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ABSTRACT. Let f be a real polynomial of degree n. Determining the maximum number of zeros
of kappa, the curvature of f, is an easy problem: since the zeros of kappa are the zeros of f”,
the curvature of f is 0 at most n-2 times. A much more intriguing problem is to determine the
maximum number of relative extreme values for the function kappa. Since kappa’=0 at each
extreme point of kappa, we are interested in the maximum number of zeros of kappa’. In 2004,
the first author and R. Gordon showed that if all the zeros of f” are real, then f has at most n-1
points of extreme curvature. We use level curves and auxiliary functions to study the zeros of the
derivatives of these functions. We provide a partial solution to this problem, showing that f has
at most n-1 points of extreme curvature, given certain geometrical conditions. The conjecture
that f has at most n-1 points of extreme curvature remains open.
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1. I NTRODUCTION

Let f be a real polynomial of degreen, wheren ≥ 1. Then

f(z) = anz
n + an−1z

n−1 + · · ·+ a0

whereai ∈ R. The curvature off is defined to be

κ =
f ′′

(1 + f ′2)
3
2

.

Determining the maximum number of zeros ofκ is an easy problem: since the zeros ofκ are
the zeros off ′′, the curvature off is 0 at mostn − 2 times. A much more intriguing problem
is to determine the maximum number of relative extreme values for the functionκ. A point c is
an extreme point ofκ if κ has either a relative maximum or a relative minimum value atc. In
this case the value ofκ at c is anextreme valueof κ. Sinceκ′ = 0 at each extreme point ofκ,
we are interested in the maximum number of zeros ofκ′.

In 2004, the first author and R. Gordon [3] explored the notion of extreme curvature and
posed the following conjecture:

Conjecture 1.1(Edwards-Gordon (2004)). If f is a real polynomial of degreen greater than
1, then the curvatureκ of f has at mostn− 1 extreme points.

In their paper, they verified the conjecture forn = 1, n = 2, andn = 3 and went further to
establish the following partial result:

Theorem 1.2. [3] If f is a real polynomial of degreen > 1 andf ′′ has only real zeros, then the
curvatureκ of f has at mostn− 1 extreme points.

In this paper, we remove the hypothesis thatf ′′ has only real zeros, however, we add a
hypothesis on the geometry of the level sets that we will be studying.

Theorem 1.3. Let f be a real polynomial of degreen such thatf ′ has only simple zeros and
K = {z ∈ H+ : ImQ(z) > 0} has a only one unbounded component with boundary intersect-
ing the real axis whereQ(z) = z − h(z)/h′(z) andh = f ′/

√
1 + (f ′)2. Thenf has at most

n− 1 points of extreme curvature.

2. BACKGROUND

The proof of Theorem 1.2 was inspired by a solution to a Pólya and Szegö exercise [10]; Let
P be a real polynomials of degreen > 1 such thatP has only real zeros. Find the number of
real and non-real zeros ofP 2 + P ′. If one is to remove the hypothesis on the zeros ofP , the
problem becomes quite difficult. In fact, it was not until the late 1980’s when T. B. Sheil-Small
[11] was able to avoid the hypothesis onP to prove thisP 2 + P ′ problem by using auxiliary
functions,

f(z) = e
R

P (z) dz L(z) =
f ′(z)

f(z)
Q(z) = z − f(z)

f ′(z)

and studying the zero level curves of the imaginary part of these functions. In addition he
studied the components

(2.1) Λ = {z ∈ H+ : ImL(z) > 0} K = {z ∈ H+ : ImQ(z) > 0}
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EXTREME CURVATURE OF POLYNOMIALS AND LEVEL SETS 3

whereH+ = {z ∈ C : Imz > 0} and counted the number of non-real zeros ofQ′ insideK,
where

Q′(z) =
f(z)f ′′(z)

(f ′(z))2
f ′′(z) =

(
(P (z))2 + P ′(z)

)
e
R

P (z)dz

A. Hinkkanen ([8], [9], [7], [6]), while working with a certain class of meromorphic func-
tions, studied the same auxiliary functions, their zero level curves, and the same components as
Sheil-Small. In addition, he also studied the components of

(2.2) Λ− = {z ∈ H+ : ImL(z) < 0} K− = {z ∈ H+ : ImQ(z) < 0}.
Further, the first author and S. Hellerstein expounded on the Sheil-Small and Hinkkanen

techniques in [4]. A survey of the use of level curves can be found in [2].
We begin by defining our auxiliary functions. Letf be a real polynomial of degreen andf ′

have only simple zeros. Definef ′ = g and leth be defined as

(2.3) h(z) =
g(z)√

1 + (g(z))2
.

Then, we define the auxiliary functions,L andQ, as follows:

(2.4) L(z) =
h′(z)

h(z)
=

g′(z)

g(z)(1 + (g(z))2)
Q(z) = z − h(z)

h′(z)
.

We will be interested inQ′(z) becauseQ′ =
hh′′

(h′)2
andh′′ =

(1 + g2)g′′ − 3g(g′)2

(1 + g2)5/2
. It should

be noted that the numerator ofh′′ is exactly equal to the numerator ofκ′ wheng is replaced by
f ′. So, finding the real and non-real zeros ofh′′ will find the real and non-real zeros ofκ′, and
the real zeros ofh′′ are the points of extreme curvature off .

With these observations, we can rephrase our conjecture.

Conjecture 2.1. If g is a real polynomial of degreen > 1, then the polynomial3gg′2−g′′(1+g2)
has at mostn real roots.

Noting that the degree ofh′′ is 3n− 2, we want to show that there are at mostn real zeros of
h′′. We can again restate our conjecture in an equivalent form.

Conjecture 2.2. If f is a real polynomial of degreen, then there exist at leastn − 1 zeros of
h′′ ∈ H+, whereH+ = {z ∈ C : Im(z) > 0}.

3. THE GEOMETRY OF THE COMPONENTS OF Λ AND K

In this section, we define the level setsK, K−, Λ, Λ−, and the various geometrical character-
istics of these sets. We will characterize the locations of the zeros ofg andg′ (and equivantly,
h andh′) with regard to these level sets, as well as define some characteristics of the level sets
themselves. We note that the zeros ofg (andh) are the poles ofL; the zeros ofg′ (andh′) are
zeros ofL and poles ofQ.

We begin by stating a fundamental result for polynomials. It states that each real value cannot
be taken on infinitely many times by our two functions,Q andL.

Lemma 3.1.Supposeg(z) is a real polynomial of degreen. Then bothQ(z) = z − g(z)(1 + g(z)2)

g′(z)

andL(z) =
g′(z)

g(z)(1 + g(z)2)
take on each real value finitely often inH+ and3n times inC.
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4 STEPHANIE P. EDWARDS AND TARAH J. JENSEN AND EDWARD NIEDERMEYER AND L INDSAY WILLETT

Proof. See Beardon[1] page 31.

3.1. Zeros. We now discuss the relationship between the zeros ofg, g′ andh′′ and the com-
ponentsK, K−, Λ, andΛ− whereh is as in equation (2.3),K, Λ, K−, Λ− are as in equations
(2.1), (2.2). We note that the zeros of a polynomialg are simple poles ofL = g′/g and that
the zeros ofg (all simple) are also zeros ofh andQ′ = hh′′/(h′)2 whereQ is as in equation
(2.4). Further, ifz0 is a zero of multiplicitym > 1, thenQ′ has a removable singularity atz0

andQ′(z0) = (m− 1)/m.
The following results can be found in [4] in section 3.1.

Lemma 3.2. Letg(z0) = 0 wherez0 ∈ R ∪H+.

(1) If z0 ∈ R andz0 is a simple zero ofg, thenz0 ∈ ∂K ∩ ∂K−.
(2) If z0 ∈ H+ thenz0 ∈ K andz0 ∈ ∂Λ− ∩ ∂Λ.

Lemma 3.3. Letg′(z0) = 0 wherez0 ∈ R ∪H+.

(1) If z0 ∈ H+, thenz0 ∈ ∂K ∩ ∂K−

(2) If z0 ∈ R andz0 is a simple zero ofg′:

(a) If
(

g′′

g

)
(z0) > 0, thenz0 ∈ ∂Λ

(b) If
(

g′′

g

)
(z0) < 0, thenz0 ∈ ∂Λ−

(3) z0 ∈ ∂Λ if and only ifz0 ∈ ∂K
(4) z0 ∈ ∂Λ− if and only ifz0 ∈ ∂K−

Proof. This proof is similar to that in [4]. It is essential to note that

sgn(L′(z0)) = sgn(
g′′

g
(z0))

whenz0 ∈ R.

We now discuss multiple zeros ofL (or equivantly, multiple zeros ofg′ andh′) on the bound-
aries of bothΛ andK. To so this, begin by assigning a weight to each zero ofL.

Let x ∈ R whereL(x) =
g′(x)

g(x)
= 0. Theweight ω, of the pointx, a real zero ofL of multi-

plicity m is defined to beω =
m + ξ

2
whereξ = 0 if m is even andξ = sgn

(
(
g(m+1)

g
)(x)

)
∈ {1,−1}

if m is odd. Letz ∈ H+ whereL(z) = 0. Theweight ω, of the pointz, a non-real zero ofL of
multiplicity m is defined to beω = m.
The following lemma is due to Hinkkanen (Lemma 5.1 (5) in [8]).

Lemma 3.4. Let x0 ∈ ∂K ∩ ∂K− ∩ R wherex0 is a multiple pole of the functionQ(z) =

z − g(z)

g′(z)
. Theng′(x0) = 0 andg(x0) 6= 0.

In addition, in a neighborhood ofx0 in H+ there arem sector-like slices with vertex atx0, lying
alternating inK andK−, wherem = ord(g′, x0).
It follows that if the number of slices inK is equal to the weight assigned to the zero ofL.

Definition 3.1. Let γ be a boundary component of a componentU(U−) of K(K−). At each
point ζ ∈ γ with Q′(ζ) 6= 0,∞ we choose a unique unit tangent vectorT to γ defined by the
requirement that iT is a unit inner normal vectorN for U(U−) at ζ. ThenT (ζ) defines the
“positive direction” ofγ relative toU(U−). Similarly for λ, a boundary component ofV (V −)
of Λ(Λ−).
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EXTREME CURVATURE OF POLYNOMIALS AND LEVEL SETS 5

Lemma 3.5. [4] Letγ be a boundary component of a componentU(U−) of K(K−). If γ is tra-
versed in the positive direction relative toU(U−) thenQ is monotone increasing (or decreasing)
along any arcγ′ ⊂ γ with Q′(ζ) 6= 0,∞ for ζ ∈ γ′. Similarly, letλ be a boundary component
of a componentV (V −) of Λ(Λ−). If λ is traversed in the positive direction relative toV (V −)
thenL is monotone increasing (or decreasing) along any arcλ′ ⊂ λ with L′(ζ) 6= 0,∞ for
ζ ∈ λ′.

Remarks

(1) If Q′(ζ0) = 0,∞ andζ0 ∈ γ, then as we leaveζ0 and transverseγ in a positive direction
relative toU(U−) we may return toζ0 k times, with0 ≤ k ≤ k0 − 1 and k0 the
multiplicity of the zeroζ0 of Q′ or respectively, the multiplicity of the pole ofQ at ζ0.
This follows immediately from the sector like configuration of the components ofK
andK− in a neighborhood ofζ0 (Lemma 3.4). Each departure fromζ0 followed by a
first subsequent return toζ0 defines a closed curve, “a loop”,γ′ ⊂ γ, (which may not be
simple). It is tacitly assumed that every loopγ′ is traversed exactly once alongγ.

(2) SinceQ is monotone increasing (decreasing) along a loopλ at ζ0 we must encounter at
least one pole ofQ alongλ at some pointη onλ.

(3) Since there are finitely many poles ofQ (g is a polynomial), we have at most finitely
many poles onγ, a boundary component ofU (Lemma 3.4). The number of times a
poleζ0 of Q is encountered as we traverseγ will be referred to as the“ U multiplicity”
of the poleζ0, which exceeds by one the number of loops ofγ at ζ0. The total number
of theU multiplicities of poles ofQ onγ will determine the “U -multiplicity of the poles
onγ”. If γ is a boundary component ofU−, then we still have only finitely many poles
on γ, sinceQ has only finitely many poles onH+. In analogy with the above we will
use the terms the“ U− multiplicity” of the poleζ0 ∈ γ and the “U -multiplicity of the
poles onγ" with their obvious meanings.

(4) We note that theU(U−)-multiplicity of a pole,ζ0 ∈ γ is the number of sectorial regions
in all local neighborhoods ofζ0 contained inU(U−). We now have an obvious meaning
for the terms theK(K−)-multiplicity of one (or more) pole(s) ofQ on a boundary
component or particular boundary components ofK(K−).

(5) Each of the above remarks hold forL andλ, a boundary component ofV (V −) of Λ(Λ−).

3.2. Components ofΛ and K. We will now move on to components ofΛ andΛ−, K andK−.
We first turn our attention to unbounded components ofΛ andK. We letg be a polynomial of
degreen with only simple zeros. SinceL has a zero at infinity of order2n + 1 andQ has a pole
at infinity of the same order, in a neighborhood of infinity, there are sector like slices ofK and
K−, Λ andΛ−. Whether the boundaries of the components of the sector-like slices touch the
real axis is not entirely clear from the function, however, empirical evidence suggest that we
can find a small positive constant so that there is one unbounded component ofK and exactly
two unbounded components ofK− whose boundaries intersect the real axis. If there is one
unbounded component ofK and exactly two unbounded components ofK− whose boundaries
intersect the real axis, we call that unbounded component ofK the“ main artery” .

In the rest of this paper, we will assume that the functiong is a polynomial of degreen with
only zeros and is such that the geometry of the components ofK has a main artery.

We now introduce a topological definition which we will find convenient.

Definition 3.2. Let U(U−) be a component ofK(K−) in H+ andΓ a component of the bound-
ary ofU(U−) in H+. ThenΓ is the“exterior boundary component” of U(U−) if the compo-
nent of the complement ofΓ in C containingH− contains no points ofU(U−). The component
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of the complement ofΓ containingU(U−) we term the“interior” of Γ, and denote it by Int(Γ).
We may now talk about a component being in the interior of another component.

We also require the following elementary and useful observation.

Lemma 3.6. Suppose thatg is a real polynomial of degreen. ThenΛ ⊂ K.

Proof. This is Lemma 2 of Sheil-Small’s paper [11], and follows from the observation that for

z ∈ Λ, ImQ(z) = Imz +
ImL(z)

|L(z)|2
>

ImL(z)

|L(z)|2
> 0.

3.3. The Degree ofQ. We now turn our attention to finding the degree of the functionQ in
components ofK andK−.

Lemma 3.7. Let U be a component ofK. ThenQ mapsU ontoH+. Similarly, letU− be a
component ofK−. ThenQ mapsU− ontoH−.

Proof. Let U be a component ofK. SinceU ⊂ K = {z ∈ H+ : ImQ(z) > 0}, it follows that
Q(U) ⊂ H+. Suppose thatQ(U) 6= H+. Then there is a pointz0 ∈ H+ such thatz0 ∈ ∂Q(U).
There is also a neighborhood,N of z0 such thatN ∩ Q(U) 6= ∅ andN ∩ Q(U)c∩ 6= ∅ (where
Q(U)c = H+−Q(U)). In order to consider the appropriate branch ofQ−1, choosea ∈ U such
thatQ′(a) 6= 0. Then a branch of the inverse function exists atb = Q(a) such thatQ−1(b) = a
becauseQ(z) → ∞ asz → ∞ in K. Using this branch, we have thatQ−1(N) ∩ U 6= ∅ and
Q−1(N) ∩ U c 6= ∅ (whereU c = H+ − U ). This means that∂U ∩Q−1(N) 6= ∅. Now Q maps
∂U onto the real axis and thereforez0 ∈ R which is a contradiction. ThusQ mapsU ontoH+.

To show thatQ maps a componentU− of K ontoH−, consider the auxiliary functionF (z) =
−Q(z). It follows then thatF (U−) ⊂ H+. The above argument shows thatF (U−) = H+.

The Counting Lemma is a form of the so called Riemann-Hurwitz Theorem. It can be found
for rational functions in Beardon [1] and can be found for Riemann surfaces in Farkas and Kra
[5]. It is also known as the McDonald Lemma found in Pólya and Szegö[10], page 297. Since
the exact form needed was not found in the literature, we will present Sheil-Small’s form.

Lemma 3.8 (The Counting Lemma). Suppose thatU is a component ofK such thatQ′ = 0
exactlyk times inU . ThenQ mapsU ontoH+ exactlyν times where1 ≤ ν ≤ k + 1.

To determine the degree ofQ in a component ofK or K−, we will need to find the number
of timesQ takes on a certain value. AsQ takes on each real value the same number of times,
we will look for whereQ takes on large real values, i.e. near points that are poles ofQ.

Lemma 3.9. Let g be a real polynomial of degreen with only simple zeros be such that the
geometry ofK has a main artery. Then there are exactlyn + 2 unbounded components of
K ∪K−.

Proof. We will show that the number of unbounded components ofK ∪K− in H+ is equal to
n+2 first looking at the case thatK has a single unbounded component and then in the general
case.

SinceK has a main artery,K has exactly one component,U0 that intersects the real axis. We
assume that this is the only unbounded component ofK. SinceQ has a pole of order2n + 1 at
infinity, there are2n + 1 sector like slices ofK andK− in H+. In particular, there aren slices
in K alternating withn + 1 slices inK−. To see that there must be exactlyn + 1 unbounded
components ofK−, note that if there were more, there would be more than then + 1 slices at
infinity in H+. Suppose that the number of unbounded components is at mostn. Then there
must be one component for two of the slices. In order for this to happen, that component must
have a component ofK interior to it. This contradicts thatU0 is the one unbounded component.
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EXTREME CURVATURE OF POLYNOMIALS AND LEVEL SETS 7

Thus, there aren+1 unbounded components ofK− and a total ofn+2 unbounded components
of K ∪K− in H+

Suppose thatK− hask unbounded components,U−
0 , U−

1 , . . .U−
k and inside each component,

U−
i , there aremi unbounded components ofK. ChooseR > 0 so that{z : |z| = R} intersects

each unbounded component of∂K. Let D = K− ∩ {z : |z| > R}. SinceQ has a pole of
order2n + 1 at infinity, it must be there case thatD consists ofn + 1 disjoint components in
K− (D1, D2, . . . , Dn+1) alternating withn disjoint components of(H+ −D) ∩ {z : |z| > R}.

Thus there aremi + 1 components ofD in U−
i for 1 ≤ i ≤ k and so

k∑
i=1

mi + k = n + 1.

Further the number of unbounded components ofK is
k∑

i=1

mi + 1 (the+1 is there because the

one unbounded component whose boundary intersects the real axis can not be inside one of the
U ′

is) and the number of unbounded components ofK− is k. Thus, the number of unbounded
components ofK ∪K− in H+ is equal to

∑k
i=1 mi + 1 + k = n + 2.

Lemma 3.10. Let g be a real polynomial of degreen with only simple zeros such that the
geometry ofK has a main artery. The number of zeros ofQ′ in H+ is at leastm+n− 1, where
m is theK-multiplicity of poles ofQ on∂U0 andU0 is the main artery.

Proof. We first find the number of zeros ofQ′ in the main artery,U0 of K and then we find a
lower bound for the number of zeros ofQ′ in H+ − U0.

ChooseR > max{|a1|, . . . , |an|}whereg(ai) = 0 for 1 ≤ i ≤ n. Letz1, . . . zs be the distinct
poles ofQ on∂U0 andµj theU0-multiplicity of the pole ofQ at zj for 1 ≤ j ≤ s. Fix disjoint
neighborhoodsN1, . . . Ns aboutz1, . . . , zs so thatNj∩U0 is the union ofµj disjoint components
on each of whichQ is a univalent map onto a neighborhood of∞ in H+. Then

⋃s
j=1 Nj ∩ U0

is the union ofm0 disjoint components. LetN ′
j be those components for1 ≤ j ≤ m0.

ChooseR0 > R so that the disk|z| < R0 contains all the bounded components of∂U0

as well as
⋃s

j=1 N
′
j and so that the circle|z| = R0 intersects each of theU0’s unbounded

boundary components. Suppose there areν0 unbounded components ofK− inside U0 that
share a boundary component withU0. PutD = U0∩{z : |z| > R0}. Denote the components of
D asD1, . . . Dν0+1. EachDk(k = 1, . . . , ν0 + 1) has exactly two unbounded boundary curves
defined by∂Dk ∩ ∂U0, sayγk andγ′k, with Q monotone onγk andγ′k and mappingγk andγ′k
one-to-one onto intervals(−∞, xk] and[x′k,∞) respectively. PutS = U0 −

(⋃s
j=1 N ′

j ∪D
)

.

ThenQ is analytic on the compactS and, for someM > 0, |Q| ≤ M on S. For eachk,
1 ≤ k ≤ ν0 + 1 chooseξ′k ∈ γ′k so thatQ(ξ′k) > M andQ′(ξ′k) 6= 0. ThenQ(ξ′k) is assumed
exactly once on∂Dk.

Similarly, each component ofN ′
j ∩ ∂U0 consists of exactly two bounded boundary curves,

sayλj andλ′j, with Q monotone onλj andλ′j and mappingλj andλ′j one-to-one onto intervals
(−∞, yj] and[y′j,∞) respectively. For eachj, 1 ≤ j ≤ s chooseζ ′j ∈ λ′j so thatQ(ζ ′j) > M

andQ′(ζ ′j) 6= 0. ThenQ(ζ ′j) is assumed exactly once on∂N ′
j.

We choose a neighborhoodV ′
k of ξ′k on whichQ is univalent. ThenFk = Dk −V ′

k is a closed
set withQ → ∞ asz → ∞ in Fk andQ(z) 6= x̃′k = Q(ξ′k) for z ∈ Fk. It follows that there
is a neighborhoodWk of x̃′k so that everywk ∈ Wk is assumed exactly once inVk and never
assumed inFk.

Similarly, we choose a neighborhoodG′
j of ζ ′j on whichQ is univalent. ThenHj = N ′

j −G′
j

is a closed set withQ → ∞ asz → zj in Gj andQ(z) 6= ỹ′j = Q(ζ ′j) for z ∈ Hj. It follows
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8 STEPHANIE P. EDWARDS AND TARAH J. JENSEN AND EDWARD NIEDERMEYER AND L INDSAY WILLETT

that there is a neighborhoodΩj of ỹ′j so that everyωj ∈ Wj is assumed exactly once inGj and
never assumed inHj.

Choose a point,w0k
∈ Wk andω0j

∈ Ωj and letw = max{w01 , . . . w0v0+1 , ω01 , . . . , ω0m}.

It also follows that we have the valuew assumed exactlyν0 + 1 in D and
s∑

i=1

µi times in

⋃m
j=1 N ′

j. Thus
s∑

i=1

µi + ν0 + 1 = m + ν0 + 1 times inU0, once in each of theN ′
j and once in

each of theDk. SoQ is anm + ν0 + 1-fold map fromU0 to H+ and there arem + ν0 zeros of
Q′ in U0.

Suppose there arek unbounded components ofK, U1, . . . , Uk, whose boundaries do not
intersect the real axis withc1, . . . ck unbounded components ofK− insideU1, . . . Uk respectively
and thatmi is theU − i-multiplicity of the non-real poles ofQ. Suppose further that there arel
unbounded components ofK− with d1, . . . , dl unbounded components ofK insideU−

1 , . . . , U−
l

respectively. By the argument above,Q is at least aci + 1 + mi-fold map fromUi to H+ for
1 ≤ i ≤ k andQ is at least adi + 1-fold map fromU−

i to H− for 1 ≤ i ≤ l. So, by Lemma
3.8, we have that the number of zeros ofQ′ in Ui is at leastci + mi and inU−

i is at leastdi.
Therefore, there are at leastm0 + ν0 +

∑k
i=1(ci + mi) +

∑l
i=1 di zeros ofQ′ in H+.

Further, sinceQ has a pole at infinity of order2n+1, it follows thatν0 +
∑k

i=1 ci +k+1 = n

and
∑l

i=1 di+l = n+1. So, the number of zeros ofQ′ in H+ is
∑k

i=0 mi+2n+1−(k+1+l) =
m + 2n − (k + l). By Lemma 3.9 we have thatk + l = n + 1 and so our count is at least
m + 2n− (n + 1) = m + n− 1.

Lemma 3.11.Letg be a real polynomial of degreen with only simple zeros andK has a main
artery. The number of zeros ofh in H+ is equal to the “K-multiplicity” of poles ofQ on the
boundary ofK.

Proof. Let R > max{|a1|, . . . , |an|, |b1|, . . . , |bn−1|} whereai is a zero ofg andbi is zero of
g′. Note, that by Lemma 3.3, it is the case that theK-multiplicity of poles ofQ is equal to the
Λ-multiplicity of zeros ofL. Let m represent theΛ-multiplicity of zeros ofL in H+. Since

L =
g′

g(g2 + 1)
has a zero of order2n + 1 at infinity, we have2n + 1 sector like slices ofΛ

andΛ− in {|z| > R} ∩H+, alternating inΛ andΛ− beginning and ending inΛ−. Thus, there
aren sectors inΛ. Note thatL(z) → 0 asz → ∞ in Λ andL = 0 preciselym times on the
finite ∂Λ. Recall thatΛ ⊂ K by Lemma 3.6. On each boundary component ofΛ, L increases
(decreases) monotonically, so there must exist points,ξ1, . . . , ξn+m ∈ ∂Λ such thatL(ξi) = ∞
for 1 ≤ i ≤ m + n. Thereforeg(ξi) = 0 or g2(ξi) = −1. Sinceg2(ξi) = −1 preciselyn times,
it follows thatg(ξi) = 0 preciselym times.

4. EXTREME CURVATURE

We are now in a position to prove our theorem.

Theorem 4.1. If g is a real polynomial of degreen with only simple zeros and the geometry of
K has a main artery, then there exist at leastn − 1 zeros ofh′′ ∈ H+, with H+ = {z ∈ C :

Im(z) > 0} andh = g/
√

1 + (g)2.

Proof. Let g be a real polynomial of degreen with only simple zeros such that there is one
unbounded componentU0 of K whose boundary intersects the real axis. By Lemma 3.10 there
are at leastm + n − 1 zeros ofQ′ in H+, wherem is theU0-multiplicity of the zeros ofL on
K. Note that the number of zeros ofh in K is equal to theK-multiplicity of the zeros ofL on
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K by Lemma 3.11. SinceQ′ = hh′′/(h′)2, we have that the number of zeros ofh′′ in H+ is at
leastn− 1.

Theorem 1.3. Let f be a real polynomial of degreen such thatf ′ has only simple zeros
andK = {z ∈ H+ : ImQ(z) > 0} has a main artery whereQ(z) = z − h(z)/h′(z) and
h = f ′/

√
1 + (f ′)2 Thenf has at mostn− 1 points of extreme curvature.

Proof. Let f be a polynomial of degreen. Then, letg = f ′. Applying Theorem 4.1 tog we
have thath′′ has at leastn− 2 zeros inH+. Sinceh′′ is of degree3n− 5 and at least2n− 4 of
the zeros are non-real, we have that at most3n − 5 − (2n − 4) = n − 1 zeros ofh′′ are real.
The real zeros ofh′′ are exactly the points of extreme curvature off .

5. OPEN QUESTIONS

The extreme curvature conjecture, is still open. It is easily stated so that even a calculus
students can understand it and empirically verify it with a computer algebra system, but a proof
aludes us. If a level curves technique is to work, much must be learned about the geometry.

We now list some conjectures:

(1) If f is a real polynomial of degreen greater than 1, then the curvatureκ of f has at most
n− 1 extreme points.

(2) If f is a real polynomial of degreen greater than 1, there is a small positive constant,
a > 0 so that the geometry ofKa = {z ∈ H+ : ImQa(z) > 0} has a main artery where
Qa(z) = z − h(z)/h′(z) andh = af ′/

√
1 + (af ′)2.

(3) If f is a real polynomial of degreen greater than 1, then the curvatureκ of af has at
mostn− 1 extreme points, wherea is a suitably small positive constant.

(4) If f is a real polynomial of degreen greater than 1 andh is defined byh(z) = f(z)− iz
for z ∈ C, then{z ∈ R : {h, z} ∈ R} contains at mostn− 1 points, where{h, z} is the
Schwarzian derivative of an analytic function,h. [3]
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