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2 N-ENG XU AND DING-GONG YANG

1. I NTRODUCTION AND PRELIMINARIES

Let Ap(p ∈ N = {1, 2, 3, · · · }) be the class of functionsf(z) of the form

f(z) = zp +
∞∑

m=1

ap+mzp+m

which are analytic in the unit diskU = {z : |z| < 1}. Let

Cp(ρ) =

{
f(z) ∈ Ap : Re

f ′(z)

pzp−1
> ρ (z ∈ U)

}
for someρ(0 ≤ ρ < 1). It is well known that each function in the classCp(ρ)(0 ≤ ρ < 1) is
p-valently close-to-convex of orderρ in U . Denote byK the usual subclass ofA1 consisting
of convex univalent functions inU . Further letUK(⊂ K) denote the class of functions called
uniformly convex (univalent) inU and introduced by Goodman [4]. It was shown in Ronning
[10] and Ma and Minda [8] that a functionf(z) ∈ A1 is in UK if and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (z ∈ U).

The uniformly convex and related functions have been studied by several authors (see, e.g.,
[4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17]).

If f(z) =
∑∞

m=0 amzm and g(z) =
∑∞

m=0 bmzm are analytic inU , then the Hadamard
product or convolutionf(z) ∗ g(z) of f(z) andg(z) is defined by

f(z) ∗ g(z) =
∞∑

m=0

ambmzm.

Let

Dn+p−1f(z) =
zp

(1− z)n+p
∗ f(z),

wheref(z) ∈ Ap andn is any integer greater then−p. Then

Dn+p−1f(z) =
zp(zn−1f(z))(n+p−1)

(n + p− 1)!
.

This symbolDn+p−1f(z) is called the Ruscheweyh derivative off(z) and was introduced by
Ruscheweyh [13] (whenp = 1) and Goel and Sohi [3]. In this paper we introduce and investi-
gate the following new subclass ofAp:

Definition. A functionf(z) ∈ Ap is said to be inCp(n, α, β, λ, µ) if it satisfies

(1.1) (ReJp(n, β, f(z)))2 + µ > α2 |Jp(n, β, f(z)− λ|2 (z ∈ U),

where

(1.2) Jp(n, β, f(z)) = (1− β)
Dn+p−1f(z)

zp
+ β

(Dn+p−1f(z))′

pzp−1
,

(1.3) 0 < α < 1, β ≥ 0, λ > 0, α2(λ− 1)2 − 1 < µ ≤ (αλ)2.

Note thatzp ∈ Cp(n, α, β, λ, µ) and forn = 1− p, 0 < α < 1, β ≥ 0, λ = 1 andµ = 0,
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PROPERTIES OF CERTAIN MULTIVALENT FUNCTIONS 3

Cp(1− p, α, β, 1, 0)

=

{
f(z) ∈ Ap : Re

(
(1− β)

f(z)

zp
+ β

f ′(z)

pzp−1

)
> α

∣∣∣∣(1− β)
f(z)

zp
+ β

f ′(z)

pzp−1
− 1

∣∣∣∣ (z ∈ U)

}
.

Forβ ≥ 0 andρ < 1, Ding, Ling and Bao in [1] have considered the classQβ(ρ) defined by

Qβ(ρ) =

{
f(z) ∈ A1 : Re

(
(1− β)

f(z)

z
+ βf ′(z)

)
> ρ (z ∈ U)

}
.

Let f(z) andg(z) be analytic inU . Then we say that the functionf(z) is subordinate to
g(z), writtenf(z) ≺ g(z), if there exists an analytic functionw(z) in U such that|w(z)| ≤ |z|
andf(z) = g(w(z)) for z ∈ U . If g(z) is univalent inU , thatf(z) ≺ g(z) is equivalent to
f(0) = g(0) andf(U) ⊂ g(U). We shall need the following Lemmas.

Lemma 1.1. Let F (z) be analytic inU andh(z) be analytic and convex univalent inU with
h(0) = F (0). If

(1.4) F (z) +
1

c
zF ′(z) ≺ h(z),

wherec 6= 0 and Rec ≥ 0, then

F (z) ≺ H(z) = cz−c

∫ z

0

tc−1h(t)dt ≺ h(z)

andH(z) is the best dominant of (1.4).

Lemma 1.2. Let f(z) =
∑∞

m=1 amzm be analytic inU andg(z) ∈ K. If f(z) ≺ g(z), then
|am| ≤ 1(m ∈ N).

Lemma 1.1 is due to Miller and Mocanu [9] and Lemma 1.2 can be found in Duren [2, p.195].
Throughout this paper we assume, unless otherwise stated, thatn is any integer greater than

−p(p ∈ N) andα, β, λ, µ satisfy (1.3).

2. SUBORDINATION RELATIONS

Theorem 2.1.A functionf(z) ∈ Ap is in Cp(n, α, β, λ, µ) if and only if

Jp(n, β, f(z)) ≺ h(z),

whereJp(n, β, f(z)) is defined by (1.2),

h(z) = ϕ

(
z + b

1 + bz

)
,

(2.1) ϕ(ζ) = λ0 +
δ

2α(1− α2)

((
1 +

√
ζ

1−
√

ζ

)2σ/π

+

(
1 +

√
ζ

1−
√

ζ

)−2σ/π

− 2

)
(|ζ| < 1),

λ0 =
δ − α3λ

α(1− α2)
, δ =

√
(αλ)2 − µ(1− α2), σ = arccos α
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4 N-ENG XU AND DING-GONG YANG

andb ∈ (−1, 1) is determined byϕ(b) = 1.

Proof. It follows from (1.3) and (2.1) that0 < (α2λ)2 ≤ δ2 = (αλ)2 − µ(1 − α2) < (αλ)2 −
(1− α2)(α2(λ− 1)2 − 1) = (α2λ + 1− α2)2 and so

(2.2) 0 ≤ λ1 =
δ − α2λ

1− α2
< min{1, λ0}.

Let F (z) = Jp(n, β, f(z)) = u + iv for f(z) ∈ Ap. Then (1.1) can be written asu2 + µ >
α2((u− λ)2 + v2), that is,

(2.3)

(
u +

α2λ

1− α2

)2

− α2

1− α2
v2 >

(αλ)2 − µ

1− α2
+

(
α2λ

1− α2

)2

=

(
δ

1− α2

)2

.

In view of F (0) = 1, we see that

F (U) ⊂ Ω = {w = u + iv : u andv satisfy(2.3), u > λ1}.
Note thath(0) = ϕ(b) = 1. In order to prove our theorem, it suffices to show that the function
h(z) given by (2.1) mapsU conformally onto the hyperbolic regionΩ.

The linear transformationw1 = α
δ
((1− α2)w + α2λ) mapsΩ+ = Ω∩ {w = u + iv : v > 0}

onto

Ω+
1 =

{
w1 = u1 + iv1 :

u2
1

cos2 σ
− v2

1

sin2 σ
> 1, u1 > cos σ, v1 > 0

}
so thatw = λ1 corresponds tow1 = α = cos σ and w = λ0 to w1 = 1. It is clear that
w2 = w1 +

√
w2

1 − 1 mapsΩ+
1 conformally onto

Ω+
2 = {w2 : 0 < arg w2 < σ, 1 < |w2| < +∞}

so thatw1 = cos σ corresponds tow2 = eiσ and w1 = 1 to w2 = 1. Also the function
t = 1

2
(w

π/σ
2 +w

−π/σ
2 ) mapsΩ+

2 conformally onto the upper half plane Im(t) > 0 so thatw2 = eiσ

corresponds tot = −1 andw2 = 1 to t = 1. Thus the composite functiont = g(w) (say)
mapsΩ+ conformally onto Im(t) > 0 so thatw ∈ [λ1, +∞) corresponds tot ∈ [−1, +∞).
With the help of the symmetry principle, the functiont = g(w) mapsΩ conformally onto
G = {t : | arg(t + 1)| < π}. Sincet = 2(1+ζ

1−ζ
)2 − 1 maps the unit disk|ζ| < 1 ontoG, we

deduce that

w = g−1(t) =
δ − α3λ

α(1− α2)
+

δ

2α(1− α2)

((
t +

√
t2 − 1

)σ/π

+
(
t +

√
t2 − 1

)−σ/π

− 2

)

= λ0 +
δ

2α(1− α2)

((
1 +

√
ζ

1−
√

ζ

)2σ/π

+

(
1 +

√
ζ

1−
√

ζ

)−2σ/π

− 2

)
= ϕ(ζ)

maps|ζ| < 1 conformally ontoΩ so thatζ = b ∈ (−1, 1) corresponds tow = 1. Now we
easily know thatw = h(z) = ϕ( z+b

1+bz
) mapsU conformally ontoΩ. Therefore the proof of the

theorem is complete.

Corollary 2.2. Letf(z) ∈ Cp(n, α, β, λ, µ) andh(z) be given by (2.1). Then forz ∈ U,

(2.4) | arg Jp(n, β, f(z))| <

{
arctan

√
µ

(αλ)2−µ
+ 1

α2 , µ < (αλ)2,
π
2
, µ = (αλ)2.
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The result is sharp with the extremal functionfβ(z) defined byfβ(z) ∈ Ap and

(2.5) Dn+p−1fβ(z) =

{ p
β
zp(1−1/β)

∫ z

0
t(p/β)−1h(t)dt, β > 0,

zph(z), β = 0.

Proof. From the proof of Theorem 2.1 we see that

(2.6) ∂h(U) =
{
w = u + iv : u2 + µ = α2

(
(u− λ)2 + v2

)
, u ≥ λ1

}
.

If µ < (αλ)2, thenλ1 > 0. Consider the equations

u2 + µ = α2
(
(u− λ)2 + v2

)
and v = ku,

whereu, v andk are real withu ≥ λ1 > 0. Elimination ofv yields(
α2(k2 + 1)− 1

)
u2 − 2α2λu + (αλ)2 − µ = 0.

Suppose(α2λ)2 − (α2(k2 + 1)− 1) ((αλ)2 − µ) = 0, then

k2 =
(αλ)2

(αλ)2 − µ
+

1

α2
− 1 > 0.

If µ = (αλ)2, thenλ1 = 0. Therefore we conclude that

(2.7) min{θ : | arg h(z)| < θ (z ∈ U)} =

{
arctan

√
µ

(αλ)2−µ
+ 1

α2 , µ < (αλ)2,
π
2
, µ = (αλ)2.

Now (2.7) follows immediately from Theorem 2.1.
For the functionfβ(z) defined by (2.5), it is easy to verify that

Jp(n, β, fβ(z)) = h(z) and fβ(z) ∈ Cp(n, α, β, λ, µ).

Hence the bound in (2.7) is sharp.

Corollary 2.3. Letf(z) ∈ Cp(n, α, β, λ, µ), β > 0, andh(z) be given by (2.1). Then

(2.8)
Dn+p−1f(z)

zp
≺ p

β

∫ 1

0

ρ
p
β
−1h(ρz)dρ.

Proof. Let us put

(2.9) F (z) =
Dn+p−1f(z)

zp

for f(z) ∈ Cp(n, α, β, λ, µ) andβ > 0. Then it follows from (2.9) and Theorem 2.1 that

F (z) +
β

p
zF ′(z) = Jp(n, β, f(z)) ≺ h(z).

Therefore, an application of Lemma 1.1 withc = p
β

> 0 yields

(2.10) F (z) ≺ p

β
z−

p
β

∫ z

0

t
p
β
−1h(t)dt =

p

β

∫ 1

0

ρ
p
β
−1h(ρz)dρ ≺ h(z),

which proves (2.8).

Corollary 2.4. Letf(z) ∈ Cp(n, α, β, λ, µ). Then forz ∈ U , we have

(2.11) h(−|z|) ≤ ReJp(n, β, f(z)) ≤ h(|z|),

(2.12) ReJp(n, β, f(z)) > λ1,
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(2.13)
p

β

∫ 1

0

ρ
p
β
−1h(−ρ|z|)dρ ≤ Re

Dn+p−1f(z)

zp
≤ p

β

∫ 1

0

ρ
p
β
−1h(ρ|z|)dρ, β > 0,

and

(2.14) Re
Dn+p−1f(z)

zp
>

p

β

∫ 1

0

ρ
p
β
−1h(−ρ)dρ, β > 0,

whereJp(n, β, f(z)), h(z) andλ1 are as given in Theorem 2.1. These results are sharp.

Proof. From the proof of Theorem 2.1 we know that the univalent functionh(z) maps the closed
disk |z| ≤ r(0 < r < 1) onto a closed region which is convex and symmetric with respect to
the real axis. Hence we have

(2.15) h(r) ≥ Reh(z) ≥ h(−r) > h(−1) = ϕ(−1) = λ1 (|z| ≤ r).

According to the definition of the subordination, it follows from Theorem 2.1, Corollary 2.3
and (2.15) that the inequalities (2.11)-(2.14) hold true. Further these results are sharp for the
functionfβ(z) defined by (2.5).

3. PROPERTIES OF Cp(n, α, β, λ, µ).

If λ0 in (2.1) satisfies the restricted conditionλ0 ≤ 1, then we can prove the following:

Theorem 3.1. Let f(z) ∈ Cp(n, α, β, λ, µ). If λ1 < ρ < λ0 ≤ 1, then ReJp(n, β, f(z)) > ρ in
|z| < r, where

(3.1) r = r(ρ, α, λ, µ) =
b + tan2 θ

1 + b tan2 θ
, θ =

π

4σ
arccos

(α

δ

(
ρ(1− α2) + α2λ

))
,

andJp(n, β, f(z)), λ0, λ1, δ, σ andb are as given in Theorem 2.1. The result is sharp.

Proof. Sinceλ0 ≤ 1 andϕ(b) = 1, it follows from (2.1) in Theorem 2.1 that0 ≤ b < 1. In
view of 0 ≤ λ1 < ρ < λ0(≤ 1), (2.1) and (3.1), we have

0 <
α

δ

(
ρ(1− α2) + α2λ

)
<

α

δ

(
λ0(1− α2) + α2λ

)
= 1,

0 < θ <
π

4σ
arccos

(α

δ

(
λ1(1− α2) + α2λ

))
=

π

4
.
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Hence0 ≤ b < r < 1. Let h(z) be given by (2.1). Then it follows from (2.1) and (3.1) that

h(−r) = ϕ

(
b− r

1− br

)

= λ0 +
δ

2α(1− α2)

(1 + i
√

(r − b)/(1− br)

1− i
√

(r − b)/(1− br)

)2σ/π

+

(
1 + i

√
(r − b)/(1− br)

1− i
√

(r − b)/(1− br)

)−2σ/π

− 2


= λ0 +

δ

α(1− α2)

(
cos

(
4σ

π
arctan

√
r − b

1− br

)
− 1

)

= λ0 +
δ

α(1− α2)

(
cos

4σθ

π
− 1

)
= λ0 +

δ

α(1− α2)

(α

δ

(
ρ(1− α2) + α2λ

)
− 1
)

= ρ,

which leads to

(3.2) inf
|z|<r

Reh(z) = h(−r) = ρ.

If f(z) ∈ Cp(n, α, β, λ, µ) then, by Theorem 2.1 and (3.2), we get

ReJp(n, β, f(z)) > ρ (|z| < r).

Obviously the functionfβ(z) defined by (2.5) shows that the result is sharp.

Theorem 3.2.Cp(n, α, β1, λ, µ) ⊂ Cp(n, α, β2, λ, µ) for 0 ≤ β2 < β1.

Proof. Let f(z) ∈ Cp(n, α, β1, λ, µ) andh(z) be given by (2.1). Then, by Theorem 2.1 and
(2.10) in the proof of Corollary 2.3, we have

(3.3) Jp(n, β1, f(z)) ≺ h(z), Jp(n, 0, f(z)) ≺ h(z).

Noting that0 ≤ β2

β1
< 1 andh(z) is convex univalent inU , it follows from (3.3) that

Jp(n, β2, f(z)) =

(
1− β2

β1

)
Dn+p−1f(z)

zp
+

β2

β1

(
(1− β1)

Dn+p−1f(z)

zp
+ β1

(Dn+p−1f(z))′

pzp−1

)
=

(
1− β2

β1

)
Jp(n, 0, f(z)) +

β2

β1

Jp(n, β1, f(z))

≺ h(z).

Hence, using Theorem 2.1,f(z) ∈ Cp(n, α, β2, λ, µ) and the proof is completed.

Theorem 3.3.Cp(n + 1, α, β, λ, µ) ⊂ Cp(n, α, β, λ, µ).

Proof. It is known [3] that

(3.4) z(Dn+p−1f(z))′ = (p + n)Dn+pf(z)− nDn+p−1f(z)

for f(z) ∈ Ap. Let

(3.5) g(z) = Jp(n, β, f(z)).
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Then (3.4) and (3.5) lead to

(3.6) pzpg(z) = β(p + n)Dn+pf(z) + (p(1− β)− βn)Dn+p−1f(z).

Differentiating (3.6) and using (3.4) we obtain

pzp(pg(z) + zg′(z))(3.7)

= β(p + n)z(Dn+pf(z))′ + (p(1− β)− βn)((p + n)Dn+pf(z)− nDn+p−1f(z))

It follows from (3.6) and (3.7) that

pzp((p + n)g(z) + zg′(z)) = β(p + n)z(Dn+pf(z))′ + p(1− β)(p + n)Dn+pf(z),

that is,

(3.8) Jp(n + 1, β, f(z)) = g(z) +
zg′(z)

p + n
.

If f(z) ∈ Cp(n + 1, α, β, λ, µ), then from Theorem 2.1 and (3.8) we get

g(z) +
zg′(z)

p + n
≺ h(z),

and an application of Lemma 1.1 withc = p + n > 0 yields

g(z) = Jp(n, β, f(z)) ≺ h(z).

Hence, by Theorem 2.1,f(z) ∈ Cp(n, α, β, λ, µ). This completes the proof.

Remark 3.1. Forβ ≥ 1, it follows from Theorems 3.3 and 3.2 and (2.12) in Corollary 2.4 (with
n = 1− p andβ = 1) that

Cp(n, α, β, λ, µ) ⊂ Cp(1− p, α, β, λ, µ) ⊂ Cp(1− p, α, 1, λ, µ) ⊂ Cp(λ1).

Thus each function in the classCp(n, α, β, λ, µ) with β ≥ 1 is p-valently close-to-convex of
orderλ1 in U .

Theorem 3.4. Let f(z) ∈ Cp(n, α, β, λ, µ), g(z) ∈ Ap and Reg(z)
zp > 1

2
(z ∈ U). Thenf(z) ∗

g(z) ∈ Cp(n, α, β, λ, µ).

Proof. . We easily have

Dn+p−1(f ∗ g)(z)

zp
=

Dn+p−1f(z)

zp
∗ g(z)

zp
,

(Dn+p−1(f ∗ g)(z))′

pzp−1
=

(Dn+p−1f(z))′

pzp−1
∗ g(z)

zp
,

and so

(3.9) Jp(n, β, f(z) ∗ g(z)) = F (z) ∗ P (z) (z ∈ U),

wheref(z) ∈ Cp(n, α, β, λ, µ), F (z) = Jp(n, β, f(z)) andP (z) = g(z)
zp . Since the function

P (z) has the integral representation

P (z) =

∫
|x|=1

dµ(x)

1− xz
(z ∈ U),

whereµ(x) is a probability measure defined on the unit circle|x| = 1 and
∫
|x|=1

dµ(x) = 1, it
follows from (3.9) that

(3.10) Jp(n, β, f(z) ∗ g(z)) =

∫
|x|=1

F (xz)dµ(x) (z ∈ U).
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According to Theorem 2.1 the functionF (z) is subordinate to the convex univalent function
h(z) given by (2.1). Therefore, we deduce from (3.10) that

Jp(n, β, f(z) ∗ g(z)) ≺ h(z),

which leads tof(z) ∗ g(z) ∈ Cp(n, α, β, λ, µ) by Theorem 2.1.

If λ1 in (2.2) satisfies the restricted conditionλ1 ≥ 1
2
, then it follows from Theorem 3.4 and

(2.12) in Corollary 2.4 (withn = 1− p andβ = 0) that the following:

Corollary 3.5. Letf(z) ∈ Cp(n, α, β, λ, µ) andg(z) ∈ Cp(1− p, α, 0, λ, µ). If λ1 ≥ 1
2
, where

λ1 is given by (2.2), thenf(z) ∗ g(z) ∈ Cp(n, α, β, λ, µ).

Remark 3.2. Note thatCp(n, α, β, λ, µ) ⊂ Cp(1− p, α, 0, λ, µ). We known from Corollary 3.5
thatCp(n, α, β, λ, µ) is closed with respect to Hadamard product providedλ1 ≥ 1

2
.

Let S∗(1
2
) denote the class of starlike univalent functions of order1

2
in U consisting of func-

tionsg(z) ∈ A1 satisfying

Re
zg′(z)

g(z)
>

1

2
(z ∈ U).

It is well known that ifg(z) ∈ S∗(1
2
) then Reg(z)

z
> 1

2
for z ∈ U. Thus Theorem 3.4 withp = 1

andn > −1 yields the following:

Corollary 3.6. Let f(z) ∈ C1(n, α, β, λ, µ), n ∈ N ∪ {0}, and g(z) ∈ S∗(1
2
). Thenf(z) ∗

g(z) ∈ C1(n, α, β, λ, µ).

Theorem 3.7.Letf(z) = zp +
∑∞

m=1 ap+mzp+m ∈ Cp(n, α, β, λ, µ). Then
(3.11)

|ap+1| ≤
pδ(1− b2)

α(1− α2)(p + β)(p + n)

∞∑
m=1

(
2m∑
k=0

(−1)k

(
2σ/π

k

)(
−2σ/π
2m− k

))
mbm−1,

whereδ, σ andb are as given in Theorem 2.1. The result is sharp.

Proof. . Since

1

2

(
(1 + t)ρ(1− t)−ρ + (1− t)ρ(1 + t)−ρ

)
= 1 +

∞∑
m=1

(
2m∑
k=0

(−1)k

(
ρ
k

)(
−ρ

2m− k

))
t2m (ρ > 0, |t| < 1),

the functionϕ(ζ) given by (2.1) has the expansion

ϕ(ζ) = λ0 +
δ

α(1− α2)

∞∑
m=1

(
2m∑
k=0

(−1)k

(
2σ/π

k

)(
−2σ/π
2m− k

))
ζm (|ζ| < 1).

From this we have

h(z) = ϕ

(
z + b

1 + bz

)
= 1 + Bz + · · · (z ∈ U),

where

B = ϕ′(b)(1− b2) =
δ(1− b2)

α(1− α2)

∞∑
m=1

(
2m∑
k=0

(−1)k

(
2σ/π

k

)(
−2σ/π
2m− k

))
mbm−1.
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Also it follows from the proof of Theorem 2.1 thatB = h′(0) > 0.
If f(z) = zp +

∑∞
m=1 ap+mzp+m ∈ Cp(n, α, β, λ, µ), then we have from Theorem 2.1 that

Jp(n, β, f(z)) = (1− β)(1 + (p + n)ap+1z + · · · ) + β

(
1 +

1

p
(p + 1)(p + n)ap+1z + · · ·

)
= 1 +

(
1 +

β

p

)
(p + n)ap+1z + · · · ≺ h(z),

that is,
1

B

(
1 +

β

p

)
(p + n)ap+1z + · · · ≺ 1

B
(h(z)− 1) ∈ K.

Now an application of Lemma 1.2 gives

|ap+1| ≤
pB

(p + β)(p + n)
,

which proves (3.11).
The result is sharp since the equality in (3.11) is attained for the functionfβ(z) defined by

(2.5). The proof of the theorem is completed.

Theorem 3.8.Letf(z) ∈ Ap satisfy

(3.12) |Jp(n, β, f(z))− a| < d (z ∈ U),

where

d = d(a, α, λ, µ) =

{
a− λ1, λ1 < a ≤ λ + λ1

α2 ,√
µ
α2 + a2 − λ2 − α2(a− λ)2, a ≥ λ + λ1

α2

andJp(n, β, f(z)) andλ1 are as given in Theorem 2.1. Thenf(z) ∈ Cp(n, α, β, λ, µ) and the
boundd in (3.12) is sharp for eacha(a > λ1).

Proof. . Leth(z) be given by (2.1) andd denote the minimum distance from the pointa(a > λ1)
to the points on the hyperbola∂h(U) given by (2.6). Then

d2 = min
u≥λ1

g(u), g(u) = (u− a)2 +
1

α2
(u2 + µ)− (u− λ)2.

If λ1 < a ≤ λ + λ1

α2 , then

(3.13) g′(u) =
2

α2

(
u− α2(a− λ)

)
≥ 0 (u ≥ λ1).

Note thatλ1 ∈ ∂h(U). It follows from (3.13) that

d =
√

g(λ1) =

√
(λ1 − a)2 +

1

α2
(λ2

1 + µ)− (λ1 − λ)2 = a− λ1.

If a ≥ λ + λ1

α2 , then the functiong(u)(u ≥ λ1) attains its minimum value atu = α2(a − λ)
and so

d =
√

g(α2(a− λ)) =

√
µ

α2
+ a2 − λ2 − α2(a− λ)2.

Consequently, iff(z) ∈ Ap satisfies (3.12) then the domain of the values ofJp(n, β, f(z))
for z ∈ U is contained inh(U), which implies thatJp(n, β, f(z)) ≺ h(z). Hencef(z) ∈
Cp(n, α, β, λ, µ) by Theorem 2.1. Furthermore, the boundd in (3.12) is sharp for the function
fβ(z) defined by (2.5).
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