 < p < oo, them!™ order integral
modulus of smoothness g¢fis defined as:

Wm(fa T, D, [CL, b]) = Oigg ||Agnf(t)HLp[a,b—m§]’

whereA7 f(t) is them! order forward difference with lengthand0 < 7 < (b=a),

m

The spacesiC|a, b] and BV [a, b] are defined as the classes of absolutely continuous func-
tions and functions of bounded variation oyerb|, respectively. The seminorfyf|| sy (.5 is
defined by the total variation gf on [a, b].

Throughout this paper, we assume: a; < az < as < by < by < by < 00, [; = [a;,b;], i =
1,2,3 andC denotes a positive constant, not necessarily the same at all occurrence.

The main purpose of this paper to give some results in terms of higher order modulus of
continuity in ordinary approximation by the operatdrs {1.1). First, we study the basic point-
wise convergence theorem and then proceed to give the degree of approximation.

2. BAsic REsuLTS

In the section, we shall mention some definitions and certain lemmas to prove our main
theorems.

Lemma 2.1. For m € N U {0} if

o= 3 buaa®) [ buafa)(o =) da

then
@) o) = 1, ag(t) = 2055
and
(n =m0 = Dty it (1) = (1 + )ty 1, ()
(2.2) + [(m 4 2) + 22(m + )], ,, (t) + 2mt (L + )1, 01 (1)

Consequently,

(i) ftm (t) is @ polynomial in x of degreg m.

+1

(i)) i, (t) = O <n‘[T]> , Where[a| denotes the integral part af.

Proof. We can easily obtair (2.1) by using the definitioryqf,,(¢). For the proof of[(2.2), we
proceed as follows. First

o0

t(1+ t)u}hm(t) = % Z t(1+ t)b;ljv_l(t) /000 bn,o(2) (2 — )" dx — mt(1 4 t)p,, 1 (1)

v=1

Now, using the relation twice and integrating by parts
2(1+ 2)b,,(2) = [v = (n+1)z] boy (@)

AIJMAA Vol. 2, No. 2, Art. 4, pp. 1-12, 2005 AIJMAA


http://ajmaa.org

4 NAOKANT DEO

o0

HL+ () = % S MW= 1) = (04 Dz + (n+ 1) — H]bo (1)

. /O (@) (@ — 1) — (L )11 (0)
= Z v—1) = (n+ 1)a]by,_1(t) /OOO byo(z)(x — t)™dx
+ (n + Dbtnnga () = mt (L4 8) g1y, 1 ()
_ %f} b1 () /0 Tl = (0 + Dfbnn(@)(x — t)"da
+ (04 Dbt mgr (8) = Mt (LA )ty g1 () = f 1 (1)
= —anv ! / (1+ )b, ,(2)(z — t)"dx
(0 Dt (6) — (L 0) — )
_ %ibn,vl(x) /OOO[(I +20)(z — 1) — (2 — )’

+H(1+ )b, () (x — t)"dz + (0 + 1)ty s (2)
—mt(1+ )y, 1 () = fy (1)

— ( 22@ Z bpw—1(t) /000 b;w(x)(x — )™ dg

1 Z o1 (8) / Ty (@)@ — £

+= mel / (1 + 1), ,(x)(x — t)™dx

+ (n + 1)Mn,m+1( ) = it (L) 1y 1 () = ()
= _<m + 1)<1 + zx)ﬂn,m(w - (m + 2)Mn,m+1 (t) - mt(l + t)un,m—l(t)
+ (04 D)ty gr () = Mt (L4 )by, 1 () = fg (1)

This leads to[(Z]2)n

Lemma 2.2. Let them!" order moment be defined as

Ty(z) = B, ((t— 2)™ me / o s (O = @)™ dt + (—2)™(1 + 2) ",
Then
2z
(23) Tmo(%’) = 1, Tn,l(z) = (n _ 1)
and

(n—m — 1T mi1(z) = [m(1 4 2x) + 22] T, ()
(2.4) + (14 2) T;Lm(x) + 2an7m_1(x)] , n>m+ 2.
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Further, for all z € [0, 00), the sequences, ,,,(x) has the following properties:
(i) T,.m () is a polynomial inz of degreem.

(i) Ty () = O (n*[T“J).

Proof. We can easily verify[ (2]3) and the proof pf (2.4) follows. We have

, 1 —

(14 2)T,,,(z) = - Z z(1+ z)b, ,(2) /OOO bno—1(t)(t — z)"dt

—mz(1+2)Thpm1(z) + (04 1) (—2)" (1 +2) .
Using the relation which is mentioned in Lemmalj2.1

2(1+ 2)T,, ()

= % i{v — (n+ 1)z }by,(v) /0 N by w1 (t)(t — x)™dt
- :;;(1 + )Ty (2) + (0 + 1)(—2)™ (1 + )"

-2 S (04 Dt (04 1)(t — )} (2) /0 S e (O(t — 2yt
- :”;U + ) Tym-1(2) + (0 + 1)(=2)" (1 +2)7"

=S bale) [ {0 1) (e D0t - )

—mx(1+2)T, o1 (x) + (n+ 1)1 e ()
- % > buu() /0 N b1 () (t — )" dt
1 & o ,
= =3 buu(@) / H1+ )b,y (B)(E = 2)"dt + (n+ )Ty (2)
(1 ) T () -3 b (o) /0 et (0t — 2yt

=13 b@) /Ooo[u L 9x)(t— ) + (F— 2) + a1+ D),y 1 (£)(F — )"t

1 & o
03 bua@) [ b0t -2
v=1 0

—mx(1+2)T, o1 (x) + (n+ 1)1 e ()
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= —(14+22)(m+1)— me / b1 (t)(t — )™ dt
—(m+2 %i /Oo bpo1(t)(t — )" dt

1 & >
—mx(l+x EZ o / nv—1(t)(t—x)m_ldt+Tn7m(x)

— (—2)"(1+2) " = ma(1+ @)1 () + (1 + )T ()
= —[m(1 +2z) + 22| T, () + (n —m — )T i1 (x) — 2ma (1 + )1, 11 ()
This leads to[(Z]4)
Lemma 2.3. For m € N andn sufficiently large, there holds
Bo((t—a)" kx)= n~ D LQ (m, k,z) +o(1)}, formeN

where@ (m, k, z) is a certain polynomial inc of degreem andz € [0, c0) is arbitrary but
fixed.

Lemma 2.4. Let f € BV (1;) the following inequality holds:

g (o) [ 1= o arer)

wherey(t) is the characteristic function of;.

< Cn~t+ HfHBV(h)
Ll(IQ)

Proof. For eachn there exists a nonnegative integer r(n) such that
rn Y2 < max{by — agby —ar} < (r41)n V2

</ )2 af () ()l‘) " -
S x(t)Knu,x)!t_xf’““ e x(2)df (2)] | dt
/ /x+ln_1/2 /35

-1/2

+/x : Wt )|t — 2 (/m X(z)|df(z)|> dt}dm.
(i+1)n 1/2 z—(i+1)n—1/2

Let x, . (z) denote the characteristic function in the interii@al- cn /2, x4 dn~'/?] where
c andd are nonnegative integers. Then we get

T . bo a:+(i+1)n’1/2 245 b1
M < Z n2i~ / / / X Kn(t, z)|t — | (/ X%O’Hl(z)}df(z)}) dt
i—1 az xz+in—1/2 a1
—1/2

+ /; DR < / b xx,i+1,o(z)|df(z)|> dt}]
/bz /ab2+n1/2 K, (t,2)|t — " (/: Xx70171(2)|df(z)|> dtdz.
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By Fubini’s Theorem and Lemnja 2.1, we obtain

M < On~@k+1)/2 [ii_4{/b1 (/b2 Xm,O,i-i—l(Z)dx) ‘df(z)‘

i=1 a1 az

+/b1 (/b2 XLHLO(z)dx)‘df(Z)‘}—F/bl (/b2 Xx,171(2)d$>|df(z)|}

ai a2 ai az

< Cni(kH)HfHBV(Il)'

This completes the prooi

3. ERROR ESTIMATES

In this section, first we discuss the approximation in the smooth subs[pfé’%*é)(h) of
L,[0,00).

Theorem 3.1.Let f € L& (1;) and1 < p < oo then following inequality holds:

(3.1) 18088, ) = 1l 1y < ConmEOLFED L 1 0y

wheren is sufficiently large and’; = C(k, p).

Proof. Letp > 1. Fort € I; andx € I, we may write

<2k i— 1)' /t(t . z)2k+1f(2k+2)(z)dz.

2k+1

fey=>"

=

Thus, if x(¢) is the characteristic function df, then

2k+1 i ¢
ft) = Z (t;fx)f(y)@) + m/ Y(8)(t — Z>2k+1f(2k+2)(z)dz

+ F(t, x)(l - X(t)),

where
2k+1

Flt,a) = f(t) = 3

j=0

f(j)(l'), forallt € [0,00) and x € Is.

Forg, (1,k,z) = 1, we get

2k+1 () 2 ‘
B, (k) = ) = 3o Lo, (07 )
b it (1O [ (= 0 s )
+ B, (F(t,)(1 = x(0). k)
=k + Es + Es.

Using Lemma 23,
1B ) < O P ANy + 1552 )
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To estimatel,, let h; be the Hardy-Littlewood majorant gf*+2) on I, (see[[2], page 244).
Applying the Holder inequality and by Lemra P.2, we obtain
t
o (00 [ (0= 2 2 i)
t
< B, (X(t)lt — x| / | fE+(2)|d= 1’)
< B (X()(t = 2)**2|h(1)]; 2)
< {8, (Xt = 227 2) 1B, (x(0) by (1)) 2)} 7

by 1/p
<on ol [" kg apsoral

Thus by Lemma 2.1, [2] (ch. 10, sec. 2, page 244) and using Fubini’s theorem we obtain

b by
[Qully gy < o0 [ [ K ) o)
a2 al

b1
< C«n—(k-i-l)p / {

al az

< Op~ktp T / }hf ‘pdt
n—1 al

Q1 =

b
K, (t,2) da:} |y (8)["dt

< Cn~HDP| ||p (sincen is sufficiently large)
<Cn~ ’““”’”Hf(%+2 ||L ()
— 1

Consequently,
HQ1”LP(12) < Cni(kH)Hf(%H)HLp(h)'
Hence, we get
|Baf| < O+ @42y,

Fort € [0,00) \I1, = € I, 36 > 0 such thaft — z| > 4, we get

16, (F a—mmwMS6@“”[<v )| (£ — )42 2)

2k+1 f(] (|t 2k+j+2 )]
— x| ;T

P>

= Qz + Q3
Applying the Holder inequality and by Lemrpa P.2

|Q2| < Cn—(k+1){5 |f ‘p l/p‘
Again, using the Fubini’s theorem, farsufficiently large, we obtain

—(k+1
‘QQ‘LP(I2) < Cn e )HfHLp[o,oo).

By Lemmd 2.2, we get

1@sll, iy < Cr™ VU + 1722 1)
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Thus
1BslL, ) < ™ VSN 0.0y + 1752 )
The estimates of’; to E3, leads to[(3.]1)n

Theorem 3.2. Let f € L, [0,00) andn is sufficiently large. Iff?*+) ¢ 1, f®F ¢ AC(I))
and f*1 ¢ BV (1), then following inequality holds:

@2) 1307k = Ty < Cor DD g+ 1725 1 1o
whereCy = Cy(k) > 0

Proof. Letp =1 andf € L, [0, 00), for almost allz € I, and fort € I;, we may write

2k+1 i ' t
F(t) = ZO (t j!x) f9(z) + (% i o /x (t — 2)2FH1gr@Rn ),

If x(¢) is the characteristic function df then

2k-+1 i .
10 = 3 500 + gy [ G

+ F(t,z)(1 - x(1)).

whereF(t,x) = f(t) — Z (t 2 £(3) (x), for almost allz € I, and for allt € [0,00). By

operatings,, on the last equatlon we get

2k+1 ) .
Bl bn) = 10 = S T (0 -y )

1 ' 2k+1 2k+1
e O TR A CRUN Y

+ 06, (F(t, z)(1 —x(1)),k, :1:)

= I+ By + Es.
Using Lemma 2.3, we get

1B,y < En U Ny + 175 )
By Lemmd 2.4, we obtain

—(k+1 2k+1
HE2||L1(]2) < Cn )Hf( )”BV(Il)'
Choosing) > 0 such thatt — z| > §, forall z € I, t € [0,00) \I;, then we get

18 (F(t 2) (1 = x());2) [ 1, s,

/bQ/ Ko (t, )| f(t)|(1 = x(t))dtdx

2k+1 b
,/ / Kot ) 19 ()| |t — 2l (1 — x(8))dtda
J

= +Q2.
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If ¢ is sufficiently large then we may obtain positive constahandC'; such that

(t _ m)2k+2
t2k+2 + 1
Now applying Fubini’s theorem,

Qi = (/M /+/M°° /:)Kn@,x)}f(t)!u —(t)dadt = Qs+ Qu.

Using Lemma 21, we obtain

>4 forallt > M,z € I,.

b
-5 (2k+2) / K t T |f ‘ 2k’+2d$dt
< Cn D / £(0)]dt,
0
and
bo )2/€+2
Q4§a/ K, tx t2k+2+1 | f(t)|dadt
<Cn~ ’““)/ | f(t)|dt, sincet is sufficiently large
M

Combining estimate§; and(.,, we obtain

Qr < Cr= Il g

Using Lemma 22, we get

Q2 < On V(U Ny + 1722 1))
Thus
18, (F(t ) (1= X)) |,y < Cn™ P N oy + 17y )
Consequently,
15|, 1y < Cr™ Pl gy + 1F4 1))
Finally, usingE,, E, and E;, we obtain[(3.2)x
Theorem 3.3. Supposef € L, [0,00), 1 < p < oo, then
33) Bk ) = fll, 1y < Clwmmaalfin ™ p, L) 40 S| £,

wheren is sufficiently large and” is a constant that independent pHfandn, but is dependent
onk andp.

Proof. Let f, 2r12(t) be the Steklov mean qk + 2)*" corresponding tof (¢) over I; where
n > 0 is sufficiently small and, ».12(t) is defined as zero outside, then we get

||ﬁn(f7 k, ) - fHLp([2) < Hﬁn(f - fn,2k+2> k, .)HLP(I2) + Hﬁn(fﬁ72k+27k7 ) - f7772k+2HLp(12)

+ Hfm?k” - fHLp(Ig)
= FEy + Ly + E3.
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Suppose(t) is the characteristic function df, we get
Bu((f = Foone2)(t); ) = By (X(O)(f = frons2) ()i 2)
+ B, (L= X (f = Fronra)(t); )
= Q1 + Q.
Fromp = 1 andp > 1 the following inequality holds, now it follows for Holder’s inequaglity

b bo bs
/ Q1] dx < / Ko(t,2)|(f = fronse)(0)] dtda.

a2

Applying Fubini’s theorem and Lemnja 2.1, we obtain

|Q1|Lp(1-2) <2|f = fookrellz, -
Similarly, forallp > 1

‘Q2‘Lp(12) < Cn~ | f = fronrallL,0.00)-
By property of Steklov means|[4], (Theorem 18.17)[ar [1], (pp.163-165), we obtain

By < C(wase(fon,p, 1) + 0 VYF] Lo )
by Theorel and property of Steklov means, for

SincerT(zékktg)HBV(Ig) - Hfé?QkkTQ)HLl(IS)’

all p > 1, we obtain
By < Cni(kﬂ)(Hf(?;kngLp(lg) + ||f’772k+2HLp[0,oo)>
< Cn~ ) (77_(2k+1)w2k+1(f7 n,p, 1) + HfHL,,[o,oo))'
Again using property of Steklov means
B3 < Cwopgo(f,m,p, ).
Choosing) = n~'/? and estimates of; to Es, this leads to prove of (3.3
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