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ABSTRACT. To find the steady state probability vector of homogenous linear systgr 0

of stochastic rate matrix), generalized triangular and symmetric (GTS) splitting method is
presented. Convergence analysis and choice of parameters are given when the regularized matrix
A = QT + €I of the regularized linear systerd: = b is positive definite. Analysis shows that

the iterative solution of GTS method converges unconditionally to the unique solution of the
regularized linear system. From the numerical results, it is clear that the solution of proposed
method converges rapidly when compared to the existing methods.
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1. INTRODUCTION

A class of Markovian Arrival Process (MAP) and Markov modulated Poisson process (MMPP)
are generalization of the Poisson process. These are widely used in the modelling of communi-
cation systems, automata networks, and manufacturing systems[1| 23,145, 6, 7, 8]. Many net-
work models, in general, have a regular repetitive structure that fits within the matrix geometric
frame work [9]. In most of the cases, when the network nodes are modeled as queueing systems,
the problem of computation of performance measures is reduced to that of steady state proba-
bility distribution vector of transition rate matrix or transition probability matrix. Therefore, it
is the key importance to investigate pertinent linear system. In this direction, many researchers
proposed the methods and their convergence criteénall2, 7, 4,/8,/28 9, 30,13, 6,27, 18, 25, 29, 21].
The significant improvements in convergence rates can be achieved from the Krylov subspace
methods [[29] 20, 22, 32], some preconditioning techniques([14, 18, 16], and two splitting
and multi splitting iterative methods [15,121]. Two alternative methods (Hermitian and Skew-
Hermitian) HSS and (Positive definite Skew-Symmetric) PSS methods proposed in the papers
[10, [11] which converge unconditionally to the unique solution of the system of equations.
Moreover, the triangular and skew-symmetric (TSS) iteration method has been developed and
discussed for solving positive-definite linear system of stochastic matrices [21]. It is clear from
the papers [21, 10, 11] that the estimation of optimal parametemot so easy. In the paper
[26], the triangular and symmetric (TS) iteration method has been developed to compute the
steady state vector of pertinent linear system of circulant stochastic matrices. In the said paper,
the TS method is restricted only for circulant matrices. Hence, in this paper, we generalize
the TS method to find the steady state probability vector of positive definite regularized linear
system of general stochastic matrices. This method splits the regularized matrix into the trian-
gular and symmetric matrices. Moreover, we modify the splitting matrices for the estimation of
optimal parameter, and its convergence criteria.

The rest of the paper is organized as follows: In section 2, the regularized preconditioned
linear system of rate matrix is considered. In section 3, the GTS iteration method is applied to
solve the regularized linear system and discussed its convergence. In section 4, the choice of
the contraction factot is analyzed and proposed an inexact triangular and symmetric splitting
(ITS) iteration method. In section 5, the proposed method is implemented numerically to realize
the advantages. Finally, conclusions are drawn in section 6.

2. REGULARIZED PRECONDITIONED LINEAR SYSTEM OF STOCHASTIC MATRICES

In this section, we define some basic definitions and prove that the stochastic rate matrix is
singular M-matrix. We shall prove that the coefficient matrix in the preconditioned regularized
linear system is positive definite.

Definition 1. Any matrix A € R™*" of the formA = s — B,s > 0,B > 0 is called an
M-matrix if s > p(B). If s > p(B) then A is non-singular M-matrix, otherwisd is singular
M-matrix.

Definition 2. A non-symmetric matrixA € R™*" is M-matrix if its symmetric partﬂ—AT is
M-matrix.

Definition 3. A non-symmetric matrixA € R™ " is positive definite if its symmetric part is
positive definite.

Consider the stochastic probablity matrix
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P11 P12 P13 --- Pin
P21 P22 P23 ... DPon
P = P31 P32 P33 --. DPsn| (say) for
nl Pn2 Pn3 ... DPnn
(2.1) 0<p; <1,1<s,5<n

and ) p;; = 1. Since each row and column sum are one, then the matis a doubly
ij=1
stochastic matrix. The steady state distribution vegteatisfies the equation

m=T7P,
= 7[[ — P] =0,
(2.2) = 71Q =0,
where
q11 q12 q13 ... (in
21 Q22 G23 ... (2n
Q=1—-P= |91 g2 433 --- Q3| (say) for
dn1 49n2 4n3 ... Qnn
(2.3) i > 0,45 <0, 1 <4, j <n,

and > ¢;; = 0. Since each row and column sum are zero, then the m@trix a doubly
i,j=1
stochastic rate matrix.

Theorem 2.1.[17] Let A = (a;;) be ann x n nonnegative matrix with spectral radiygA)
and row sums;(A), ¢ € {1,2,....,n}. Then,min r;(A) < p(A) < maz r;(A). Moreover, if A

is an irreducible matrix, then equality holds on either side if and only if all row sums of A are
equal.

Lemma 2.2. A stochastic rate matri¥) € R"*" is singular M-matrix.

Proof. Consider the stochastic rate matéxgiven in “Eq. [2.3)".
Since( stochastic rate matrix then the sum of each row and each column is zero.

(2.4) e, Y ay=0with ¢; >0.g; <0.1<i.j<n
ij=1
(25) = (i; = Z qijfori:1,2,3...,n
J=1,i#j
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From the definition |2, in order to prove the matéXs singular M-matix, it is suffices to prove
that symmetric part of the matri®, i.e., Q+TQTis singular M-Matrix. Therefore, we consider

q12+g21 9134431 Qntgn1
qi1 > L. Dl
qi12+q21 G2 qz3$q;32 q2n$‘Qn2
T == T
Q + Q Q13%Q31 93214923 q3n$qn3
(26) = 2 2 433 SR )
2 7
Qntdni  @2nt4gn2  43n+4qn3
P} 2 D) s Qnn
(2.7) = al, — R (say), wherea = max ¢;
1<i<n
Q1244921 9134431 Qntani
a— g1 5 ... UnTdnl
qi12+4q21 _ QQ3£Q32 q2n%Qn2
—% a q22 e —%
9131431 q32+923 43nT4n3
(2.8) andR = 2 2 a—qz3 ... THE >0,
din+4gn1 92n+Gqn2 43n+3qn3 a —
2 2 2 te Gnn

andl, is the identity matrix of orden. Now, consider the row sum of the matri

i2 1 Q2 in 1 Qni
TZ(R):CL—q“—l-%—F ...... +%,
i2 T Qi3 + ---Qin i 43 + oo+ Qni
= a— g+ A e A
we haveg;; = iz + ¢i3 + ....Qin, ANz = qo; + q3i + ... + Gni,
Qii Qii
ri(R)=a—qu+ 5+,
ri(R) =a— q; + 5 + 5
= a — qi; * Qi
ri(R) = a.
(2.9)
From the Theoremmn 2.1, we hawein r;(R) < p(R) < max r;(R),
~a<p(R) <a,
= p(R) = a.
.. Qis singular M-matrix
|

From the lemma 2]2, the coefficie@t of “Eq. (2.2)" has one dimensional null space, thus
GTS iteration method cannot be directly applied to solve the linear systemi"Efy. (2.2)". Hence,
we go for aregularized linear system[21]. The equation “ (2.2)” can be writi@has = 0

(2.10) ie., Ar =0,

whereA = Q7, andz = 7”. There exists a nonnegative constant 0 such that the above
equation can be put in the following form of preconditioned linear system [21, 23, 10]

(2.11) Az = (QT + ez = e,

wheree,, is a unit vector given by, = [0, 0, ..., 0, 1}T. The steady-state probability
distribution vector is then obtained by normalizing the veator

Theorem 2.3. For any nonsymmetric stochastic rate matéixe R"*" there exists a constant
e > 0 such thatd = QT + €I, is positive definite if all its real eigenvalues are non-negative.
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Proof. Consider the stochastic rate mat€px
Then from “Eq. [(2.B)", we have

i1 4921 G431 --- (4ni
di2 422 (432 ... ({n2
QF = |©3 @23 433 --- Gn3| (say) for
din 92n 43n --- Gnn
(2.12) ¢i > 0,5 <0, 1<1,7<n

From “Eq. )”, we havel = QT + ¢I,. Suppose that all real eigenvalues of the matrix
A are non-negative and let> 0. Sinceg; > 0,¢;; < 0,1 <4,5 < n, theng,;; + € is the max-
imum value in the matrix). For proving the regularized preconditioned matdixs positive
definite, it suffices to prove that the symmetric partof.e., # IS positive definite.

From “Eq. (2.1 L)”,A+TAT = Q+TQT +el, = (a+¢€)l, — R, wherea = max ¢;

= R=(a+¢)l, — A*'QAT,

= RIS non-negative matrix.

Letr be the maximal real eigenvalue of the matix Then, we have
|71, — R|| = 0andp(R) = r.

= (a + € —r) is the real eigenvalue cf:A"
= (a+e—1)>0,

= (a+e) > 1= p(R),

= (a+¢) > p(R),

= 44 js positive definite,

= A is positive definite.

|

3. THE CONVERGENCE ANALYSIS OF TRIANGULAR AND SYMMETRIC |TERATION
METHOD

In this section, the steady state probability vector of an irreducible stochastic rate matrix
(regularized linear system) is computed, and also obtained the condition for the convergence of
pertinent iterative solution as in the cases of TS, TSS, HSS, and PSS méthads [26] 21, 10, 11].
Consider the coefficient matrix = D + L + U, whereD is a diagonal matrix with the diag-
onal elements of the matrix and L, U are lower, upper triangular matrix of respectively of
regularized linear system “Eq. (2]11)".

e, A=D+ L+ U,

S 0 0 0 wope g 0 ... 0
0 % 0 0 q12 %724—% 0 0
whereD= |0 0 £ 0| L= q13 Gz B +3 0 ,
0 : : : . :
0 0 0 0 ¢ G1n Gon G3n oo RS
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T+5 @ q31 qn1

0 B+ 5 g n2

andU = 0 0 £+ £ n3
0 0 0 s B g

The triangular and symmetric matrix splitting method on the regularized matrix is as follows:

Bl A=L+D-UH+U+U")=U+D-L")+(L+L")=T+S§,

whereT € R™" triangular matrix with nonnegative diagonal elements, &hdé¢ R™*" is
symmetric with positive diagonal elements and negative off diagonal elements. To find the
solution of the regularized linear system, we can use the iterative method described [26, 10,
11]. Given an initial guess”’), compute the next approximations using the following scheme
[21,110,11]

(ol +T)z* Y2 = (ol — 8)2® + b,
(3.2) (al + 8)z* ) = (oI — T)a*+1/2 4,

fork =0,1,2,...,until z*) converges for the contraction facter The above iterative scheme
could be written ag*+" = M (a)z™ 4+ N(a)b, for k = 0,1,2, ..., where

(3.3) M(a) = (al +S) (ol —T)(al +T) al —S),

is the iteration matrix of the GTS iteration method, a¥ithy) = 2a(al + S) Yol +T) 7L If
p(M(a)) < 1thenthe GTS iterative method is convergent. To pre\ («)) < 1, we assume
the lemma in the paper [21].

Lemma3.1.LetW (a) = (al —T)(al +T)~ . If T € R™*" is a positive-definite matrix, then
we have|W («)l| < 1,Va > 0.

Lemma 3.2. If the matrix$ is the symmetric part of the coefficient matof the regularized
linear system “Eq.[(2.11)" then there exist> 0 such that the matriX is positive definite.
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Proof. Consider the symmetric paftof the coefficient matrix4 of the regularized linear sys-

tem “Eq. [2.11)” as

S=(L+1L"
qn + % q12 q13 e din
q12 G22 + % 23 e Gon
= q13 23 q33 + % e d3n ,
] . . . . 26
qin d2n q3n -+ Qnpn + 3
with e > 0, ¢;; < 0 for i # 7,
0 —qu — % q12 013 e din
12 0 —qa2 — % q23 e don
whereV = 713 423 0 — g3z — % e Q3n
qin G2n q3n S 00— Qnn — %

iS a nonnegative matrjx
2€ )
ando = g&};(qu + g) fori=1,2,...,n.

The spectral radius of the matrixis

Z qi; andg; = Z Qij

i,j=1,i#] i,j=1,1#]

2¢ =
= max (¢;; + 3) > Z Qij>

1<i<n L=
1,J=1i#j

- 2€

=0> E j =0— —

N ‘ 'QU andp(V) 5 3 )
i,j=1,i#]

2e
=0>0— —
37

= 00> p(V).
Therefore, the matri¥ is positive definite

Lemma 3.3. [26] Let H («) = (ol — S)(al + S)~ 1. If S € R™" is a positive-definite matrix,
then we havel H ()]s < 1,Va > 0.

Theorem 3.4.Let A € R™" be the regularized matrix defined in “Eq. (2]11)", and splitting
into generalized triangular and symmetric matrices given in “Eq.|(3.1)". Then the spectral
radius of the iterative matri¥/ («) is less than one.

Proof. We prove this theorem on lines of the theorems [26,/21, 10]. Aet R™*" be the

regularized matrix defined in “Ed. (2]11)", and splitting into the form “Eq.|(3.1)". Létx)
be the iterative matrix given in “Eq|. (3.3)". Then the iteration mattiX«) is similar to the

matrix M (a) = (al — T)(al +T) ol — S)(al + S5)™! = W(a)H(a), whereW (a) =
(al —=T)(al +T) ' andH(a) = (ol — S)(al + S)~'. Since the triangular matri¥, and
symmetricS of the regularized preconditioned matrixgiven in “Eq. [2.11)” are positive defi-

nite , then from the lemnfa 3.1 and lemmal 3.3, we HEVE )|> < 1, [[H (a)||2 < 1,Va > 0.
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Thereforep(M (o)) = p(M(a)) = [[(al=T)(al+T) " (al=8)(al+S) |l = W (a)H(a)]>,
which gives

(3.4) p(M(a)) = p(M(e)) = [[W(a)llol[H()]]2 < 1.

Therefore, the GTS iteration method converge to unique solution of the regularized linear sys-

tem "Eq. [211)".1

4. CONVERGENCE ANALYSIS OF IGTS M ETHOD AND CONTRACTION FACTOR

In this section, we find the contraction factor and discuss the inexact generalized triangular
and symmetric (IGTS) iterative method by using the Krylov subspace method [21, 31]. Here
we find the contraction factar on lines of the papers [26, 21,110]. From the TS, TSS, HSS,
PSS iterative methods and the above theoretical results, it is clear that the iterative solution
of preconditioned matrixd converges for any contraction facter and it was converge to the
exact value as in the case of TS. Along the lines of the papers$ [26, 21], the contraction factor
« IS converges to the fixed value in the following results. Therefore, for the fast convergence
of the solution of the GTS iteration method, it is the key importance to choose the appropriate
values ofe. Since the preconditioned matrik of the regularized linear system “E¢. (211)”
splits into generalized triangular and symmetric matrices as given by['E{. (3.1)", we have

A=(L+D-U"N+U+U" =T+,

A=U+D L")+ (L+L") =Ty + 5,
whereT; andS; (i = 1,2) are triangular and symmetric matrices, respectively. On lines of the
papersl[[26, 21, 10], we find out the contraction factor as follows:
LetG, = (L—UT)andG, = (U— L") thenG,(i = 1, 2) are strictly lower and upper triangular
such tha{G;(al + D)™'|" = [(al + D)~'G;]" = 0 fori = 1,2 Consider

(al +T;) ' = [(af + D)+ Gy,
= (al + D) '[I + Gi(al + D)7'|71,
n—1

= (al + D)"Y (=1Y[Gial + D)7'Y.

j=0
Now,
(o =T)(al +T) ' = (al =D —G)(al +T))7,

n—

= (ol — D — Gy)(al + D)"' S (=1)[G,(al + D)7},

[y

o

~ (al — D)(al + D) I — Gji(od + D).
Considering the first order approximation and taking the norm on both sides, we obtain
Il = T)(al +T) o = [(af — Dy)(al + Di) ™,
IW (@)l = maz {(a - dj;)(e+d;y)™').

In above,d;;’s are the diagonal elements of the matfix. Following the theorems from the
papersl[26, 21, 10, 11], we compute an exact optimal value 0 for the convergence factor

AIMAA Vol. 21(2024), No. 1, Art. 8, 14 pp. AIMAA
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p(M(«)) of the GTS iteration method is minimized.dfis the minimum point of convergence
factor, then it must satisfy

a = arg min|[W(a)|.,

= arg minmaz {(a — djj) (e + di;) '},

(4- 1) =V dmindmaXa

where

9

dmin = 12}21{65]‘]‘} =

I

Wl Wl

andda = max{d.;} =
max = Max{d;;}

From the above equation, we have
[W(a)]: ~a,

~ \/ dmindmax:

@2) Wl = /55 =5

Now, we find out the strict upper bound for thé&/ («)||» as follows:
Consider

(ol +8)™ ' = (al + L+ L"),
= (al + L) "I+ ((af + L) ' LT,

[e.9]

= (I + L)) (=1)((al + L)'L"Y,

j=0
=(al + L)1 — ((al + L)'LT) 4 ..),
Then it follows that
(ol —S))(al +S;) ™t = (af — (L+ L") (al + L) (I — ((al + L)' LT +...),
(af —S))(al +S) = ((al — L) — L") (al + L) (I — ((aI + L) "LT) +...).
using the first order approximation and taking norm on both sides we get,
l(al = Si)(al +S)7 2 = (o = L)(al + L)',
(el = Si)(al +S;)7' 2 = @]@Sﬂﬁl{(a[ —dj;)(ad +dj;) ™'},

whered’;s are the diagonal elements of the lower triangular mdtrikollowing derivation of
the equation “Eq[(4]1)” and “Eq. (4.2)", we obtain

|H(@)ll2 = ll(@l = (a+ )l + (a+ ),

(4.3) 1H(a)s = \/(a+§)(a+§)—a+§.

From the “Eq.[(3.8)", “Eq.)" , and “Eq[ (4.3)" we haygM(a)) = (a + §)5 < 1if

¢ < land(a+ 5) < 1. Thatis, we have a sharp upper bound 8/ (c)). From the papers
[21,[10], it is clear that estimation of the contraction factor is not so easy. On lines of the
paper [26] 21, 10], we obtain the contraction factor for GTS method and=isa = £. The
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computational procedure for finding the solution of the given system obtain along the lines of
the paper[26].

5. NUMERICAL RESULTS

In this section, we examine the effectiveness of the GTS iteration method for the numerical
solution of Markov process and compare them with the TSS and Jacobi methods. For the
numerical illustration, we consider the followidgx 4 stochastic probability matrix

04 0.1 035 0.15
03 03 015 0.25
0.1 025 025 04
0.2 035 025 0.2

We consider only one case= (L+ D —U") + (U +U") = Ty + S; of GTS splitting method

and other methods would follow. Considering the initial distributiét = [0,0, 0, 1]” for the

system “Eq.[(2.7]1)", relative error and absolute error are computed according to the basic defi-
nitions of the error analysis. The steady state distribution vectdrthe preconditioned linear
system “Eq.[(2.11)" is obtained and results are presented in the[Rjds. 1-3. From these figures,
we illustrate the result for the case of contraction faeterhich is numerically equivalent to the
diagonal elements of the matriy, for variant values of. Also, we conclude that the GTS iter-

ative solution converges rapidly than the TSS and Jacobi’s methods. Moreover, error decreases
ase value increase.

P =

- o
< _“F-‘.'_x-_
¥ Sy Y
2 [ "+..*'>‘-><.x_ 1
10 o
%,
***
=
4 s
10 .
&
]
2 10 :
E —— Jacobi Method
o —+—TSS Method 3
ool GTS Method
.ID-‘IC- L
1 D-12 1

40
Mumber of itearions

Figure 1: Relative error of the GTS, TSS, and Jacobi methods for the contraction faetdr.4, ande = 0.3.
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Relative Error

10°

10-2 L

GTS METHOD

11

——g={)1
—F—e=0.2
——e=0.3
e=0.4

10

Number of itearions

40

Figure 2: Relative error of the GTS method for the contraction faetet 0.4, and different values.

Error

10-6 .

10°F

10710 F

10—|2 18

10-|4

—% TSS Absolute Error
—+—TSS Relative Error

GTS Absolute Error

—— GTS Relative Error

Number of itearions

40

Figure 3: Absolute and Relative error of the GTS, TSS methods for the contractiondaetor4, ande = 0.2.

6. CONCLUSIONS

In this paper, we present GTS splitting iterative method for the regularized linear system of
stochastic matrix. We conclude that this method unconditionally converges to a unique solution
and the convergence rate is rapid when compared to the existing methods. We proved that the
regularized matrix is positive definite under specific condition. From the numerical results, it
clear that how well the proposed splitting method is efficient when compared to other existing

TSS and Jacobi methods.

Disclosure statement:On behalf of all authors, the corresponding author states that there is no

conflict of interest.
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