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ABSTRACT. To find the steady state probability vector of homogenous linear systemπQ = 0
of stochastic rate matrixQ, generalized triangular and symmetric (GTS) splitting method is
presented. Convergence analysis and choice of parameters are given when the regularized matrix
A = QT + εI of the regularized linear systemAx = b is positive definite. Analysis shows that
the iterative solution of GTS method converges unconditionally to the unique solution of the
regularized linear system. From the numerical results, it is clear that the solution of proposed
method converges rapidly when compared to the existing methods.
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2 B. HARIKA AND D. RAJAIAH AND L. P. RAJKUMAR AND MALLA REDDY PERATI

1. I NTRODUCTION

A class of Markovian Arrival Process (MAP) and Markov modulated Poisson process (MMPP)
are generalization of the Poisson process. These are widely used in the modelling of communi-
cation systems, automata networks, and manufacturing systems[1, 2, 3, 4, 5, 6, 7, 8]. Many net-
work models, in general, have a regular repetitive structure that fits within the matrix geometric
frame work [9]. In most of the cases, when the network nodes are modeled as queueing systems,
the problem of computation of performance measures is reduced to that of steady state proba-
bility distribution vector of transition rate matrix or transition probability matrix. Therefore, it
is the key importance to investigate pertinent linear system. In this direction, many researchers
proposed the methods and their convergence criteria [2, 7, 4, 8, 28, 9, 30, 3, 6, 27, 19, 25, 29, 21].
The significant improvements in convergence rates can be achieved from the Krylov subspace
methods [29, 20, 22, 32], some preconditioning techniques [14, 18, 16], and two splitting
and multi splitting iterative methods [15, 21]. Two alternative methods (Hermitian and Skew-
Hermitian) HSS and (Positive definite Skew-Symmetric) PSS methods proposed in the papers
[10, 11] which converge unconditionally to the unique solution of the system of equations.
Moreover, the triangular and skew-symmetric (TSS) iteration method has been developed and
discussed for solving positive-definite linear system of stochastic matrices [21]. It is clear from
the papers [21, 10, 11] that the estimation of optimal parameterα is not so easy. In the paper
[26], the triangular and symmetric (TS) iteration method has been developed to compute the
steady state vector of pertinent linear system of circulant stochastic matrices. In the said paper,
the TS method is restricted only for circulant matrices. Hence, in this paper, we generalize
the TS method to find the steady state probability vector of positive definite regularized linear
system of general stochastic matrices. This method splits the regularized matrix into the trian-
gular and symmetric matrices. Moreover, we modify the splitting matrices for the estimation of
optimal parameter, and its convergence criteria.

The rest of the paper is organized as follows: In section 2, the regularized preconditioned
linear system of rate matrix is considered. In section 3, the GTS iteration method is applied to
solve the regularized linear system and discussed its convergence. In section 4, the choice of
the contraction factorα is analyzed and proposed an inexact triangular and symmetric splitting
(ITS) iteration method. In section 5, the proposed method is implemented numerically to realize
the advantages. Finally, conclusions are drawn in section 6.

2. REGULARIZED PRECONDITIONED L INEAR SYSTEM OF STOCHASTIC M ATRICES

In this section, we define some basic definitions and prove that the stochastic rate matrix is
singular M-matrix. We shall prove that the coefficient matrix in the preconditioned regularized
linear system is positive definite.
Definition 1. Any matrix A ∈ Rn×n of the formA = sI − B, s > 0, B ≥ 0 is called an
M-matrix if s ≥ ρ(B). If s > ρ(B) thenA is non-singular M-matrix, otherwiseA is singular
M-matrix.
Definition 2. A non-symmetric matrixA ∈ Rn×n is M-matrix if its symmetric partA+AT

2
is

M-matrix.
Definition 3. A non-symmetric matrixA ∈ Rn×n is positive definite if its symmetric part is
positive definite.
Consider the stochastic probablity matrix
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P =


p11 p12 p13 . . . p1n

p21 p22 p23 . . . p2n

p31 p32 p33 . . . p3n

. . . . . . . . .
...

...
pn1 pn2 pn3 . . . pnn

 (say) for

0 ≤ pij ≤ 1, 1 ≤ i, j ≤ n(2.1)

and
n∑

i,j=1

pij = 1. Since each row and column sum are one, then the matrixP is a doubly

stochastic matrix. The steady state distribution vectorπ satisfies the equation

π = πP,

⇒ π[I − P ] = 0,

⇒ πQ = 0,(2.2)

where

Q = I − P =


q11 q12 q13 . . . q1n

q21 q22 q23 . . . q2n

q31 q32 q33 . . . q3n

. . . . . . . . .
...

...
qn1 qn2 qn3 . . . qnn

 (say) for

qii > 0, qij ≤ 0, 1 ≤ i, j ≤ n,(2.3)

and
n∑

i,j=1

qij = 0. Since each row and column sum are zero, then the matrixQ is a doubly

stochastic rate matrix.

Theorem 2.1. [17] Let A = (aij) be ann × n nonnegative matrix with spectral radiusρ(A)
and row sumsri(A), i ∈ {1, 2, ...., n}. Then,min

i
ri(A) ≤ ρ(A) ≤ max

i
ri(A). Moreover, if A

is an irreducible matrix, then equality holds on either side if and only if all row sums of A are
equal.

Lemma 2.2. A stochastic rate matrixQ ∈ Rn×n is singular M-matrix.

Proof. Consider the stochastic rate matrixQ given in “Eq. (2.3)”.
SinceQ stochastic rate matrix then the sum of each row and each column is zero.

i.e.,
n∑

i,j=1

qij = 0 with qii > 0, qij ≤ 0, 1 ≤ i, j ≤ n,(2.4)

⇒ qii =
n∑

j=1,i6=j

qij for i = 1, 2, 3 . . . , n(2.5)
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4 B. HARIKA AND D. RAJAIAH AND L. P. RAJKUMAR AND MALLA REDDY PERATI

From the definition 2, in order to prove the matrixQ is singular M-matix, it is suffices to prove
that symmetric part of the matrixQ, i.e., Q+QT

2
is singular M-Matrix. Therefore, we consider

Q + QT

2
=


q11

q12+q21

2
q13+q31

2
. . . q1n+qn1

2
q12+q21

2
q22

q23+q32

2
. . . q2n+qn2

2
q13+q31

2
q32+q23

2
q33 . . . q3n+qn3

2
...

...
...

...
...

q1n+qn1

2
q2n+qn2

2
q3n+qn3

2
. . . qnn

 ,(2.6)

= aIn −R (say), wherea = max
1≤i≤n

qii(2.7)

andR =


a− q11

q12+q21

2
q13+q31

2
. . . q1n+qn1

2
q12+q21

2
a− q22

q23+q32

2
. . . q2n+qn2

2
q13+q31

2
q32+q23

2
a− q33 . . . q3n+qn3

2
...

...
...

...
...

q1n+qn1

2
q2n+qn2

2
q3n+qn3

2
. . . a− qnn

 ≥ 0,(2.8)

andIn is the identity matrix of ordern. Now, consider the row sum of the matrixR,

ri(R) = a− qii +
qi2 + q2i

2
+ ...... +

qin + qni

2
,

= a− qii +
qi2 + qi3 + ...qin

2
+

q2i + q3i + ... + qni

2
,

we haveqii = qi2 + qi3 + ....qin, andqii = q2i + q3i + ... + qni,

∴ ri(R) = a− qii +
qii

2
+

qii

2
,

= a− qii + qii,

ri(R) = a.

(2.9)

From the Theorem 2.1, we havemin
i

ri(R) ≤ ρ(R) ≤ max
i

ri(R),

⇒ a ≤ ρ(R) ≤ a,

⇒ ρ(R) = a.

∴ Q is singular M-matrix

From the lemma 2.2, the coefficientQ of “Eq. (2.2)” has one dimensional null space, thus
GTS iteration method cannot be directly applied to solve the linear system“Eq. (2.2)”. Hence,
we go for a regularized linear system [21]. The equation “Eq. (2.2)” can be written asQT πT = 0

i.e., Ax = 0,(2.10)

whereA = QT , andx = πT . There exists a nonnegative constantε > 0 such that the above
equation can be put in the following form of preconditioned linear system [21, 23, 10]

Ax = (QT + εI)x = en,(2.11)

whereen is a unit vector given byen =
[
0, 0, . . . , 0, 1

]T
. The steady-state probability

distribution vector is then obtained by normalizing the vectorx.

Theorem 2.3. For any nonsymmetric stochastic rate matrixQ ∈ Rn×n there exists a constant
ε > 0 such thatA = QT + εIn is positive definite if all its real eigenvalues are non-negative.
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Proof. Consider the stochastic rate matrixQ.
Then from “Eq. (2.3)”, we have

QT =


q11 q21 q31 . . . qn1

q12 q22 q32 . . . qn2

q13 q23 q33 . . . qn3

. . . . . . . . .
...

...
q1n q2n q3n . . . qnn

 (say) for

qii > 0, qij ≤ 0, 1 ≤ i, j ≤ n(2.12)

From “Eq. (2.11)”, we haveA = QT + εIn. Suppose that all real eigenvalues of the matrix
A are non-negative and letε > 0. Sinceqii > 0, qij ≤ 0, 1 ≤ i, j ≤ n, thenqii + ε is the max-
imum value in the matrixQ. For proving the regularized preconditioned matrixA is positive
definite, it suffices to prove that the symmetric part ofA, i.e., A+AT

2
is positive definite.

From “Eq. (2.11)”,A+AT

2
= Q+QT

2
+ εIn = (a + ε)In −R, wherea = max

i
qii

⇒ R = (a + ε)In − A+AT

2
,

⇒ R is non-negative matrix.
Let r be the maximal real eigenvalue of the matrixR. Then, we have
‖rIn −R‖ = 0 andρ(R) = r.
⇒ (a + ε− r) is the real eigenvalue ofA+AT

2
,

⇒ (a + ε− r) > 0,
⇒ (a + ε) > r = ρ(R),
⇒ (a + ε) > ρ(R),

⇒ A+AT

2
is positive definite,

⇒ A is positive definite.

3. THE CONVERGENCE ANALYSIS OF TRIANGULAR AND SYMMETRIC I TERATION

M ETHOD

In this section, the steady state probability vector of an irreducible stochastic rate matrix
(regularized linear system) is computed, and also obtained the condition for the convergence of
pertinent iterative solution as in the cases of TS, TSS, HSS, and PSS methods [26, 21, 10, 11].
Consider the coefficient matrixA = D + L + U, whereD is a diagonal matrix with the diag-
onal elements of the matrixA andL, U are lower, upper triangular matrix ofA respectively of
regularized linear system “Eq. (2.11)”.
i.e., A = D + L + U,

whereD =


ε
3

0 0 . . . 0
0 ε

3
0 . . . 0

0 0 ε
3

. . . 0

. . . . . . . . .
.. . 0

0 0 0 0 ε
3

 , L =


q11

2
+ ε

3
0 0 . . . 0

q12
q22

2
+ ε

3
0 . . . 0

q13 q23
q33

2
+ ε

3
. . . 0

...
...

...
...

...
q1n q2n q3n . . . qnn

2
+ ε

3

,
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andU =


q11

2
+ ε

3
q21 q31 . . . qn1

0 q22

2
+ ε

3
q32 . . . qn2

0 0 q33

2
+ ε

3
. . . qn3

...
...

...
...

...
0 0 0 . . . qnn

2
+ ε

3

 .

The triangular and symmetric matrix splitting method on the regularized matrix is as follows:

A = (L + D − UT ) + (U + UT ) = (U + D − LT ) + (L + LT ) = T + S,(3.1)

whereT ∈ Rn×n triangular matrix with nonnegative diagonal elements, andS ∈ Rn×n is
symmetric with positive diagonal elements and negative off diagonal elements. To find the
solution of the regularized linear system, we can use the iterative method described [26, 10,
11]. Given an initial guessx(0), compute the next approximations using the following scheme
[21, 10, 11]

(αI + T )x(k+1/2) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI − T )x(k+1/2) + b,(3.2)

for k = 0, 1, 2, . . . , until x(k) converges for the contraction factorα. The above iterative scheme
could be written asx(k+1) = M(α)x(k) + N(α)b, for k = 0, 1, 2, . . . , where

M(α) = (αI + S)−1(αI − T )(αI + T )−1(αI − S),(3.3)

is the iteration matrix of the GTS iteration method, andN(α) = 2α(αI + S)−1(αI + T )−1. If
ρ(M(α)) < 1 then the GTS iterative method is convergent. To proveρ(M(α)) < 1, we assume
the lemma in the paper [21].

Lemma 3.1. LetW (α) = (αI − T )(αI + T )−1. If T ∈ Rn×n is a positive-definite matrix, then
we have‖W (α)‖2 < 1,∀α > 0.

Lemma 3.2. If the matrixS is the symmetric part of the coefficient matrixA of the regularized
linear system “Eq. (2.11)” then there existε > 0 such that the matrixS is positive definite.
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Proof. Consider the symmetric partS of the coefficient matrixA of the regularized linear sys-
tem “Eq. (2.11)” as

S = (L + LT )

=


q11 + 2ε

3
q12 q13 . . . q1n

q12 q22 + 2ε
3

q23 . . . q2n

q13 q23 q33 + 2ε
3

. . . q3n
...

...
...

...
...

q1n q2n q3n . . . qnn + 2ε
3

 ,

with ε > 0, qij < 0 for i 6= j,

= δIn − V,

whereV =


δ − q11 − 2ε

3
q12 q13 . . . q1n

q12 δ − q22 − 2ε
3

q23 . . . q2n

q13 q23 δ − q33 − 2ε
3

. . . q3n
...

...
...

...
...

q1n q2n q3n . . . δ − qnn − 2ε
3


is a nonnegative matrix,

andδ = max
1≤i≤n

(qii +
2ε

3
) for i = 1, 2, . . . , n.

The spectral radius of the matrixV is
n∑

i,j=1,i6=j

qij andqii =
n∑

i,j=1,i6=j

qij,

⇒ max
1≤i≤n

(qii +
2ε

3
) >

n∑
i,j=1,i6=j

qij,

⇒ δ >
n∑

i,j=1,i6=j

qij andρ(V ) = δ − 2ε

3
,

⇒ δ > δ − 2ε

3
,

⇒ δ > ρ(V ).

Therefore, the matrixS is positive definite.

Lemma 3.3. [26] LetH(α) = (αI − S)(αI + S)−1. If S ∈ Rn×n is a positive-definite matrix,
then we have‖H(α)‖2 < 1,∀α > 0.

Theorem 3.4. Let A ∈ Rn×n be the regularized matrix defined in “Eq. (2.11)”, and splitting
into generalized triangular and symmetric matrices given in “Eq. (3.1)”. Then the spectral
radius of the iterative matrixM(α) is less than one.

Proof. We prove this theorem on lines of the theorems [26, 21, 10]. LetA ∈ Rn×n be the
regularized matrix defined in “Eq. (2.11)”, and splitting into the form “Eq. (3.1)”. LetM(α)
be the iterative matrix given in “Eq. (3.3)”. Then the iteration matrixM(α) is similar to the
matrix M(α) = (αI − T )(αI + T )−1(αI − S)(αI + S)−1 = W (α)H(α), whereW (α) =
(αI − T )(αI + T )−1, andH(α) = (αI − S)(αI + S)−1. Since the triangular matrixT , and
symmetricS of the regularized preconditioned matrixA given in “Eq. (2.11)” are positive defi-
nite , then from the lemma 3.1 and lemma 3.3, we have‖W (α)‖2 < 1, ‖H(α)‖2 < 1,∀α > 0.
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8 B. HARIKA AND D. RAJAIAH AND L. P. RAJKUMAR AND MALLA REDDY PERATI

Therefore,ρ(M(α)) = ρ(M(α)) = ‖(αI−T )(αI+T )−1(αI−S)(αI+S)−1‖2 = ‖W (α)H(α)‖2,
which gives

ρ(M(α)) = ρ(M(α)) = ‖W (α)‖2‖H(α)‖2 < 1.(3.4)

Therefore, the GTS iteration method converge to unique solution of the regularized linear sys-
tem “Eq. (2.11)”.

4. CONVERGENCE ANALYSIS OF IGTS M ETHOD AND CONTRACTION FACTOR

In this section, we find the contraction factor and discuss the inexact generalized triangular
and symmetric (IGTS) iterative method by using the Krylov subspace method [21, 31]. Here
we find the contraction factorα on lines of the papers [26, 21, 10]. From the TS, TSS, HSS,
PSS iterative methods and the above theoretical results, it is clear that the iterative solution
of preconditioned matrixA converges for any contraction factorα, and it was converge to the
exact value as in the case of TS. Along the lines of the papers [26, 21], the contraction factor
α is converges to the fixed value in the following results. Therefore, for the fast convergence
of the solution of the GTS iteration method, it is the key importance to choose the appropriate
values ofε. Since the preconditioned matrixA of the regularized linear system “Eq. (2.11)”
splits into generalized triangular and symmetric matrices as given by “Eq. (3.1)”, we have

A = (L + D − UT ) + (U + UT ) = T1 + S1,

A = (U + D − LT ) + (L + LT ) = T2 + S2,

whereTi andSi (i = 1, 2) are triangular and symmetric matrices, respectively. On lines of the
papers [26, 21, 10], we find out the contraction factor as follows:
Let G1 = (L−UT ) andG2 = (U−LT ) thenGi(i = 1, 2) are strictly lower and upper triangular
such that[Gi(αI + D)−1]n = [(αI + D)−1Gi]

n = 0 for i = 1, 2 Consider

(αI + Ti)
−1 = [(αI + D) + Gi]

−1,

= (αI + D)−1[I + Gi(αI + D)−1]−1,

= (αI + D)−1

n−1∑
j=0

(−1)j[Gi(αI + D)−1]j.

Now,

(αI − Ti)(αI + Ti)
−1 = (αI −D −Gi)(αI + Ti)

−1,

= (αI −D −Gi)(αI + D)−1

n−1∑
j=0

(−1)j[Gi(αI + D)−1]j,

≈ (αI −D)(αI + D)−1[I −Gi(αI + D)−1].

Considering the first order approximation and taking the norm on both sides, we obtain

‖(αI − Ti)(αI + Ti)
−1‖2 ≈ ‖(αI −Di)(αI + Di)

−1‖2,

‖W (α)‖2 = max
1≤j≤n

{(α− djj)(α + djj)
−1}.

In above,djj ’s are the diagonal elements of the matrixDi. Following the theorems from the
papers [26, 21, 10, 11], we compute an exact optimal valueα > 0 for the convergence factor
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ρ(M(α)) of the GTS iteration method is minimized. Ifα is the minimum point of convergence
factor, then it must satisfy

α = arg min
α>0

‖W (α)‖2,

= arg min
α>0

max
1≤j≤n

{(α− djj)(α + djj)
−1},

=
√

dmindmax,(4.1)

where

dmin = min
1≤j≤n

{djj} =
ε

3
,

anddmax = max
1≤j≤n

{djj} =
ε

3
,

From the above equation, we have

‖W (α)‖2 ' α,

'
√

dmindmax,

‖W (α)‖2 '
√

ε

3

ε

3
=

ε

3
.(4.2)

Now, we find out the strict upper bound for the‖H(α)‖2 as follows:
Consider

(αI + Si)
−1 = (αI + L + LT )−1,

= (αI + L)−1(I + ((αI + L)−1LT ))−1,

= (αI + L)−1

∞∑
j=0

(−1)j((αI + L)−1LT )j,

= (αI + L)−1(I − ((αI + L)−1LT ) + . . .),

Then it follows that

(αI − Si)(αI + Si)
−1 = (αI − (L + LT ))(αI + L)−1(I − ((αI + L)−1LT ) + . . .),

(αI − Si)(αI + Si)
−1 = ((αI − L)− LT )(αI + L)−1(I − ((αI + L)−1LT ) + . . .).

using the first order approximation and taking norm on both sides we get,

‖(αI − Si)(αI + Si)
−1‖2 ≈ ‖(αI − L)(αI + L)−1‖2,

‖(αI − Si)(αI + Si)
−1‖2 ≈ max

1≤j≤n
{(αI − djj)(αI + djj)

−1},

whered′jjs are the diagonal elements of the lower triangular matrixL. Following derivation of
the equation “Eq. (4.1)” and “Eq. (4.2)”, we obtain

‖H(α)‖2 ≈ ‖(αI − (a +
ε

3
))(αI + (a +

ε

3
))−1‖,

‖H(α)‖2 =

√
(a +

ε

3
)(a +

ε

3
) = a +

ε

3
.(4.3)

From the “Eq. (3.4)” , “Eq. (4.2)” , and “Eq. (4.3)” we haveρ(M(α)) = (a + ε
3
) ε

3
< 1 if

ε
3

< 1 and(a + ε
3
) < 1. That is, we have a sharp upper bound forρ(M(α)). From the papers

[21, 10], it is clear that estimation of the contraction factor is not so easy. On lines of the
paper [26, 21, 10], we obtain the contraction factor for GTS method and isα = α = ε

3
. The
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computational procedure for finding the solution of the given system obtain along the lines of
the paper [26].

5. NUMERICAL RESULTS

In this section, we examine the effectiveness of the GTS iteration method for the numerical
solution of Markov process and compare them with the TSS and Jacobi methods. For the
numerical illustration, we consider the following4× 4 stochastic probability matrix

P =


0.4 0.1 0.35 0.15
0.3 0.3 0.15 0.25
0.1 0.25 0.25 0.4
0.2 0.35 0.25 0.2

.

We consider only one caseA = (L+D−UT )+ (U +UT ) = T1 +S1 of GTS splitting method
and other methods would follow. Considering the initial distributionx(0) = [0, 0, 0, 1]T for the
system “Eq. (2.11)”, relative error and absolute error are computed according to the basic defi-
nitions of the error analysis. The steady state distribution vectorx of the preconditioned linear
system “Eq. (2.11)” is obtained and results are presented in the Figs. 1-3. From these figures,
we illustrate the result for the case of contraction factorα which is numerically equivalent to the
diagonal elements of the matrixQ, for variant values ofε. Also, we conclude that the GTS iter-
ative solution converges rapidly than the TSS and Jacobi’s methods. Moreover, error decreases
asε value increase.

Figure 1: Relative error of the GTS, TSS, and Jacobi methods for the contraction factorα = 0.4, andε = 0.3.
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Figure 2: Relative error of the GTS method for the contraction factorα = 0.4, and differentε values.

Figure 3: Absolute and Relative error of the GTS, TSS methods for the contraction factorα = 0.4, andε = 0.2.

6. CONCLUSIONS

In this paper, we present GTS splitting iterative method for the regularized linear system of
stochastic matrix. We conclude that this method unconditionally converges to a unique solution
and the convergence rate is rapid when compared to the existing methods. We proved that the
regularized matrix is positive definite under specific condition. From the numerical results, it
clear that how well the proposed splitting method is efficient when compared to other existing
TSS and Jacobi methods.
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