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ABSTRACT. Letfbe areal polynomial of degree n. Determining the maximum number of zeros
of kappa, the curvature of f, is an easy problem: since the zeros of kappa are the zeros of f”,
the curvature of f is 0 at most n-2 times. A much more intriguing problem is to determine the
maximum number of relative extreme values for the function kappa. Since kappa'=0 at each
extreme point of kappa, we are interested in the maximum number of zeros of kappa’. In 2004,
the first author and R. Gordon showed that if all the zeros of f” are real, then f has at most n-1
points of extreme curvature. We use level curves and auxiliary functions to study the zeros of the
derivatives of these functions. We provide a partial solution to this problem, showing that f has
at most n-1 points of extreme curvature, given certain geometrical conditions. The conjecture
that f has at most n-1 points of extreme curvature remains open.
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2 STEPHANIE P. EDWARDS AND TARAH J. ENSEN AND EDWARD NIEDERMEYER AND LINDSAY WILLETT

1. INTRODUCTION
Let f be a real polynomial of degree wheren > 1. Then
f(2) = an2" + an 12"+ +ag
wherea; € R. The curvature of is defined to be

f//

1+ 122

Determining the maximum number of zeros«of an easy problem: since the zeros:aire
the zeros off”, the curvature off is 0 at most — 2 times. A much more intriguing problem
is to determine the maximum number of relative extreme values for the functi@rpointc is
an extreme point of. if x has either a relative maximum or a relative minimum value dh
this case the value of at c is anextreme valu®f . Sincex’ = 0 at each extreme point af,
we are interested in the maximum number of zeros' of

In 2004, the first author and R. Gordan [3] explored the notion of extreme curvature and
posed the following conjecture:

Conjecture 1.1 (Edwards-Gordon (2004))f f is a real polynomial of degree greater than
1, then the curvature of f has at most. — 1 extreme points.

In their paper, they verified the conjecture foe= 1,n = 2, andn = 3 and went further to
establish the following partial result:

Theorem 1.2.[3] If f is a real polynomial of degree > 1 and /" has only real zeros, then the
curvaturex of f has at most — 1 extreme points.

In this paper, we remove the hypothesis tlfdthas only real zeros, however, we add a
hypothesis on the geometry of the level sets that we will be studying.

Theorem 1.3. Let f be a real polynomial of degree such thatf’ has only simple zeros and

K ={z € H* : ImQ(z) > 0} has a only one unbounded component with boundary intersect-
ing the real axis wher&)(z) = z — h(z)/hW(z) andh = f'/ /1 + (f")2. Thenf has at most

n — 1 points of extreme curvature.

2. BACKGROUND

The proof of Theorerp 112 was inspired by a solution to a Polya and Szego exercise [10]; Let
P be a real polynomials of degree> 1 such thatP has only real zeros. Find the number of
real and non-real zeros @t + P’. If one is to remove the hypothesis on the zero$’pthe
problem becomes quite difficult. In fact, it was not until the late 1980’s when T. B. Sheil-Small
[11] was able to avoid the hypothesis éhto prove thisP? + P’ problem by using auxiliary
functions,

e fP(Z)dZ L — f,(Z) Q — _ f(Z)

z € z z z

f2) (2) () === 5

and studying the zero level curves of the imaginary part of these functions. In addition he
studied the components

(2.1) A={ze H':ImL(z) > 0} K={z€ H" :ImQ(z) > 0}
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whereH* = {z € C : Imz > 0} and counted the number of non-real zerog)inside K,

where f2)f"(z)
z z
Q/Z — / f”Z _ P(z 2_|_P/Z efP(Z)dZ
()= "oy (=) = (P(2))” + P'(2))
A. Hinkkanen ([8], [9], [7], [6]), while working with a certain class of meromorphic func-
tions, studied the same auxiliary functions, their zero level curves, and the same components as

Sheil-Small. In addition, he also studied the components of

(2.2) A~ ={ze H':ImL(z) < 0} K ={ze H':ImQ(z) < 0}.

Further, the first author and S. Hellerstein expounded on the Sheil-Small and Hinkkanen
techniques in[4]. A survey of the use of level curves can be found in [2].
We begin by defining our auxiliary functions. Lgtbe a real polynomial of degreeand f’

have only simple zeros. Defing = g and leth be defined as

_ 9(2)
(2.3) hz) = Ve o)

Then, we define the auxiliary functions,and@, as follows:

NICIC) A, h)

@9 T B 1) B T ek

We will be interested i)’ (z) because)’ = ”2 andh” = (L+9%)9" _532(9,)2. It should
(h) (1+ ¢2)

be noted that the numerator &f is exactly equal to the numerator gfwheny is replaced by
f'. So, finding the real and non-real zerosW6fwill find the real and non-real zeros ef, and
the real zeros ob” are the points of extreme curvature jof

With these observations, we can rephrase our conjecture.

Conjecture 2.1.1f g is a real polynomial of degree > 1, then the polynomialgg™” —g”(1+¢?)
has at most: real roots.

Noting that the degree @f’ is 3n — 2, we want to show that there are at maseal zeros of
h”. We can again restate our conjecture in an equivalent form.

Conjecture 2.2. If f is a real polynomial of degree, then there exist at least — 1 zeros of
h" € Ht,whereH* = {z € C: Im(z) > 0}.

3. THE GEOMETRY OF THE COMPONENTS OF A AND K

In this section, we define the level séts K, A, A—, and the various geometrical character-
istics of these sets. We will characterize the locations of the zergsntlg’ (and equivantly,
h andh’) with regard to these level sets, as well as define some characteristics of the level sets
themselves. We note that the zerogydandh) are the poles of; the zeros ofy/ (andh’) are
zeros ofL and poles of).

We begin by stating a fundamental result for polynomials. It states that each real value cannot
be taken on infinitely many times by our two functiogsand L.

9(2)(L +9(2)*)
, 9'(2)
andL(z) = g(z) take on each real value finitely often i and3n times inC.

9(z)(1+9(2)?)

Lemma 3.1. Suppose(z) is a real polynomial of degree. Then botQ(z) = z —
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Proof. See Beardoh|[1] page 3i.

3.1. Zeros. We now discuss the relationship between the zerog ¢f andh” and the com-
ponentsk, K, A, and A~ whereh is as in equation (2|3}, A, K—, A~ are as in equations
(2.1), [2.2). We note that the zeros of a polynomgiadre simple poles of. = ¢'/g and that
the zeros of; (all simple) are also zeros éfand@Q’ = hh”/(1')* whereQ is as in equation
(2.4). Further, ifz is a zero of multiplicitym > 1, thenQ’ has a removable singularity a
and@’(zp) = (m —1)/m.

The following results can be found inl[4] in section 3.1.

Lemma 3.2. Letg(zy) = O wherezp e RU H™.
() If zo € R and z, is a simple zero of, thenzy € 0K N 0K ™.
(2) If zg € H* thenzy € K andzg € OA~ NOA.

Lemma 3.3. Letg'(z9) = 0 wherezp e RUH™.

(1) If zo € H", thenzy € 0K N 0K~
(2) If zg € R and z, is a simple zero of’:

(@) If (97) (20) > 0, thenz, € IA

(b) If (97) (20) < 0, thenzy € HA~

(3) zp € OAifand only ifzy € OK
(4) zo € OA~ ifand only ifzg € 0K~

Proof. This proof is similar to that in [4]. It is essential to note that

/"

sgn(L(z0)) = sgn(%(zm
whenz, € R. 1

We now discuss multiple zeros éf(or equivantly, multiple zeros af andh’) on the bound-
aries of bothA and K. To so this, begin by assigning a weight to each zerb.of

Letz € RwhereL(z) = g(@)
g(x)

(m+1)
plicity m is defined to bey = mT% where¢ = 0if misevenand = sgn((g )(z)) € {1,-1}
g

= 0. Theweight w, of the pointz, a real zero of. of multi-

if mis odd. Letz € H™ whereL(z) = 0. Theweightw, of the pointz, a non-real zero of. of
multiplicity m is defined to bev = m.
The following lemma is due to Hinkkanen (Lemma 5.1 (5).ih [8]).

Lemma 3.4. Letzy € 0K N 0K~ N R wherez, is a multiple pole of the functio®)(z) =
g,((z)). Theng'(zo) = 0 andg(z,) # 0.
gi\z
In addition, in a neighborhood af, in H* there arem sector-like slices with vertex at, lying

alternating inK and K —, wherem = ord(¢’, o).
It follows that if the number of slices i is equal to the weight assigned to the zerd.of

Definition 3.1. Let  be a boundary component of a compong&itt/ ) of K(K ). At each
point¢ € v with Q'(¢) # 0,00 we choose a unique unit tangent vecioto ~ defined by the
requirement that iT is a unit inner normal vectdrfor U(U~) at (. ThenT'(¢) defines the
“positive direction” of~ relative toU (U~). Similarly for A, a boundary component &f(1/~)
of A(A7).
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Lemma 3.5. [4] Lety be a boundary component of a compongét/ ) of K (K ). If v is tra-
versed in the positive direction relativetg U —) then() is monotone increasing (or decreasing)
along any arcy’ C v with Q'(¢) # 0, 0o for ¢ € /. Similarly, let\ be a boundary component
of a component (V) of A(A™). If Xis traversed in the positive direction relative ¥V )
then L is monotone increasing (or decreasing) along any &re_ A with L'(¢) # 0, cc for
ceN.

Remarks

(1) fQ'(¢,) = 0,00 and(, € v, then as we leavg, and transverse in a positive direction
relative toU(U~) we may return tal, k times, with0 < k£ < ko — 1 and k, the
multiplicity of the zero¢, of )’ or respectively, the multiplicity of the pole &} at¢,.
This follows immediately from the sector like configuration of the component&’ of
and K~ in a neighborhood of , (Lemma 3.4). Each departure frafy followed by a
first subsequent return tg defines a closed curve, “a loopy, C ~, (which may not be
simple). It is tacitly assumed that every logfis traversed exactly once along

(2) Since is monotone increasing (decreasing) along a ldap(, we must encounter at
least one pole of) along\ at some point) on \.

(3) Since there are finitely many poles @f(¢g is a polynomial), we have at most finitely
many poles ony, a boundary component &f (Lemma[3.4). The number of times a
pole(, of @) is encountered as we traversavill be referred to as theU multiplicity”
of the pole¢,, which exceeds by one the number of loops @it {,. The total number
of theU multiplicities of poles o) on~ will determine the ¥/-multiplicity of the poles
on~”". If v is a boundary component 6f-, then we still have only finitely many poles
on~, since@ has only finitely many poles off *. In analogy with the above we will
use the terms theU~ multiplicity” of the pole¢, € v and the U-multiplicity of the
poles omy" with their obvious meanings.

(4) We note that thé/ (U~ )-multiplicity of a pole(, € v is the number of sectorial regions
in all local neighborhoods aof, contained inJ (U ). We now have an obvious meaning
for the terms theK (K~ )-multiplicity of one (or more) pole(s) of) on a boundary
component or particular boundary component&¢f ).

(5) Each of the above remarks hold foend), a boundary component &f(V~) of A(A™).

3.2. Components ofA and K. We will now move on to components afandA~—, K andK .
We first turn our attention to unbounded componentd ahd K. We letg be a polynomial of
degreen with only simple zeros. Since has a zero at infinity of ordén + 1 and(@ has a pole
at infinity of the same order, in a neighborhood of infinity, there are sector like slicEsanid
K~, A andA~. Whether the boundaries of the components of the sector-like slices touch the
real axis is not entirely clear from the function, however, empirical evidence suggest that we
can find a small positive constant so that there is one unbounded comporéraraf exactly
two unbounded components &f~ whose boundaries intersect the real axis. If there is one
unbounded component &f and exactly two unbounded componentdof whose boundaries
intersect the real axis, we call that unbounded componeht thfe“ main artery” .

In the rest of this paper, we will assume that the functjos a polynomial of degree with
only zeros and is such that the geometry of the componeritShads a main artery.

We now introduce a topological definition which we will find convenient.

Definition 3.2. Let U(U~) be a component &k (K ~) in H+ andI” a component of the bound-
ary ofU(U™) in H*. Thenl is the“exterior boundary component” of U (U ) if the compo-
nent of the complement df in C containingH — contains no points df (U ~). The component
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of the complement df' containingU (U ~) we term the‘interior” of I', and denote it by Itt).
We may now talk about a component being in the interior of another component.

We also require the following elementary and useful observation.
Lemma 3.6. Suppose thaj is a real polynomial of degree. ThenA C K.

Proof. This is Lemma 2 of Sheil-Small’s papér J11], and follows from the observation that for
ImL(z) - ImL(z)
(=)~ [L(z)]?
3.3. The Degree of(Q. We now turn our attention to finding the degree of the functipm
components of{ and K .

z €A, ImQ(z) = Imz + > 0.1

Lemma 3.7. Let U be a component ak. Then@ mapsU onto H+. Similarly, letU~ be a
component of{ . Then@ mapsU~— onto H .

Proof. Let U be a component oK. SinceU C K = {z € H" : ImQ(z) > 0}, it follows that
Q(U) Cc H*. Suppose tha® (U) # H*. Then there is a poin; € H" such that, € 0Q(U).

There is also a neighborhood, of z, such thatvV N Q(U) # @ and N N Q(U)°N # O (where
Q(U)¢ = H" —Q(U)). In order to consider the appropriate brancliof, choose: € U such
that@’'(a) # 0. Then a branch of the inverse function existé at Q(a) such tha)~'(b) = a

becausé&)(z) — co asz — oo in K. Using this branch, we have th@'(N) N U # 0 and
QY N)NU® # ) (whereUc = H — U). This means thadU N Q~(V) # (. Now Q maps
oU onto the real axis and thereforg € R which is a contradiction. Thu§ mapsU onto H ™.

To show thaty maps a compone#i~ of K onto H —, consider the auxiliary functiof'(z) =
—Q(2). It follows then thatF'(U~) Cc H*. The above argument shows thatU~) = H*. &

The Counting Lemma is a form of the so called Riemann-Hurwitz Theorem. It can be found
for rational functions in Beardon|[1] and can be found for Riemann surfaces in Farkas and Kra
[5]. Itis also known as the McDonald Lemma found in Pélya and Sze@6[10], page 297. Since
the exact form needed was not found in the literature, we will present Sheil-Small’s form.

Lemma 3.8(The Counting Lemma)Suppose thal/ is a component o such thatQ)’ = 0
exactlyk times inU. Then mapsU onto H" exactlyr times wherd < v < k + 1.

To determine the degree &f in a component of< or K —, we will need to find the number
of times() takes on a certain value. A3 takes on each real value the same number of times,
we will look for where( takes on large real values, i.e. near points that are pol@s of

Lemma 3.9. Let g be a real polynomial of degree with only simple zeros be such that the
geometry ofK has a main artery. Then there are exactly+ 2 unbounded components of
KUK™.

Proof. We will show that the number of unbounded component&af K~ in H* is equal to
n + 2 first looking at the case th& has a single unbounded component and then in the general
case.

SinceK has a main arterys has exactly one componenj; that intersects the real axis. We
assume that this is the only unbounded compone#f.abince has a pole of ordeln + 1 at
infinity, there are2n + 1 sector like slices of and K~ in H™. In particular, there are slices
in K alternating withn + 1 slices inK~—. To see that there must be exactly 1 unbounded
components of< ~, note that if there were more, there would be more thamthel slices at
infinity in H*. Suppose that the number of unbounded components is atrmdsten there
must be one component for two of the slices. In order for this to happen, that component must
have a component df interior to it. This contradicts thdtf, is the one unbounded component.
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Thus, there are + 1 unbounded components &f~ and a total of. +2 unbounded components
of KUK inH*

Suppose thak — hask unbounded components, , U, , ..U, and inside each component,
U, , there aren; unbounded components &f. ChooseR > 0 so that{z : |z| = R} intersects
each unbounded component@k. LetD = K~ Nn{z : |z| > R}. Since@ has a pole of
order2n + 1 at infinity, it must be there case that consists of + 1 disjoint components in
K~ (D1, Do, ..., D,;) alternating withn disjoint components ofH* — D) N {z : |z| > R}.

k

Thus there aren; + 1 components o in U; for 1 < i < k and s0Y _m; + k = n + 1.

i=1
k

Further the number of unbounded component& o Z m; + 1 (the+1 is there because the

=1
one unbounded component whose boundary intersects the real axis can not be inside one of the
Uls) and the number of unbounded componentgofis k. Thus, the number of unbounded
components ol U K~ in H™ is equal tto:1 m; +1+k=n+2.
|

Lemma 3.10. Let g be a real polynomial of degree with only simple zeros such that the
geometry ofX” has a main artery. The number of zerog¥fin H* is at leastm +n — 1, where
m IS the K-multiplicity of poles of) on 0U, andU, is the main artery.

Proof. We first find the number of zeros ¢f in the main artery{/, of K and then we find a
lower bound for the number of zeros@f in H* — U,.

ChooseR > max{|ay|,...,|a,|} whereg(a;) = 0for1 <i < n. Letz,...z be the distinct
poles of@) on dU, andy; the Us-multiplicity of the pole of@ at z; for 1 < j < s. Fix disjoint
neighborhoodVy, . .. Ny aboutzy, . . ., z, so thatV;NUj is the union ofu; disjoint components
on each of which) is a univalent map onto a neighborhoodofin H+. Thentz1 N; Ny
is the union ofm, disjoint components. Le¥; be those components for< j < m;.

ChooseR, > R so that the diskz| < R, contains all the bounded componentsodf,
as well asUjZIN;. and so that the circléz| = R, intersects each of th&,’s unbounded
boundary components. Suppose there:gareinbounded components &f ~ inside U, that
share a boundary component with. PutD = UyN{z : |z| > Ry}. Denote the components of
DasD,...D,, 1. EachDy(k = 1,... v + 1) has exactly two unbounded boundary curves
defined byo D, N 0U,, say~y, and~y;,, with Q monotone ony, and~; and mappingy, and~;
one-to-one onto intervals-oo, x| andz},, co) respectively. Pub = Uy — (Uj:1 N;U D).
Then @ is analytic on the compadi and, for someM/ > 0, || < M on S. For eachk,

1 <k <o+ 1choose), € v} sothatQ(&),) > M and@’'(¢),) # 0. ThenQ(¢},) is assumed
exactly once o D;,.

Similarly, each component dVJ’ N oU, consists of exactly two bounded boundary curves,
say); and\’, with Q monotone omn\; and>\; and mapping\, and)\;. one-to-one onto intervals
(—o0,y;] and[y}, oo) respectively. For each 1 < j < s choose(; € X so thatQ(¢;) > M
andQ’'(¢}) # 0. ThenQ(()) is assumed exactly once om.

We choose a neighborhodg of £, on which( is univalent. Therf, = D, — V} is a closed
set withQ) — oo asz — oo in F, andQ(z) # &, = Q(&),) for z € Fy. It follows that there
is a neighborhoodV), of ) so that everyw, € W is assumed exactly once Iy, and never
assumed irfy.

Similarly, we choose a neighborhoo of C} on whichq is univalent. Therf{; = FJ’ -G
is a closed set witli) — oo asz — z; in G; andQ(z) # 7 = Q(C;) for z € H;. It follows
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that there is a neighborhodd of 7/ so that every; € W} is assumed exactly once @#; and
never assumed if/;.
Choose a pointy, € Wy andwy, € €2; and letw = max{wy,, . . WOy 415 WOy - ,Wo,, I

It also follows that we have the value assumed exactly, + 1 in D andzui times in

i=1

U;.”:l Nj. Thusz p; +vo+ 1 =m+ v+ 1times inl, once in each of th&/} and once in
i=1

each of theD,. SoQ is anm + v, + 1-fold map fromU, to H* and there are: + v, zeros of

Ql in Up.

Suppose there are unbounded components &f, Uy, ..., U,, whose boundaries do not
intersect the real axis withy, . . . ¢, unbounded components &~ insideUy, . . . U, respectively
and thatn; is theU — i-multiplicity of the non-real poles af). Suppose further that there dre
unbounded components &f~ with dy, . . ., d; unbounded components afinsidelU; , ..., U,
respectively. By the argument abovg,is at least a; + 1 + m;-fold map fromU; to H* for
1 <i < kandQ is at least al; + 1-fold map fromU; to H~ for 1 < i < [. So, by Lemma
, we have that the number of zeros(gffin U; is at leasic; + m; and inU; is at leastd;.
Therefore, there are at least, + v + Zle(ci +my;) + Zﬁzl d; zeros ofQ’ in H™.

Further, sincé) has a pole at infinity of ordén + 1, it follows thatv + Zle ci+k+1=n
andZﬁz1 d;+1 =n+1. So, the number of zeros ¢f in H* is Zf:o m;+2n+1—(k+1+1) =
m + 2n — (k +1). By Lemma 3.9 we have that+ [ = n + 1 and so our count is at least
m+2n—(n+1)=m+n—1.1

Lemma 3.11. Let g be a real polynomial of degreewith only simple zeros anfl’ has a main
artery. The number of zeros afin H* is equal to the ‘K-multiplicity” of poles ofQ on the
boundary ofK.

Proof. Let R > max{|a1],...,|an|, |b1],--.,|bn_1]} Wherea; is a zero ofg andb; is zero of

¢'. Note, that by Lemmp 3.3, it is the case that fhenultiplicity of poles of() is equal to the

A-multiplicity of zeros of L. Letm represent theé\-multiplicity of zeros of L in H*. Since
/

L = —J__ has a zero of ordetn + 1 at infinity, we have2n + 1 sector like slices ofA

9(¢> +1)
andA~ in {|z| > R} N H*, alternating inA and A~ beginning and ending iA~. Thus, there

aren sectors inA. Note thatL(z) — 0 asz — oo in A andL = 0 preciselym times on the
finite OA. Recall thatA\ ¢ K by Lemm4d 3.5. On each boundary componenApf. increases
(decreases) monotonically, so there must exist paints, ., §,,,,, € OA such thatL(§;) = oo
for 1 <i < m + n. Thereforeg(¢;) = 0 or g?(¢;) = —1. Sinceg?(¢;) = —1 preciselyn times,
it follows thatg(¢,) = 0 preciselym times.

4. EXTREME CURVATURE

We are now in a position to prove our theorem.

Theorem 4.1.1If g is a real polynomial of degree with only simple zeros and the geometry of
K has a main artery, then there exist at least- 1 zeros oft” € HY, with H* = {2 € C :

Im(z) > 0} andh = g/+/1+ (9)%.

Proof. Let g be a real polynomial of degree with only simple zeros such that there is one
unbounded componen}, of K whose boundary intersects the real axis. By Lernma 3.10 there
are at leastn + n — 1 zeros ofQ’ in H*, wherem is the Uy-multiplicity of the zeros ofL on

K. Note that the number of zeros bfin K is equal to thei-multiplicity of the zeros ofL on
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K by Lemmd 3.1L. Sinc®’ = hh"/(1')?, we have that the number of zeros/dfin H is at
leastn — 1.

Theorem[1.3. Let f be a real polynomial of degree such thatf’ has only simple zeros
andK = {z € H* : ImQ(z) > 0} has a main artery wher@(z) = z — h(z)/h'(z) and
h = f"/\/1+ (f")? Thenf has at most. — 1 points of extreme curvature.

Proof. Let f be a polynomial of degree. Then, lety = f’. Applying Theorenj 4]1 tg we
have that)” has at least — 2 zeros inH . Sinceh” is of degree8n — 5 and at leasin — 4 of
the zeros are non-real, we have that at ndast- 5 — (2n — 4) = n — 1 zeros ofh” are real.
The real zeros of” are exactly the points of extreme curvaturefof

5. OPEN QUESTIONS

The extreme curvature conjecture, is still open. It is easily stated so that even a calculus
students can understand it and empirically verify it with a computer algebra system, but a proof
aludes us. If a level curves technique is to work, much must be learned about the geometry.

We now list some conjectures:

(1) If fis areal polynomial of degreegreater than 1, then the curvaturef f has at most
n — 1 extreme points.

(2) If f is a real polynomial of degree greater than 1, there is a small positive constant,
a > 0 so that the geometry df, = {z € H" : ImQ,(z) > 0} has a main artery where
Q.(2) =2z —h(2)/I(z) andh = af’//1+ (af")?.

(3) If fis a real polynomial of degree greater than 1, then the curvatwef af has at
mostn — 1 extreme points, whereis a suitably small positive constant.

(4) If fis areal polynomial of degreegreater than 1 anklis defined byh(z) = f(2) —iz
for z € C, then{z € R : {h, z} € R} contains at most — 1 points, whergh, 2} is the
Schwarzian derivative of an analytic function,[3]
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