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ABSTRACT. We study the local boundedness of weak solutions for evolutjghablacian sys-

tems in the singular case. The initial data is belonging to Lebesgue Bga@e T; W (1-2) (Q, R™)).

We use intrinsic scaling method to treat the boundedness of weak solutions. The main result is
to make the local boundedness of weak solution for the systems well-worked in the intrinsic

scaling.
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1. INTRODUCTION

Let 2 be a bounded domain IR™, m > 2, with smooth boundary(?, and Ietri—:’f2 <p<2.
Foramapu : (0,7) x Q — R", z = (t,z) = (t, 21, Ta, ..., T;), the unknownu = (u?), i =
1,2,...,n is a vector-valued function on Q with values i3, we considep-Laplacian type,
with principal term only, as below

(1.1) { dyu — div(|Du’>Du) =0 in (0,T) x Q

' u(0,z) = up(x) on 9,(0,7) x £

To construct a weak solution df (1.1), we use a Galerkin method &s in [1] or use a vari-
tional (like) method as in_[9] by the Rothe-approximation to have the energy inequality of
(1.1). The local boundedness of weak solutiprisaplacian systems with only principal terms,
where the unknown functions are real valued and scalar case, was studied by DiBenedetto et
al. ([2,3,/4]5]), whose proof is based on De Giorgi's truncation and special scaling associated
with inhomogeneity of the evolutionaptLaplace operator. However, the regularity theory for
p-Laplacian type of parabolic equations requires careful geometric techniques the so-called in-
trinsic scaling to resolve the inhomogeneity. Moreover the local boundedness of weak solutions
where the unknown functions are vectorial case was studied in [11] using a perturbation esti-
mate for degenerate case and singular case.

In early 2013’s, a direct iteration scheme is introduced in [10] only in the degenerate case,
using a geometrical progression based on an intrinsic scaling to the evolutjghapface op-
erator, and the Holder estimate of solutions for singular case was settled by [7] and the Gradient
of its solutions also studied by![8], whose proof based on the intrinsic scaling. In this paper, we
will study the local boundedness of weak solution for singular case such that it is well-worked
by using intrinsic scaling. Here we point out that our intrinsic scaling is modified different for
degenerate case and singular case in the original work by DiBenedetto [6] and (Chén ([3, 4])

When one studies the existence of weak solutions of evolutigthalplacian systems, one
needs to invoke a definition of weak solution itself. The weak solution is defined as usual.

The weak solution is defined as usual.
Definition 1.1. A vector-valued function: is a weak solution of] (I]1), if and only if €
L>(0,T; L*(2,R™)) N LP(0, T; Whr(Q,R")) and satisfies
(1.2) / dyu - @ + |DuP?Du - Dpdz = 0,

(0,T)xQ

forall p € LP (0, T; W, (2, R™)) with 9,0 € L*(Q,R") andT > 0.

While, our main theorem in this paper is the following:
Theorem 1. Letﬂf—j’L2 < p < 2 and letu be a weak solution 0.1). Then there exist positive

. p=2
constantC; = C(m, p,o) andCy = C such that for every cylinde(p*, A2 ?(z) C Q.
Py
sup - Jul <G | s

—2
Q(op)2 A 7 op) _
Q(pQ,A%p)

(13) + CQ)\%p,

AJMAA Vol. 15, No. 2, Art. 8, pp. 1-5, 2018 AJMAA


http://ajmaa.org

LOoCAL BOUNDEDNESS OF WEAK SOLUTIONS FOR SINGULAR PARABOLIC SYSTEMS 3

for any positive number < 1 ando = 27/(1 + 7).

2. RESULTS

We consider: be a weak solution 0.1) iQ(p?, )\%p)(zo) C Q. First, we set the intrinsic
scaling forl < p < 2

(2.1) t=to+p%s, w=x9+ATpy,  Z=(s1),
p—2
U (to + p25, To + )\pr>
)\%p

so that our equatio.l) (y) (pQ, )\%Qp> (z0) reduced to the following equation (1, 1)(0, 0):

(2.2) v(s,y) =

: 0<p<l,

(2.3) Oy — div (|Dv[P2Dv) = 0.
It implies that
P o
(2.4) sup |v| < C ][ [v|Pdz +C.
Q(02,0) oLy

We have the following proposition holds for every cylindgfl,1)(0) C Q. Let0 <n <1
be a piecewise smooth cutoff functionit{r) C B(p) CC 2 such thatupp(n) C B(p),n =1
in B(r) and|Dn| < <.

p—r

Propotation 1. Letv be a weak solution of (2.3). There exists a positive constaat C(p)
such that

0

sup /]v|277p§da:+/ / | Du[PnPEdxdt
—r2<t<0

B(p) -2 B(p)
(2.5) < / lv|*nPddz + C / [v|?| Dn|Pdz.
Q(p) Q(p)

By using the Sobolev inequality for function and the reverse Holder inequality, we have

p(m+1)—m m—p
0 mp mp
2(p(m+1)—2m p(m+1)—m m _m
/ |U|1+psz S / / |’U| mp (Q)p(m-!—lps—'m dl‘ / (|’U|p) mfpd,’]j dt
Q(r) —r2 \B(r) B(r)
p(m+1)—m m=—p
mp 0 mp
< sup / v|*da / / (Jo|P) =7 da dt
—72<t<0
B(r) —r2 \B(r)
1+ =
1 2
(2.6) < 00— lv|°dz + 1
(r—p)
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Now let

2)—2 1 1
p m m

1—o

Rk =0+ ok R() = 1,
then

1 1

ok+T ra

f "U ak+1d < |Q( )| g f "U akdz+ 1
T

Qr)

In above we choose = £ and make iteration oh = 0, 1,2, ... to have

(2.7)
1 1
ok+1 70
o 1
][ o] dz + 1 < HC - ][ |v|*dz + 1
i= z—i—l) sl (Ri — Rit1) o
Q(Rk+1) Q(Ro)
Since
2)—2 1 1
aizp(m+p) Bla+—y-1)+2 o=1+—
1 —
Ri=0+ 21'0_; Ry =1.
We see that the constant [n (R.7) is computed as
(2.8) C(m.p,0) < (C)"™ V@1,

whereC; = 2C(1 — ¢)~" and we use

. (+1) /i1
T [y Tt

ThusYV: it holds that

(2.9) ][ v

Q(R;) Q(Ro)

In fact, we use
i & p(m+2) — 2m'
1—00 91 p

From this estimate it follows that for anﬁ% <p<?2

p
p(m+2)—2m

(2.10) sup |v] < C ][ v]*dz + C.
Q(o?0)

Rescaling[(2.10) by (2} 2) to have (IL.3).
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