

The Australian Journal of Mathematical Analysis and Applications

AJMAA

Volume 5, Issue 2, Article 10, pp. 1-21, 2009

STABILITY OF A MIXED ADDITIVE, QUADRATIC AND CUBIC FUNCTIONAL EQUATION IN QUASI-BANACH SPACES

A. NAJATI AND F. MORADLOU

Received 29 July, 2007; accepted 12 May, 2008; published 31 January, 2009.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, UNIVERSITY OF MOHAGHEGH ARDABILI, ARDABIL, IRAN.

a.nejati@yahoo.com

FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY OF TABRIZ, TABRIZ, IRAN. moradlou@tabrizu.ac.ir

ABSTRACT. In this paper we establish the general solution of a mixed additive, quadratic and cubic functional equation and investigate the Hyers–Ulam–Rassias stability of this equation in quasi-Banach spaces. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, *Proc. Amer. Math. Soc.* **72** (1978), 297–300.

Key words and phrases: Hyers–Ulam–Rassias stability, Cubic function, Quadratic function, Additive function, Quasi-Banach space, *p*-Banach space.

2000 Mathematics Subject Classification. Primary 39B72, 46B03. Secondary 47Jxx.

ISSN (electronic): 1449-5910

^{© 2009} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

In 1940, S. M. Ulam [18] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

Let $(G_1, *)$ be a group and let (G_2, \diamond, d) be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta(\epsilon) > 0$ such that if a function $h : G_1 \to G_2$ satisfies the inequality

$$d(h(x * y), h(x) \diamond h(y)) < \delta$$

for all $x, y \in G_1$, then there is a homomorphism $H: G_1 \to G_2$ with

$$d(h(x), H(x)) < \epsilon$$

for all $x \in G_1$?

In 1941, D. H. Hyers [8] considered the case of approximately additive functions $f : E \to E'$, where E and E' are Banach spaces and f satisfies Hyers inequality

$$||f(x+y) - f(x) - f(y)|| \le e^{-\frac{1}{2}}$$

for all $x, y \in E$. It was shown that the limit

$$L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

exists for all $x \in E$ and that $L: E \to E'$ is the unique additive function satisfying

$$\|f(x) - L(x)\| \le \epsilon$$

In 1978, Th. M. Rassias [15] provided a generalization of Hyers' Theorem which allows the *Cauchy difference to be unbounded*.

Quadratic functional equation was used to characterize inner product spaces [1, 2, 9]. Several other functional equations were also to characterize inner product spaces. A square norm on an inner product space satisfies the important parallelogram equality

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

The functional equation

(1.1)
$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

is related to a symmetric bi-additive function [1, 12]. It is natural that the equation 1.1 is called a quadratic functional equation. In particular, every solution of the quadratic equation (1.1) is said to be a quadratic function. It is well known that a function f between real vector spaces is quadratic if and only if there exists a unique symmetric biadditive function B such that f(x) = B(x, x) for all x (see [1, 12]). The biadditive function B is given by

(1.2)
$$B(x,y) = \frac{1}{4} \Big(f(x+y) - f(x-y) \Big).$$

A Hyers–Ulam stability problem for the quadratic functional equation (1.1) was proved by Skof for functions $f: E_1 \rightarrow E_2$, where E_1 is a normed space and E_2 a Banach space (see [17]). Cholewa [4] noticed that the theorem of Skof is still true if the relevant domain E_1 is replaced by an Abelian group. In the paper [5], Czerwik proved the Hyers–Ulam–Rassias stability of the quadratic functional equation (1.1). Grabiec [7] has generalized these results mentioned above. Jun and Lee [10] proved the Hyers–Ulam–Rassias stability of the pexiderized quadratic equation (1.1).

Jun and Kim [11] introduced the following cubic functional equation

(1.3)
$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x)$$

and they established the general solution and the generalized Hyers–Ulam–Rassias stability problem for the functional equation (1.3). They proved that a function $f : E_1 \to E_2$ satisfies the functional equation (1.3) if and only if there exists a function $B : E_1 \times E_1 \times E_1 \to E_2$ such that f(x) = B(x, x, x) for all $x \in E_1$, and B is symmetric for each fixed one variable and additive for each fixed two variables. The function B is given by

$$B(x, y, z) = \frac{1}{24} [f(x + y + z) + f(x - y - z) - f(x + y - z) - f(x - y + z)]$$

for all $x, y, z \in E_1$.

It is easy to see that the function $f(x) = cx^3$ is a solution of the functional equation (1.3). Thus, it is natural that (1.3) is called a *cubic functional equation* and every solution of the cubic functional equation (1.3) is said to be a *cubic function*.

In this paper, we deal with the following functional equation deriving from cubic, quadratic and additive functions:

(1.4)
$$f\left(\sum_{i=1}^{4} x_i\right) + \sum_{1 \le i < j \le 4} f(x_i + x_j) = \sum_{i=1}^{4} f(x_i) + \sum_{1 \le i < j < k \le 4} f(x_i + x_j + x_k)$$

It is easy to see that the function $f(x) = ax^3 + bx^2 + cx$ is a solution of the functional equation (1.4). For some results concerning the functional equation (1.4), we refer the reader to [13].

The main purpose of this paper is to establish the general solution of Eq. (1.4) and investigate the Hyers–Ulam–Rassias stability for Eq. (1.4).

We recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.1. [3, 16] Let X be a real linear space. A *quasi-norm* is a real-valued function on X satisfying the following:

- (i) $||x|| \ge 0$ for all $x \in X$ and ||x|| = 0 if and only if x = 0.
- (*ii*) $\|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in \mathbb{R}$ and all $x \in X$.

(*iii*) There is a constant $K \ge 1$ such that $||x + y|| \le K(||x|| + ||y||)$ for all $x, y \in X$.

It follows from condition (*iii*) that

$$\left\|\sum_{i=1}^{2n} x_i\right\| \le K^n \sum_{i=1}^{2n} \|x_i\|, \quad \left\|\sum_{i=1}^{2n+1} x_i\right\| \le K^{n+1} \sum_{i=1}^{2n+1} \|x_i\|$$

for all integers $n \ge 1$ and all $x_1, x_2, \ldots, x_{2n+1} \in X$.

The pair $(X, \|.\|)$ is called a *quasi-normed space* if $\|.\|$ is a quasi-norm on X. The smallest possible K is called the *modulus of concavity* of $\|.\|$. A *quasi-Banach space* is a complete quasi-normed space.

A quasi-norm $\|.\|$ is called a *p*-norm (0 if

$$||x+y||^p \le ||x||^p + ||y||^p$$

for all $x, y \in X$. In this case, a quasi-Banach space is called a *p*-Banach space.

By the Aoki–Rolewicz theorem [16] (see also [3]), each quasi-norm is equivalent to some *p*-norm. Since it is much easier to work with *p*-norms than quasi-norms, henceforth we restrict our attention mainly to *p*-norms.

2. Solutions of Eq. (1.4)

Throughout this section, X and Y will be real vector spaces. Before proceeding the proof of Theorem 2.4 which is the main result in this section, we shall need the following lemmas.

Lemma 2.1. If an even function $f : X \to Y$ satisfies (1.4), then f is quadratic.

Proof. Note that, in view of the evenness of f, we have f(-x) = f(x) for all $x \in X$. Putting $x_1 = x_2 = x_3 = x_4 = 0$ in (1.4), we get that f(0) = 0. Letting $x_1 = x_2 = x$ and $x_3 = x_4 = y$ in (1.4), we get

(2.1)
$$f(2x+2y) + 4f(x+y) + f(2x) + f(2y) = 2f(2x+y) + 2f(x+2y) + 2f(x) + 2f(y)$$

for all $x, y \in X$. Letting y = -x in (2.1) and using the evenness of f, we get that

$$(2.2) f(2x) = 4f(x)$$

for all $x \in X$. Therefore it follows from (2.1) and (2.2) that

(2.3)
$$f(2x+y) + f(x+2y) = 4f(x+y) + f(x) + f(y)$$

for all $x, y \in X$. Replacing y by y - x in (2.3) and using the evenness of f, we get

(2.4)
$$f(x-2y) = f(x-y) - f(x+y) + f(x) + 4f(y)$$

for all $x, y \in X$. Replacing y by -y in (2.4) and using the evenness of f, we get

(2.5)
$$f(x+2y) = f(x+y) - f(x-y) + f(x) + 4f(y)$$

for all $x, y \in X$. Replacing x and y by y and x in (2.5), respectively, and using the evenness of f, we get

(2.6)
$$f(2x+y) = f(x+y) - f(x-y) + f(y) + 4f(x)$$

for all $x, y \in X$. Adding (2.5) to (2.6) and using (2.3), we get that

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

for all $x, y \in X$. Therefore the function $f : X \to Y$ is quadratic.

Lemma 2.2. If an odd function $f : X \to Y$ satisfies (1.4), then the function $g : X \to Y$ defined by g(x) = f(2x) - 8f(x) is additive.

Proof. Note that, in view of the oddness of f, we have f(-x) = -f(x) for all $x \in X$. So f(0) = 0. Replacing y by y - x in (2.1) and using the oddness of f, we get

(2.7)
$$f(2y-2x) + f(2x) + f(2y) + 4f(y) = 2f(2y-x) + 2f(x+y) - 2f(x-y) + 2f(x)$$

for all $x, y \in X$. Replacing x by -x in (2.7) and using the oddness of f, we get

(2.8)
$$f(2x+2y) - f(2x) + f(2y) + 4f(y) = 2f(x+2y) + 2f(x+y) - 2f(x-y) - 2f(x)$$

for all $x, y \in X$. Replacing x and y by y and x in (2.8), respectively, and using the oddness of f, we get

(2.9)
$$f(2x+2y) - f(2y) + f(2x) + 4f(x) = 2f(2x+y) + 2f(x+y) + 2f(x-y) - 2f(y)$$

for all $x, y \in X$. Adding (2.8) to (2.9) and using the oddness of f, we get

(2.10)
$$2f(2x+y) + 2f(x+2y) = 2f(2x+2y) - 4f(x+y) + 6f(x) + 6f(y)$$

for all $x, y \in X$. It follows from (2.1) and (2.10) that

$$f(2x + 2y) - 8f(x + y) = f(2x) + f(2y) - 8f(x) - 8f(y)$$

for all $x, y \in X$. So by the definition of g, we have

$$g(x+y) = g(x) + g(y)$$

for all $x, y \in X$. Therefore the function $g : X \to Y$ is additive.

Lemma 2.3. If an odd function $f : X \to Y$ satisfies (1.4), then the function $h : X \to Y$ defined by h(x) = f(2x) - 2f(x) is cubic.

Proof. It is clear that f(0) = 0. Let $g: X \to Y$ be a function defined by g(x) = f(2x) - 8f(x) for all $x \in X$. By Lemma 2.2, the function g, is additive. It is clear that

(2.11)
$$h(x) = g(x) + 6f(x), \quad f(2x) = g(x) + 8f(x)$$

for all $x \in X$. Therefore the functional equation (2.9) means

(2.12)
$$g(x+y) + 8f(x+y) + g(x) + 12f(x) - f(2y) = 2f(2x+y) + 2f(x+y) + 2f(x-y) - 2f(y)$$

for all $x, y \in X$. Replacing y by -y in (2.12) and using the oddness of f, we get

(2.13)
$$g(x-y) + 8f(x-y) + g(x) + 12f(x) + f(2y) = 2f(2x-y) + 2f(x-y) + 2f(x+y) + 2f(y)$$

for all $x, y \in X$. Adding (2.12) to (2.13) and using the additivity of g, we get

(2.14)
$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x) + 2g(x)$$

for all $x, y \in X$. So it follows from (2.11) and (2.14) that

(2.15)
$$\begin{aligned} h(2x+y) + h(2x-y) - \left[g(2x+y) + g(2x-y)\right] \\ &= 2[h(x+y) + h(x-y)] + 12h(x) - 2[g(x+y) + g(x-y)] \end{aligned}$$

for all $x, y \in X$. Since g is additive, then (2.15) implies that

$$h(2x + y) + h(2x - y) = 2[h(x + y) + h(x - y)] + 12h(x)$$

for all $x, y \in X$. Therefore the function h is cubic.

Theorem 2.4. A function $f : X \to Y$ satisfies the functional equation (1.4) if and only if there exist functions $C : X \times X \times X \to Y$, $B : X \times X \to Y$ and $A : X \to Y$ such that

$$f(x) = C(x, x, x) + B(x, x) + A(x)$$

for all $x \in X$, where the function C is symmetric for each fixed one variable and additive for fixed two variables, the function B is symmetric bi-additive and the function A is additive.

Proof. We first assume that f is a solution of the functional equation (1.4). We decompose f into the even part and the odd part by putting

$$f_e(x) = \frac{f(x) + f(-x)}{2}$$
 and $f_o(x) = \frac{f(x) - f(-x)}{2}$

for all $x \in X$. It is clear that $f(x) = f_e(x) + f_o(x)$ for all $x \in X$. It is easy to show that each of the functions f_e and f_o satisfies (1.4). Hence by Lemmas 2.1, 2.2 and 2.3 we achieve that the functions $h, f_e, g: X \to Y$ are cubic, quadratic and additive, respectively, where

$$h(x) = f_o(2x) - 2f_o(x), \quad g(x) = f_o(2x) - 8f_o(x)$$

for all $x \in X$. Therefore by Theorem [11, Theorem 2.1] there exists a function $C : X \times X \times X \to Y$ such that h(x) = 6C(x, x, x) for all $x \in X$, and C is symmetric for each fixed one variable and is additive for fixed two variables. Also there exists a symmetric bi-additive function $B : X \times X \to Y$ such that $f_e(x) = B(x, x)$ for all $x \in X$ (see [1, 12]). So

$$f(x) = C(x, x, x) + B(x, x) + A(x)$$

for all $x \in X$, where $A(x) = -\frac{1}{6}g(x)$ for all $x \in X$. Conversely, let

$$f(x) = C(x, x, x) + B(x, x) + A(x)$$

for all $x \in X$, where the function C is symmetric for each fixed one variable and additive for fixed two variables, the function B is symmetric bi-additive and the function A is additive. By a simple computation one can show that the function f satisfies the equation (1.4).

3. HYERS-ULAM-RASSIAS STABILITY OF EQ. (1.4)

Throughout this paper, assume that X is a quasi-normed space with quasi-norm $\|.\|_X$ and that Y is a p-Banach space with p-norm $\|.\|_Y$. Let K be the modulus of concavity of $\|.\|_Y$.

In this section we have four parts. In each part, using an idea of Găvruta [6] we prove the stability of Eq. (1.4) in the spirit of Hyers, Ulam and Rassias. For convenience, we use the following abbreviation for a given function $f : X \times X \times X \times X \to Y$:

$$Df(x_1, x_2, x_3, x_4) := f\left(\sum_{i=1}^4 x_i\right) + \sum_{1 \le i < j \le 4} f(x_i + x_j) - \sum_{i=1}^4 f(x_i) - \sum_{1 \le i < j < k \le 4} f(x_i + x_j + x_k)$$

for all $x_1, x_2, x_3, x_4 \in X$.

We will use the following lemma in this section.

Lemma 3.1. [14] Let $0 and let <math>x_1, x_2, \ldots, x_n$ be non-negative real numbers. Then

(3.1)
$$\left(\sum_{i=1}^{n} x_i\right)^p \le \sum_{i=1}^{n} x_i^p.$$

3.1. **Part I.** In this part, we find some conditions that there exists a true quadratic function near an approximately quadratic function.

Theorem 3.2. Let $\varphi : X^4 \to [0, \infty)$ be a function such that

(3.2)
$$\lim_{n \to \infty} 4^n \varphi \left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}, \frac{x_4}{2^n} \right) = 0$$

(3.3)
$$\widetilde{\varphi_e}(x) := \sum_{i=1}^{\infty} 4^{ip} \varphi^p \left(\frac{x}{2^i}, \frac{x}{2^i}, -\frac{x}{2^i}, -\frac{x}{2^i} \right) < \infty$$

for all $x, x_1, x_2, x_3, x_4 \in X$. Suppose that an even function $f : X \to Y$ satisfies the inequality

(3.4)
$$\|Df(x_1, x_2, x_3, x_4)\|_Y \le \varphi(x_1, x_2, x_3, x_4)$$

for all $x_1, x_2, x_3, x_4 \in X$. Then the limit

(3.5)
$$Q(x) := \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}\right)$$

exists for all $x \in X$ and $Q : X \to Y$ is a unique quadratic function satisfying

(3.6)
$$||f(x) - Q(x)||_Y \le \frac{1}{8} [\widetilde{\varphi_e}(x)]^{\frac{1}{p}}$$

for all $x \in X$.

Proof. It follows from (3.2) that $\varphi(0, 0, 0, 0) = 0$. So by letting $x_1 = x_2 = x_3 = x_4 = 0$ in (3.4), we get that f(0) = 0. Letting $x_1 = x_2 = x$ and $x_3 = x_4 = -x$ in (3.4), we get

(3.7)
$$||f(2x) - 4f(x)||_Y \le \frac{1}{2}\varphi(x, x, -x, -x)$$

for all $x \in X$. If we replace x in (3.7) by $\frac{x}{2^{n+1}}$ and multiply both sides of (3.7) to 4^n , then we have

(3.8)
$$\left\| 4^{n+1} f\left(\frac{x}{2^{n+1}}\right) - 4^n f\left(\frac{x}{2^n}\right) \right\|_Y \le \frac{4^n}{2} \varphi\left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+1}}, -\frac{x}{2^{n+1}}, -\frac{x}{2^{n+1}}\right)$$

for all $x \in X$ and all non-negative integers n. Since Y is a p-Banach space, we have

(3.9)
$$\begin{aligned} \left\| 4^{n+1} f\left(\frac{x}{2^{n+1}}\right) - 4^m f\left(\frac{x}{2^m}\right) \right\|_Y^p \\ &\leq \sum_{i=m}^n \left\| 4^{i+1} f\left(\frac{x}{2^{i+1}}\right) - 4^i f\left(\frac{x}{2^i}\right) \right\|_Y^p \\ &\leq 2^{-p} \sum_{i=m}^n 4^{ip} \varphi^p \left(\frac{x}{2^{i+1}}, \frac{x}{2^{i+1}}, -\frac{x}{2^{i+1}}, -\frac{x}{2^{i+1}}\right) \end{aligned}$$

for all $x \in X$ and all non-negative integers m and n with $n \ge m$. Therefore we conclude from (3.3) and (3.9) that the sequence $\{4^n f(\frac{x}{2^n})\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\{4^n f(\frac{x}{2^n})\}$ converges in Y for all $x \in X$. So one can define the function $Q: X \to Y$ by (3.5) for all $x \in X$. Letting m = 0 and passing the limit $n \to \infty$ in (3.9), we get

(3.10)
$$\begin{aligned} \|f(x) - Q(x)\|_{Y}^{p} &\leq 2^{-p} \sum_{i=0}^{\infty} 4^{ip} \varphi^{p} \left(\frac{x}{2^{i+1}}, \frac{x}{2^{i+1}}, -\frac{x}{2^{i+1}}, -\frac{x}{2^{i+1}}\right) \\ &= \frac{1}{8^{p}} \sum_{i=1}^{\infty} 4^{ip} \varphi^{p} \left(\frac{x}{2^{i}}, \frac{x}{2^{i}}, -\frac{x}{2^{i}}, -\frac{x}{2^{i}}\right) \end{aligned}$$

for all $x \in X$. Therefore we obtain (3.6). Now, we show that Q is quadratic. It follows from (3.2), (3.4) and (3.5),

$$\|DQ(x_1, x_2, x_3, x_4)\|_Y = \lim_{n \to \infty} 4^n \left\| Df\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}, \frac{x_4}{2^n}\right) \right\|_Y$$
$$\leq \lim_{n \to \infty} 4^n \varphi\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}, \frac{x_4}{2^n}\right) = 0$$

for all $x_1, x_2, x_3, x_4 \in X$. Therefore the function $Q : X \to Y$ satisfies (1.4). Since f is even, then Q is even. So by Lemma 2.1 we get that the function $Q : X \to Y$ is quadratic.

To prove the uniqueness of Q, let $T : X \to Y$ be another quadratic function satisfying (3.6). Since

$$\lim_{n \to \infty} 4^{np} \widetilde{\varphi_e}\left(\frac{x}{2^n}\right) = \lim_{n \to \infty} 4^{np} \sum_{i=1}^{\infty} 4^{ip} \varphi^p\left(\frac{x}{2^{n+i}}, \frac{x}{2^{n+i}}, -\frac{x}{2^{n+i}}, -\frac{x}{2^{n+i}}\right)$$
$$= \lim_{n \to \infty} \sum_{i=n+1}^{\infty} 4^{ip} \varphi^p\left(\frac{x}{2^i}, \frac{x}{2^i}, -\frac{x}{2^i}, -\frac{x}{2^i}\right) = 0$$

for all $x \in X$, then it follows from (3.6) that

$$\begin{aligned} \|Q(x) - T(x)\|_{Y}^{p} &= \lim_{n \to \infty} 4^{np} \left\| f\left(\frac{x}{2^{n}}\right) - T\left(\frac{x}{2^{n}}\right) \right\|_{Y}^{p} \\ &\leq \frac{1}{8^{p}} \lim_{n \to \infty} 4^{np} \widetilde{\varphi_{e}}\left(\frac{x}{2^{n}}\right) = 0 \end{aligned}$$

for all $x \in X$. So Q = T.

Theorem 3.3. Let $\Phi: X^4 \rightarrow [0, \infty)$ be a function such that

(3.11)
$$\lim_{n \to \infty} \frac{1}{4^n} \Phi(2^n x_1, 2^n x_2, 2^n x_3, 2^n x_4) = 0$$

and

(3.12)
$$\widetilde{\Phi_e}(x) := \sum_{i=0}^{\infty} \frac{1}{4^{ip}} \Phi^p(2^i x, 2^i x, -2^i x, -2^i x) < \infty$$

for all $x, x_1, x_2, x_3, x_4 \in X$. Suppose that an even function $f: X \to Y$ satisfies the inequality

(3.13)
$$\|Df(x_1, x_2, x_3, x_4)\|_Y \le \Phi(x_1, x_2, x_3, x_4)$$

for all $x_1, x_2, x_3, x_4 \in X$. Then the limit

(3.14)
$$Q(x) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x)$$

exists for all $x \in X$ and $Q : X \to Y$ is a unique quadratic function satisfying

(3.15)
$$\left\| f(x) - Q(x) + \frac{5}{6}f(0) \right\|_{Y} \le \frac{1}{8} [\widetilde{\Phi_{e}}(x)]^{\frac{1}{p}}$$

for all $x \in X$.

Proof. Letting $x_1 = x_2 = x$ and $x_3 = x_4 = -x$ in (3.4), we get

(3.16)
$$\left\| f(2x) - 4f(x) + \frac{5}{2}f(0) \right\|_{Y} \le \frac{1}{2}\Phi(x, x, -x, -x)$$

for all $x \in X$. If we replace x in (3.16) by $2^n x$ and divide both side of (3.16) by 4^{n+1} , then we have

(3.17)
$$\begin{aligned} \left\| \frac{1}{4^{n+1}} f(2^{n+1}x) - \frac{1}{4^n} f(2^n x) + \frac{5}{2 \times 4^{n+1}} f(0) \right\|_Y \\ &\leq \frac{1}{2 \times 4^{n+1}} \Phi(2^n x, 2^n x, -2^n x, -2^n x) \end{aligned}$$

for all $x \in X$ and all non-negative integers n. Since Y is a p-Banach space,

(3.18)
$$\begin{aligned} \left\| \frac{1}{4^{n+1}} f(2^{n+1}x) - \frac{1}{4^m} f(2^m x) + \frac{1}{2} \sum_{i=m}^n \frac{5}{4^{i+1}} f(0) \right\|_Y^p \\ &\leq \sum_{i=m}^n \left\| \frac{1}{4^{i+1}} f(2^{i+1}x) - \frac{1}{4^i} f(2^i x) + \frac{5}{2 \times 4^{i+1}} f(0) \right\|_Y^p \\ &\leq \frac{1}{8^p} \sum_{i=m}^n \frac{1}{4^{ip}} \Phi^p(2^i x, 2^i x, -2^i x, -2^i x) \end{aligned}$$

for all $x \in X$ and all non-negative integers m and n with $n \ge m$. Since $\sum_{i=0}^{\infty} \frac{1}{4^i}$ converges, then it follows from (3.12) and (3.18) that the sequence $\left\{\frac{1}{4^n}f(2^nx)\right\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{4^n}f(2^nx)\right\}$ converges in Y for all $x \in X$. So one can define the function $Q: X \to Y$ by (3.14).

The rest of the proof is similar to the proof of Theorem 3.2.

Corollary 3.4. Let θ be a non-negative real number. Suppose that an even function $f : X \to Y$ satisfies the inequality

(3.19)
$$||Df(x_1, x_2, x_3, x_4)||_Y \le \theta$$

for all $x_1, x_2, x_3, x_4 \in X$. Then there exists a unique quadratic function $Q: X \to Y$ satisfies

$$\|f(x) - Q(x)\|_{Y} \le \frac{K\theta}{2} \left[\frac{1}{(4^{p} - 1)^{\frac{1}{p}}} + \frac{5}{3}\right]$$

for all $x \in X$.

Proof. It follows from (3.19) that $||f(0)||_Y \le \theta$. Hence the result follows by Theorem 3.3.

Corollary 3.5. Let θ , $\{r_i\}_{i \in J}$ be non-negative real numbers such that $r_i > 2$ ($0 < r_i < 2$) for all $i \in J$, where J is a non-empty subset of $\{1, 2, 3, 4\}$. Suppose that an even function $f : X \to Y$ satisfies the inequality

(3.20)
$$\|Df(x_1, x_2, x_3, x_4)\|_Y \le \theta \sum_{i \in J} \|x_i\|_X^{r_i}$$

for all $x_1, x_2, x_3, x_4 \in X$. Then there exists a unique quadratic function $Q: X \to Y$ satisfies

$$||f(x) - Q(x)||_{Y} \le \frac{\theta}{2} \Big\{ \sum_{i \in J} \frac{1}{|2^{pr_{i}} - 4^{p}|} ||x||_{X}^{pr_{i}} \Big\}^{\frac{1}{p}}$$

for all $x \in X$.

Proof. It follows from (3.20) that f(0) = 0. Hence the result follows by Theorems 3.2 and 3.3.

Corollary 3.6. Let θ , $\{r_i\}_{i \in J}$ be non-negative real numbers such that $\lambda = \sum_{i \in J} r_i \in (0,2) \cup (2, +\infty)$, where J is a non-empty subset of $\{1, 2, 3, 4\}$. Suppose that an even function $f : X \to Y$ satisfies the inequality

(3.21)
$$\|Df(x_1, x_2, x_3, x_4)\|_Y \le \theta \prod_{i \in J} \|x_i\|_X^{r_i}$$

for all $x_1, x_2, x_3, x_4 \in X$. Then there exists a unique quadratic function $Q: X \to Y$ satisfies

$$||f(x) - Q(x)||_{Y} \le \frac{\theta}{2|2^{\lambda p} - 4^{p}|^{\frac{1}{p}}} ||x||_{X}^{\lambda}$$

for all $x \in X$.

Proof. The result follows by Theorems 3.2 and 3.3.

3.2. **Part II.** In this part, we find some conditions that there exists a true additive function near an approximately additive function.

Theorem 3.7. Let $\varphi : X^4 \to [0, \infty)$ be a function such that

(3.22)
$$\lim_{n \to \infty} 2^n \varphi \left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}, \frac{x_4}{2^n} \right) = 0$$

and

(3.23)
$$\sum_{i=1}^{\infty} 2^{ip} \varphi^p \left(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, \frac{y}{2^i} \right) < \infty$$

for all $x, x_1, x_2, x_3, x_4 \in X$ and $y = \pm x$. Suppose that an odd function $f : X \to Y$ satisfies the inequality (3.4) for all $x_1, x_2, x_3, x_4 \in X$. Let $g : X \to Y$ be a function defined by g(x) = f(2x) - 8f(x) for all $x \in X$. Then the limit

(3.24)
$$A(x) := \lim_{n \to \infty} 2^n g\left(\frac{x}{2^n}\right)$$

exists for all $x \in X$ and $A : X \to Y$ is a unique additive function satisfying

(3.25)
$$\|f(2x) - 8f(x) - A(x)\|_{Y} \le \frac{K}{2} [\widetilde{\varphi_{a}}(x)]^{\frac{1}{p}}$$

for all $x \in X$, where

(3.26)
$$\widetilde{\varphi_a}(x) := \sum_{i=1}^{\infty} 2^{ip} \left\{ \varphi^p \left(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i} \right) + 4^p \varphi^p \left(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, -\frac{x}{2^i} \right) \right\}$$

Proof. Letting $x_1 = x_2 = x_3 = x_4 = x$ in (3.4), we get

(3.27)
$$||f(4x) - 4f(3x) + 6f(2x) - 4f(x)||_Y \le \varphi(x, x, x, x)$$

for all $x \in X$. Putting $x_1 = x_2 = x_3 = x$ and $x_4 = -x$ in (3.4) and using the oddness of f, we have

(3.28)
$$||f(3x) - 4f(2x) + 5f(x)||_Y \le \varphi(x, x, x, -x)$$

for all
$$x \in X$$
. It follows form (3.27) and (3.28) that

(3.29)
$$||f(4x) - 10f(2x) + 16f(x)||_Y \le K\varphi_1(x)$$

for all $x \in X$, where

(3.30)
$$\varphi_1(x) = \varphi(x, x, x, x) + 4\varphi(x, x, x, -x)$$

It follows from (3.29) and the definition of g,

(3.31)
$$||g(2x) - 2g(x)||_Y \le K\varphi_1(x)$$

for all $x \in X$. If we replace x in (3.31) by $\frac{x}{2^{n+1}}$ and multiply both sides of (3.31) to 2^n , we get

(3.32)
$$\left\| 2^{n+1}g\left(\frac{x}{2^{n+1}}\right) - 2^n g\left(\frac{x}{2^n}\right) \right\|_Y \le K 2^n \varphi_1\left(\frac{x}{2^{n+1}}\right)$$

for all $x \in X$ and all non-negative integers n. Since Y is a p-Banach space,

(3.33)
$$\left\| 2^{n+1} g\left(\frac{x}{2^{n+1}}\right) - 2^m g\left(\frac{x}{2^m}\right) \right\|_Y^p \le \sum_{i=m}^n \left\| 2^{i+1} g\left(\frac{x}{2^{i+1}}\right) - 2^i g\left(\frac{x}{2^i}\right) \right\|_Y^p \le K^p \sum_{i=m}^n 2^{ip} \varphi_1^p \left(\frac{x}{2^{i+1}}\right)$$

for all $x \in X$ and all non-negative integers m and n with $n \ge m$. Since 0 , then by Lemma 3.1, we get

(3.34)
$$\varphi_1^p(x) \le \varphi^p(x, x, x, x) + 4^p \varphi^p(x, x, x, -x)$$

for all $x \in X$. Therefore it follows from (3.22), (3.23) and (3.34) that

(3.35)
$$\sum_{i=1}^{\infty} 2^{ip} \varphi_1^p \left(\frac{x}{2^i}\right) < \infty, \qquad \lim_{n \to \infty} 2^n \varphi_1 \left(\frac{x}{2^n}\right) = 0$$

for all $x \in X$. Therefore we conclude from (3.33) and (3.35) that the sequence $\{2^n g(\frac{x}{2^n})\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\{2^n g(\frac{x}{2^n})\}$ converges in Y for all $x \in X$. So one can define the function $A : X \to Y$ by (3.24) for all $x \in X$. Letting

m = 0 and passing the limit $n \to \infty$ in (3.33), and using (3.34), we get (3.25). Now, we show that A is additive. It follow from (3.24), (3.32) and (3.35) that

$$\begin{split} \|A(2x) - 2A(x)\| &= \lim_{n \to \infty} \left\| 2^n g\left(\frac{x}{2^{n-1}}\right) - 2^{n+1} g\left(\frac{x}{2^n}\right) \right\| \\ &= 2 \lim_{n \to \infty} \left\| 2^{n-1} g\left(\frac{x}{2^{n-1}}\right) - 2^n g\left(\frac{x}{2^n}\right) \right\| \\ &\leq K \lim_{n \to \infty} 2^n \varphi_1\left(\frac{x}{2^n}\right) = 0 \end{split}$$

A(2x) = 2A(x)

for all $x \in X$. Therefore

(3.36)

for all $x \in X$. On the other hand it follows from (3.4), (3.22) and (3.24),

$$\begin{split} \|DA(x_1, x_2, x_3, x_4)\|_Y &= \lim_{n \to \infty} 2^n \left\| Dg\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}, \frac{x_4}{2^n}\right) \right\|_Y \\ &= \lim_{n \to \infty} 2^n \left\{ \left\| Df\left(\frac{x_1}{2^{n-1}}, \frac{x_2}{2^{n-1}}, \frac{x_3}{2^{n-1}}, \frac{x_4}{2^{n-1}}\right) - 8Df\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2}, \frac{x_4}{2^n}\right) \right\|_Y \right\} \\ &\leq K \lim_{n \to \infty} 2^n \left\{ \left\| Df\left(\frac{x_1}{2^{n-1}}, \frac{x_2}{2^{n-1}}, \frac{x_3}{2^{n-1}}, \frac{x_4}{2^{n-1}}\right) \right\|_Y + 8 \left\| Df\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2}, \frac{x_4}{2^n}\right) \right\|_Y \right\} \\ &\leq K \lim_{n \to \infty} 2^n \left\{ \varphi\left(\frac{x_1}{2^{n-1}}, \frac{x_2}{2^{n-1}}, \frac{x_3}{2^{n-1}}, \frac{x_4}{2^{n-1}}\right) + 8\varphi\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}, \frac{x_4}{2^n}\right) \right\} = 0 \end{split}$$

for all $x_1, x_2, x_3, x_4 \in X$. Therefore the function $A : X \to Y$ satisfies (1.4). Since f is an odd function, then g is odd. So (3.24) implies that the function $A : X \to Y$ is odd. Therefore by Lemma 2.2, the function $x \mapsto A(2x) - 8A(x)$ is additive. So (3.36) implies that the function $A : X \to Y$ is additive.

To prove the uniqueness of A, let $T: X \to Y$ be another additive function satisfying (3.25). Since

$$\lim_{n \to \infty} 2^{np} \sum_{i=1}^{\infty} 2^{ip} \varphi^p \left(\frac{x}{2^{n+i}}, \frac{x}{2^{n+i}}, \frac{x}{2^{n+i}}, \frac{y}{2^{n+i}} \right)$$
$$= \lim_{n \to \infty} \sum_{i=n+1}^{\infty} 2^{ip} \varphi^p \left(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, \frac{y}{2^i} \right) = 0$$

for all $x \in X$ and $y \in \{x, -x\}$, then

(3.37)
$$\lim_{n \to \infty} 2^{np} \widetilde{\varphi_a}\left(\frac{x}{2^n}\right) = 0$$

for all $x \in X$. It follows from (3.24), (3.25) and (3.37) that

$$\|A(x) - T(x)\|_{Y}^{p} = \lim_{n \to \infty} 2^{np} \left\| g\left(\frac{x}{2^{n}}\right) - T\left(\frac{x}{2^{n}}\right) \right\|_{Y}^{p}$$
$$\leq \frac{K^{p}}{2^{p}} \lim_{n \to \infty} 2^{np} \widetilde{\varphi_{a}}\left(\frac{x}{2^{n}}\right) = 0$$

for all $x \in X$. So A = T.

Theorem 3.8. Let $\Phi: X^4 \rightarrow [0, \infty)$ be a function such that

(3.38)
$$\lim_{n \to \infty} \frac{1}{2^n} \Phi\left(2^n x_1, 2^n x_2, 2^n x_3, 2^n x_4\right) = 0$$

and

(3.39)
$$\sum_{i=0}^{\infty} \frac{1}{2^{ip}} \Phi^p \Big(2^i x, 2^i x, 2^i x, 2^i y \Big) < \infty$$

 \sim

for all $x, x_1, x_2, x_3, x_4 \in X$ and $y = \pm x$. Suppose that an odd function $f : X \to Y$ satisfies the inequality (3.13) for all $x_1, x_2, x_3, x_4 \in X$. Let $g : X \to Y$ be a function defined by g(x) = f(2x) - 8f(x) for all $x \in X$. Then the limit

(3.40)
$$A(x) := \lim_{n \to \infty} \frac{1}{2^n} g(2^n x)$$

exists for all $x \in X$ and $A : X \to Y$ is a unique additive function satisfying

(3.41)
$$||f(2x) - 8f(x) - A(x)||_Y \le \frac{K}{2} [\widetilde{\Phi_a}(x)]^{\frac{1}{p}}$$

for all $x \in X$, where

(3.42)
$$\widetilde{\Phi_a}(x) := \sum_{i=0}^{\infty} \frac{1}{2^{ip}} \Big\{ \Phi^p \big(2^i x, 2^i x, 2^i x, 2^i x \big) + 4^p \Phi^p \big(2^i x, 2^i x, 2^i x, -2^i x \big) \Big\}$$

Proof. Similar to the proof of Theorem 3.7, we infer that

(3.43)
$$\left\|\frac{1}{2^{n+1}}g(2^{n+1}x) - \frac{1}{2^n}g(2^nx)\right\|_Y \le \frac{K}{2^{n+1}}\Phi_1(2^nx)$$

for all $x \in X$ and all non-negative integers n, where

(3.44)
$$\Phi_1(x) = \Phi(x, x, x, x) + 4\Phi(x, x, x, -x).$$

By Lemma 3.1, it follows from (3.38) and (3.39) that

(3.45)
$$\sum_{i=0}^{\infty} \frac{1}{2^{ip}} \Phi_1^p(2^i x) < \infty, \qquad \lim_{n \to \infty} \frac{1}{2^n} \Phi_1(2^n x) = 0$$

for all $x \in X$. Since Y is a p-Banach space,

(3.46)
$$\begin{aligned} \left\|\frac{1}{2^{n+1}}g(2^{n+1}x) - \frac{1}{2^m}g(2^mx)\right\|_Y^p &\leq \sum_{i=m}^n \left\|\frac{1}{2^{i+1}}g(2^{i+1}x) - \frac{1}{2^i}g(2^ix)\right\|_Y^p \\ &\leq \left(\frac{K}{2}\right)^p \sum_{i=m}^n \frac{1}{2^{ip}}\Phi_1^p(2^ix) \end{aligned}$$

for all $x \in X$ and all non-negative integers m and n with $n \ge m$. Therefore we conclude from (3.45) and (3.46) that the sequence $\{\frac{1}{2^n}g(2^nx)\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{2^n}g(2^nx)\}$ converges in Y for all $x \in X$. So one can define the function $A: X \to Y$ by (3.40) for all $x \in X$.

The rest of the proof is similar to the proof of Theorem 3.7 \blacksquare

Corollary 3.9. Let θ be a non-negative real number. Suppose that an odd function $f : X \to Y$ satisfies the inequality (3.19) for all $x_1, x_2, x_3, x_4 \in X$. Then there exists a unique additive function $A : X \to Y$ satisfies

$$||f(2x) - 8f(x) - A(x)||_Y \le K\theta \left(\frac{4^p + 1}{2^p - 1}\right)^{\frac{1}{p}}$$

for all $x \in X$.

Proof. The result follows by Theorem 3.8.

Corollary 3.10. Let θ , $\{r_i\}_{i \in J}$ be non-negative real numbers such that $r_i > 1$ ($0 < r_i < 1$) for all $i \in J$, where J is a non-empty subset of $\{1, 2, 3, 4\}$. Suppose that an odd function

 $f: X \to Y$ satisfies the inequality (3.20) for all $x_1, x_2, x_3, x_4 \in X$. Then there exists a unique additive function $A: X \to Y$ satisfies

$$\|f(2x) - 8f(x) - A(x)\|_{Y} \le K\theta \Big\{ \sum_{i \in J} \frac{4^{p} + 1}{|2^{pr_{i}} - 2^{p}|} \|x\|_{X}^{pr_{i}} \Big\}^{\frac{1}{p}}$$

for all $x \in X$.

Proof. The result follows by Theorems 3.7 and 3.8.

Corollary 3.11. Let θ , $\{r_i\}_{i \in J}$ be non-negative real numbers such that $\lambda = \sum_{i \in J} r_i \in (0,1) \cup (1, +\infty)$, where J is a non-empty subset of $\{1, 2, 3, 4\}$. Suppose that an odd function $f : X \to Y$ satisfies the inequality (3.21) for all $x_1, x_2, x_3, x_4 \in X$. Then there exists a unique additive function $A : X \to Y$ satisfies

$$||f(2x) - 8f(x) - A(x)||_{Y} \le K\theta \left(\frac{4^{p} + 1}{|2^{\lambda p} - 2^{p}|}\right)^{\frac{1}{p}} ||x||_{X}^{\lambda}$$

for all $x \in X$.

3.3. **Part III.** In this part, we find some conditions that there exists a true cubic function near an approximately cubic function.

Theorem 3.12. Let $\psi : X^4 \to [0, \infty)$ be a function such that

(3.47)
$$\lim_{n \to \infty} 8^n \psi \left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}, \frac{x_4}{2^n} \right) = 0$$

and

(3.48)
$$\sum_{i=1}^{\infty} 8^{ip} \psi^p \left(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, \frac{y}{2^i} \right) < \infty$$

for all $x, x_1, x_2, x_3, x_4 \in X$ and $y = \pm x$. Suppose that an odd function $f : X \to Y$ satisfies the inequality

(3.49)
$$\|Df(x_1, x_2, x_3, x_4)\|_Y \le \psi(x_1, x_2, x_3, x_4)$$

for all $x_1, x_2, x_3, x_4 \in X$. Let $h : X \to Y$ be a function defined by h(x) = f(2x) - 2f(x) for all $x \in X$. Then the limit

(3.50)
$$C(x) := \lim_{n \to \infty} 8^n h\left(\frac{x}{2^n}\right)$$

exists for all $x \in X$ and $C : X \to Y$ is a unique cubic function satisfying

(3.51)
$$||f(2x) - 2f(x) - C(x)||_Y \le \frac{K}{8} [\widetilde{\psi}_c(x)]^{\frac{1}{p}}$$

for all $x \in X$, where

(3.52)
$$\widetilde{\psi_c}(x) := \sum_{i=1}^{\infty} 8^{ip} \left\{ \psi^p \left(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i} \right) + 4^p \psi^p \left(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, -\frac{x}{2^i} \right) \right\}$$

Proof. Similar to the proof of Theorem 3.7, we infer that

(3.53)
$$||h(2x) - 8h(x)||_Y \le K\psi_1(x)$$

for all $x \in X$, where

(3.54)
$$\psi_1(x) = \psi(x, x, x, x) + 4\psi(x, x, x, -x).$$

By Lemma 3.1, it follows from (3.47) and (3.48) that

(3.55)
$$\sum_{i=1}^{\infty} 8^{ip} \psi_1^p \left(\frac{x}{2^i}\right) < \infty, \qquad \lim_{n \to \infty} 8^n \psi_1 \left(\frac{x}{2^n}\right) = 0$$

for all $x \in X$. If we replace x in (3.53) by $\frac{x}{2^{n+1}}$ and multiply both sides of (3.53) by 8^n , we get

(3.56)
$$\left\| 8^{n+1} h\left(\frac{x}{2^{n+1}}\right) - 8^n h\left(\frac{x}{2^n}\right) \right\|_Y \le K 8^n \psi_1\left(\frac{x}{2^{n+1}}\right)$$

for all $x \in X$ and all non-negative integers n. Since Y is a p-Banach space,

(3.57)
$$\left\| 8^{n+1}h\left(\frac{x}{2^{n+1}}\right) - 8^m h\left(\frac{x}{2^m}\right) \right\|_Y^p \le \sum_{i=m}^n \left\| 8^{i+1}h\left(\frac{x}{2^{i+1}}\right) - 8^i h\left(\frac{x}{2^i}\right) \right\|_Y^p \le K^p \sum_{i=m}^n 8^{ip} \psi_1^p\left(\frac{x}{2^{i+1}}\right)$$

for all $x \in X$ and all non-negative integers m and n with $n \ge m$. Therefore we conclude from (3.55) and (3.57) that the sequence $\{8^nh(\frac{x}{2^n})\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\{8^nh(\frac{x}{2^n})\}$ converges in Y for all $x \in X$. So one can define the function $C : X \to Y$ by (3.50) for all $x \in X$. Letting m = 0 and passing the limit $n \to \infty$ in (3.57), we get (3.51). Now, we show that C is cubic. It follow from (3.50), (3.55) and (3.56) that

$$\begin{aligned} \|C(2x) - 8C(x)\| &= \lim_{n \to \infty} \left\| 8^n h\left(\frac{x}{2^{n-1}}\right) - 8^{n+1} h\left(\frac{x}{2^n}\right) \right\| \\ &= 8 \lim_{n \to \infty} \left\| 8^{n-1} h\left(\frac{x}{2^{n-1}}\right) - 8^n h\left(\frac{x}{2^n}\right) \right\| \\ &\leq K \lim_{n \to \infty} 8^n \psi_1\left(\frac{x}{2^n}\right) = 0 \end{aligned}$$

for all $x \in X$. Therefore

for all $x \in X$. On the other hand it follows from (3.47), (3.49) and (3.50),

$$\begin{split} \|DC(x_1, x_2, x_3, x_4)\|_Y &= \lim_{n \to \infty} 8^n \left\| Dh\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}, \frac{x_4}{2^n}\right) \right\|_Y \\ &= \lim_{n \to \infty} 8^n \left\{ \left\| Df\left(\frac{x_1}{2^{n-1}}, \frac{x_2}{2^{n-1}}, \frac{x_3}{2^{n-1}}, \frac{x_4}{2^{n-1}}\right) - 2Df\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2}, \frac{x_4}{2^n}\right) \right\|_Y \right\} \\ &\leq K \lim_{n \to \infty} 8^n \left\{ \left\| Df\left(\frac{x_1}{2^{n-1}}, \frac{x_2}{2^{n-1}}, \frac{x_3}{2^{n-1}}, \frac{x_4}{2^{n-1}}\right) \right\|_Y + 2 \left\| Df\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2}, \frac{x_4}{2^n}\right) \right\|_Y \right\} \\ &\leq K \lim_{n \to \infty} 8^n \left\{ \psi\left(\frac{x_1}{2^{n-1}}, \frac{x_2}{2^{n-1}}, \frac{x_3}{2^{n-1}}, \frac{x_4}{2^{n-1}}\right) + 2\psi\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}, \frac{x_4}{2^n}\right) \right\} = 0 \end{split}$$

for all $x_1, x_2, x_3, x_4 \in X$. Therefore the function $C : X \to Y$ satisfies (1.4). Since f is an odd function, then h is odd. So (3.50) implies that the function $C : X \to Y$ is odd. Therefore by Lemma 2.3, the function $x \mapsto C(2x) - 2C(x)$ is cubic. So (3.58) implies that the function $C : X \to Y$ is cubic.

To prove the uniqueness of C, let $T : X \to Y$ be another cubic function satisfying (3.51). Since

$$\lim_{n \to \infty} 8^{np} \sum_{i=1}^{\infty} 8^{ip} \psi^p \left(\frac{x}{2^{n+i}}, \frac{x}{2^{n+i}}, \frac{x}{2^{n+i}}, \frac{y}{2^{n+i}}\right)$$
$$= \lim_{n \to \infty} \sum_{i=n+1}^{\infty} 8^{ip} \psi^p \left(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, \frac{y}{2^i}\right) = 0$$

for all $x \in X$ and $y \in \{x, -x\}$, then

(3.59)
$$\lim_{n \to \infty} 8^{np} \widetilde{\psi_c} \left(\frac{x}{2^n}\right) = 0$$

for all $x \in X$. It follows from (3.50), (3.51) and (3.59) that

$$\begin{aligned} \|C(x) - T(x)\|_Y^p &= \lim_{n \to \infty} 8^{np} \left\| h\left(\frac{x}{2^n}\right) - T\left(\frac{x}{2^n}\right) \right\|_Y^p \\ &\leq \frac{K^p}{8^p} \lim_{n \to \infty} 8^{np} \widetilde{\psi_c}\left(\frac{x}{2^n}\right) = 0 \end{aligned}$$

for all $x \in X$. So C = T.

Theorem 3.13. Let $\Psi: X^4 \to [0,\infty)$ be a function such that

(3.60)
$$\lim_{n \to \infty} \frac{1}{8^n} \Psi(2^n x_1, 2^n x_2, 2^n x_3, 2^n x_4) = 0$$

and

(3.61)
$$\sum_{i=0}^{\infty} \frac{1}{8^{ip}} \Psi^p(2^i x, 2^i x, 2^i x, 2^i y) < \infty$$

for all $x, x_1, x_2, x_3, x_4 \in X$ and $y = \pm x$. Suppose that an odd function $f : X \to Y$ satisfies the inequality

(3.62)
$$\|Df(x_1, x_2, x_3, x_4)\|_Y \le \Psi(x_1, x_2, x_3, x_4)$$

for all $x_1, x_2, x_3, x_4 \in X$. Let $h : X \to Y$ be a function defined by h(x) = f(2x) - 2f(x) for all $x \in X$. Then the limit

(3.63)
$$C(x) := \lim_{n \to \infty} \frac{1}{8^n} h(2^n x)$$

exists for all $x \in X$ and $C : X \to Y$ is a unique cubic function satisfying

(3.64)
$$||f(2x) - 2f(x) - C(x)||_{Y} \le \frac{K}{8} [\widetilde{\Psi_{c}}(x)]^{\frac{1}{p}}$$

for all $x \in X$, where

$$(3.65) \quad \widetilde{\Psi_c}(x) := \sum_{i=0}^{\infty} \frac{1}{8^{ip}} \Big\{ \Psi^p(2^i x, 2^i x, 2^i x, 2^i x) + 4^p \Psi^p(2^i x, 2^i x, 2^i x, -2^i x) \Big\}$$

Proof. Similar to the proof of Theorem 3.12, we infer that

(3.66)
$$\left\| \frac{1}{8^{n+1}} h(2^{n+1}x) - \frac{1}{8^n} h(2^n x) \right\|_Y \le \frac{K}{8^{n+1}} \Psi_1(2^n x)$$

for all $x \in X$ and all non-negative integers n, where

(3.67)
$$\Psi_1(x) = \Psi(x, x, x, x) + 4\Psi(x, x, x, -x).$$

By Lemma 3.1, it follows from (3.60) and (3.61) that

(3.68)
$$\sum_{i=1}^{\infty} \frac{1}{8^{ip}} \Psi_1^p(2^i x) < \infty, \qquad \lim_{n \to \infty} \frac{1}{8^n} \Psi_1(2^n x) = 0$$

for all $x \in X$. Since Y is a p-Banach space,

(3.69)
$$\begin{aligned} \left\|\frac{1}{8^{n+1}}h(2^{n+1}x) - \frac{1}{8^m}h(2^mx)\right\|_Y^p &\leq \sum_{i=m}^n \left\|\frac{1}{8^{i+1}}h(2^{i+1}x) - \frac{1}{8^i}h(2^ix)\right\|_Y^p \\ &\leq \left(\frac{K}{8}\right)^p \sum_{i=m}^n \frac{1}{8^{ip}}\Psi_1^p(2^ix) \end{aligned}$$

for all $x \in X$ and all non-negative integers m and n with $n \ge m$. Therefore we conclude from (3.68) and (3.69) that the sequence $\{\frac{1}{8^n}h(2^nx)\}$ is a Cauchy sequence in Y for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{8^n}h(2^nx)\}$ converges in Y for all $x \in X$. So one can define the function $C: X \to Y$ by (3.63) for all $x \in X$.

The rest of the proof is similar to the proof of Theorem 3.12

Corollary 3.14. Let θ be a non-negative real number. Suppose that an odd function $f : X \to Y$ satisfies the inequality (3.19) for all $x_1, x_2, x_3, x_4 \in X$. Then there exists a unique cubic function $C : X \to Y$ satisfies

$$||f(2x) - 2f(x) - C(x)||_Y \le K\theta \left(\frac{4^p + 1}{8^p - 1}\right)^{\frac{1}{p}}$$

for all $x \in X$.

Proof. The result follows by Theorem 3.13.

Corollary 3.15. Let θ , $\{r_i\}_{i \in J}$ be non-negative real numbers such that $r_i > 3$ ($0 < r_i < 3$) for all $i \in J$, where J is a non-empty subset of $\{1, 2, 3, 4\}$. Suppose that an odd function $f : X \to Y$ satisfies the inequality (3.20) for all $x_1, x_2, x_3, x_4 \in X$. Then there exists a unique cubic function $C : X \to Y$ satisfies

$$\|f(2x) - 2f(x) - C(x)\|_{Y} \le K\theta \Big\{ \sum_{i \in J} \frac{4^{p} + 1}{|2^{pr_{i}} - 8^{p}|} \|x\|_{X}^{pr_{i}} \Big\}^{\frac{1}{p}}$$

for all $x \in X$.

Proof. The result follows by Theorems 3.12 and 3.13.

Corollary 3.16. Let θ , $\{r_i\}_{i \in J}$ be non-negative real numbers such that $\lambda = \sum_{i \in J} r_i \in (0,3) \cup (3, +\infty)$, where J is a non-empty subset of $\{1, 2, 3, 4\}$. Suppose that an odd function $f : X \to Y$ satisfies the inequality (3.21) for all $x_1, x_2, x_3, x_4 \in X$. Then there exists a unique cubic function $C : X \to Y$ satisfies

$$\|f(2x) - 2f(x) - C(x)\|_{Y} \le K\theta \left(\frac{4^{p} + 1}{|2^{\lambda p} - 8^{p}|}\right)^{\frac{1}{p}} \|x\|_{X}^{\lambda}$$

for all $x \in X$.

3.4. **Part IV.** In this part, we give our main results. We find some conditions that there exist a true cubic function, a true quadratic function, and a true additive function near an approximately linear combination of cubic, quadratic and additive functions.

Theorem 3.17. Let $\Theta: X^4 \to [0,\infty)$ be a function such that

(3.70)
$$\lim_{n \to \infty} 8^n \Theta\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}, \frac{x_4}{2^n}\right) = 0$$

and

$$(3.71) \quad \sum_{i=1}^{\infty} 8^{ip} \Theta^p \left(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, \frac{y}{2^i} \right) < \infty, \qquad \sum_{i=1}^{\infty} 8^{ip} \Theta^p \left(\frac{x}{2^i}, \frac{x}{2^i}, \frac{-x}{2^i}, \frac{-x}{2^i} \right) < \infty$$

for all $x, x_1, x_2, x_3, x_4 \in X$ and $y = \pm x$. Suppose that a function $f : X \to Y$ satisfies the inequality

(3.72)
$$\|Df(x_1, x_2, x_3, x_4)\|_Y \le \Theta(x_1, x_2, x_3, x_4)$$

for all $x_1, x_2, x_3, x_4 \in X$. Then there exist a unique cubic function $C : X \to Y$, a unique quadratic function $Q: X \to Y$, and a unique additive function $A: X \to Y$ such that

 α ()

(3.73)
$$\|f(x) - C(x) - Q(x) - A(x)\|_{Y} \leq \frac{K^{2}}{96} \Big\{ K^{2} [L(x)]^{\frac{1}{p}} + 4K^{2} [M(x)]^{\frac{1}{p}} + 6[N(x)]^{\frac{1}{p}} \Big\}$$

for all $x \in X$, where

$$\Gamma(x_1, x_2, x_3, x_4) := \Theta^p(x_1, x_2, x_3, x_4) + \Theta^p(-x_1, -x_2, -x_3, -x_4)$$

$$L(x) := \sum_{i=1}^{\infty} 8^{ip} \Big\{ \Gamma(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}) + 4^p \Gamma(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, -\frac{x}{2^i}) \Big\}$$

$$M(x) := \sum_{i=1}^{\infty} 2^{ip} \Big\{ \Gamma(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}) + 4^p \Gamma(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, -\frac{x}{2^i}) \Big\}$$

$$N(x) := \sum_{i=1}^{\infty} 4^{ip} \Gamma(\frac{x}{2^i}, \frac{x}{2^i}, -\frac{x}{2^i}, -\frac{x}{2^i})$$

for all $x, x_1, x_2, x_3, x_4 \in X$.

Proof. Let f_e and f_0 be the even and the odd part of f, respectively. It follows from (3.72) that

$$(3.74) \quad \|Df_e(x_1, x_2, x_3, x_4)\|_Y \leq \frac{K}{2} \Big[\Theta(x_1, x_2, x_3, x_4) + \Theta(-x_1, -x_2, -x_3, -x_4) \Big] (3.75) \quad \|Df_o(x_1, x_2, x_3, x_4)\|_Y \leq \frac{K}{2} \Big[\Theta(x_1, x_2, x_3, x_4) + \Theta(-x_1, -x_2, -x_3, -x_4) \Big]$$

for all $x_1, x_2, x_3, x_4 \in X$. For convenience, let

$$\Lambda(x_1, x_2, x_3, x_4) := \frac{K}{2} \Big[\Theta(x_1, x_2, x_3, x_4) + \Theta(-x_1, -x_2, -x_3, -x_4) \Big]$$

for all $x_1, x_2, x_3, x_4 \in X$. By Lemma 3.1, it follows from (3.70) and (3.71) that

(3.76)
$$\lim_{n \to \infty} 8^n \Lambda\left(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}, \frac{x_4}{2^n}\right) = 0$$

and

$$(3.77) \quad \sum_{i=1}^{\infty} 8^{ip} \Lambda^p \left(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, \frac{y}{2^i} \right) < \infty, \qquad \sum_{i=1}^{\infty} 4^{ip} \Lambda^p \left(\frac{x}{2^i}, \frac{x}{2^i}, -\frac{x}{2^i}, -\frac{x}{2^i} \right) < \infty$$

for all $x, x_1, x_2, x_3, x_4 \in X$ and $y = \pm x$. Therefore by Theorems 3.2, 3.7 and 3.12, there exist a unique quadratic function $Q: X \to Y$, a unique additive function $A_1: X \to Y$, and a unique cubic function $C_1: X \to Y$ such that

$$A_{1}(x) = \lim_{n \to \infty} 2^{n} g\left(\frac{x}{2^{n}}\right), \quad Q(x) = \lim_{n \to \infty} 4^{n} f\left(\frac{x}{2^{n}}\right), \quad C_{1}(x) = \lim_{n \to \infty} 8^{n} h\left(\frac{x}{2^{n}}\right),$$

(3.78)
$$||f_e(x) - Q(x)||_Y \leq \frac{1}{8} [\widetilde{\Lambda_e}(x)]^{\frac{1}{p}}$$

(3.79)
$$||g(x) - A_1(x)||_Y \leq \frac{K}{2} [\widetilde{\Lambda_a}(x)]^{\frac{1}{p}}$$

(3.80)
$$||h(x) - C_1(x)||_Y \leq \frac{K}{8} [\widetilde{\Lambda_c}(x)]^{\frac{1}{p}}$$

for all $x \in X$, where

$$g(x) = f_o(2x) - 8f_o(x),$$
 $h(x) = f_o(2x) - 2f_o(x),$

(3.81)
$$\widetilde{\Lambda_e}(x) := \sum_{i=1}^{\infty} 4^{ip} \Lambda^p \left(\frac{x}{2^i}, \frac{x}{2^i}, -\frac{x}{2^i}, -\frac{x}{2^i} \right)$$

(3.82)
$$\widetilde{\Lambda_{a}}(x) := \sum_{i=1}^{\infty} 2^{ip} \left\{ \Lambda^{p} \left(\frac{x}{2^{i}}, \frac{x}{2^{i}}, \frac{x}{2^{i}}, \frac{x}{2^{i}} \right) + 4^{p} \Lambda^{p} \left(\frac{x}{2^{i}}, \frac{x}{2^{i}}, \frac{x}{2^{i}}, -\frac{x}{2^{i}} \right) \right\}$$

(3.83)
$$\widetilde{\Lambda_c}(x) := \sum_{i=1}^{\infty} 8^{ip} \bigg\{ \Lambda^p \bigg(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i} \bigg) + 4^p \Lambda^p \bigg(\frac{x}{2^i}, \frac{x}{2^i}, \frac{x}{2^i}, -\frac{x}{2^i} \bigg) \bigg\}.$$

It follows from (3.78), (3.79) and (3.80) that

(3.84)
$$\begin{aligned} \left\| f(x) - \frac{1}{6}C_1(x) - Q(x) + \frac{1}{6}A_1(x) \right\|_Y \\ &\leq \frac{K}{48} \Big\{ 6[\widetilde{\Lambda_e}(x)]^{\frac{1}{p}} + 4K^2[\widetilde{\Lambda_a}(x)]^{\frac{1}{p}} + K^2[\widetilde{\Lambda_c}(x)]^{\frac{1}{p}} \Big\} \end{aligned}$$

for all $x \in X$. Therefore we obtain (3.73) by Lemma 3.1 and letting $C(x) = \frac{1}{6}C_1(x)$ and $A(x) = -\frac{1}{6}A_1(x)$ for all $x \in X$.

To prove the uniqueness of C, Q, A, let $C_0, Q_0, A_0 : X \to Y$ be another cubic, quadratic and additive functions, respectively, satisfying (3.73). It follows from (3.71) that

$$\lim_{n \to \infty} 8^{np} L\left(\frac{x}{2^n}\right) = \lim_{n \to \infty} 2^{np} M\left(\frac{x}{2^n}\right) = \lim_{n \to \infty} 4^{np} N\left(\frac{x}{2^n}\right) = \lim_{n \to \infty} 8^{np} N_1\left(\frac{x}{2^n}\right) = 0$$

for all $x \in X$, where

r

$$N_1(x) := \sum_{i=1}^{\infty} 8^{ip} \Gamma\left(\frac{x}{2^i}, \frac{x}{2^i}, -\frac{x}{2^i}, -\frac{x}{2^i}\right)$$

Let $C' = C - C_0$, $Q' = Q - Q_0$, and $A' = A - A_0$. Therefore we have

(3.85)
$$\|C'(x) + Q'(x) + A'(x)\|_{Y} \le K \Big\{ \|f(x) - C(x) - Q(x) - A(x)\|_{Y} + \|f(x) - C_{0}(x) - Q_{0}(x) - A_{0}(x)\|_{Y} \Big\} \le \frac{K^{3}}{48} \Big\{ K^{2} [L(x)]^{\frac{1}{p}} + 4K^{2} [M(x)]^{\frac{1}{p}} + 6[N(x)]^{\frac{1}{p}} \Big\}$$

for all $x \in X$. Hence

$$\lim_{n \to \infty} 2^n \left\| C'\left(\frac{x}{2^n}\right) + Q'\left(\frac{x}{2^n}\right) + A'\left(\frac{x}{2^n}\right) \right\|_Y = 0$$
$$\lim_{n \to \infty} 4^n \left\| C'\left(\frac{x}{2^n}\right) + Q'\left(\frac{x}{2^n}\right) + A'\left(\frac{x}{2^n}\right) \right\|_Y = 0$$

for all $x \in X$. Since A', Q' and C' are additive, quadratic and cubic functions, respectively, then it follows from the last relations that A' = Q' = 0. Therefore it follows from (3.85) that

$$||C'(x)||_{Y} \le \frac{K^{3}}{48} \left\{ 5K^{2} [L(x)]^{\frac{1}{p}} + 6[N_{1}(x)]^{\frac{1}{p}} \right\}$$

for all $x \in X$. Since C' is cubic, then C' = 0. This proves the uniqueness of A, Q and C.

Theorem 3.18. Let $\Delta : X^4 \to [0, \infty)$ be a function such that

$$\lim_{n \to \infty} \frac{1}{2^n} \Delta \left(2^n x_1, 2^n x_2, 2^n x_3, 2^n x_4 \right) = 0$$

and

$$\sum_{i=0}^{\infty} \frac{1}{2^{ip}} \Delta^p \left(2^i x, 2^i x, 2^i x, 2^i y \right) < \infty, \quad \sum_{i=0}^{\infty} \frac{1}{2^{ip}} \Delta^p \left(2^i x, 2^i x, -2^i x, -2^i x \right) < \infty$$

for all $x, x_1, x_2, x_3, x_4 \in X$ and $y = \pm x$. Suppose that a function $f : X \to Y$ satisfies the inequality

$$||Df(x_1, x_2, x_3, x_4)||_Y \le \Delta(x_1, x_2, x_3, x_4)$$

for all $x_1, x_2, x_3, x_4 \in X$. Then there exist a unique cubic function $C : X \to Y$, a unique quadratic function $Q : X \to Y$, and a unique additive function $A : X \to Y$ such that

$$\left\| f(x) + \frac{5}{6} f(0) - C(x) - Q(x) - A(x) \right\|_{Y}$$

$$\leq \frac{K^{2}}{96} \left\{ K^{2} [\mathbf{L}(x)]^{\frac{1}{p}} + 4K^{2} [\mathbf{M}(x)]^{\frac{1}{p}} + 6 [\mathbf{N}(x)]^{\frac{1}{p}} \right\}$$

for all $x \in X$, where

$$\begin{split} \mathbf{f}(x_1, x_2, x_3, x_4) &:= \Delta^p(x_1, x_2, x_3, x_4) + \Delta^p(-x_1, -x_2, -x_3, -x_4) \\ \mathbf{L}(x) &:= \sum_{i=0}^{\infty} \frac{1}{8^{ip}} \Big\{ \Upsilon(2^i x, 2^i x, 2^i x, 2^i x) + 4^p \Upsilon(2^i x, 2^i x, 2^i x, -2^i x) \Big\} \\ \mathbf{M}(x) &:= \sum_{i=0}^{\infty} \frac{1}{2^{ip}} \Big\{ \Upsilon(2^i x, 2^i x, 2^i x, 2^i x) + 4^p \Upsilon(2^i x, 2^i x, 2^i x, -2^i x) \Big\} \\ \mathbf{N}(x) &:= \sum_{i=0}^{\infty} \frac{1}{4^{ip}} \Upsilon(2^i x, 2^i x, -2^i x, -2^i x) \end{split}$$

for all $x, x_1, x_2, x_3, x_4 \in X$.

Proof. Similar to the proof of Theorem 3.17, the result follows from Theorems 3.3, 3.8 and 3.13. \blacksquare

Corollary 3.19. Let θ be a non-negative real number. Suppose that a function $f : X \to Y$ satisfies the inequality (3.19) for all $x_1, x_2, x_3, x_4 \in X$. Then there exist a unique cubic function

 $C: X \to Y$ and a unique quadratic function $Q: X \to Y$ and a unique additive function $A: X \to Y$ satisfies

$$\begin{aligned} \|f(x) - C(x) - Q(x) - A(x)\|_{Y} \\ &\leq \frac{K^{3}\theta}{12} \bigg\{ K^{2} \Big(\frac{2(4^{p}+1)}{8^{p}-1} \Big)^{\frac{1}{p}} + K^{2} \Big(\frac{2(4^{p}+1)}{2^{p}-1} \Big)^{\frac{1}{p}} + 3 \Big(\frac{2}{4^{p}-1} \Big)^{\frac{1}{p}} \bigg\} + \frac{5}{6} K\theta \end{aligned}$$

for all $x \in X$.

Proof. It follows from (3.19) that $||f(0)||_Y \le \theta$. Hence the result follows by Theorem 3.18.

Corollary 3.20. Let θ , $\{r_i\}_{i \in J}$ be non-negative real numbers such that $r_i > 3$ $(0 < r_i < 1)$ for all $i \in J$, where J is a non-empty subset of $\{1, 2, 3, 4\}$. Suppose that a function $f : X \to Y$ satisfies (3.20) for all $x_1, x_2, x_3, x_4 \in X$. Then there exist a unique cubic function $C : X \to Y$ and a unique quadratic function $Q : X \to Y$ and a unique additive function $A : X \to Y$ satisfies

$$\begin{split} \|f(x) - C(x) - Q(x) - A(x)\|_{Y} \\ &\leq \frac{K^{2}\theta}{12} \bigg\{ K^{2} \Big[\sum_{i \in J} \frac{2(4^{p} + 1)}{|2^{pr_{i}} - 8^{p}|} \|x\|_{X}^{pr_{i}} \Big]^{\frac{1}{p}} + K^{2} \Big[\sum_{i \in J} \frac{2(4^{p} + 1)}{|2^{pr_{i}} - 2^{p}|} \|x\|_{X}^{pr_{i}} \Big]^{\frac{1}{p}} \\ &+ 3 \Big[\sum_{i \in J} \frac{2}{|2^{pr_{i}} - 4^{p}|} \|x\|_{X}^{pr_{i}} \Big]^{\frac{1}{p}} \bigg\} \end{split}$$

for all $x \in X$.

Proof. It follows from (3.20) that f(0) = 0. Hence the result follows by Theorems 3.17 and 3.18.

Corollary 3.21. Let θ , $\{r_i\}_{i \in J}$ be non-negative real numbers such that $\lambda = \sum_{i \in J} r_i \in (0, 1) \cup (3, +\infty)$, where J is a non-empty subset of $\{1, 2, 3, 4\}$. Suppose that a function $f : X \to Y$ satisfies the inequality (3.21) for all $x_1, x_2, x_3, x_4 \in X$. Then there exist a unique cubic function $C : X \to Y$ and a unique quadratic function $Q : X \to Y$ and a unique additive function $A : X \to Y$ satisfies

$$\|f(x) - C(x) - Q(x) - A(x)\|_{Y} \le \frac{K^{2}\theta}{12} \left\{ K^{2} \left(\frac{2(4^{p} + 1)}{|2^{\lambda p} - 8^{p}|} \right)^{\frac{1}{p}} + K^{2} \left(\frac{2(4^{p} + 1)}{|2^{\lambda p} - 2^{p}|} \right)^{\frac{1}{p}} + 3 \left(\frac{2}{|2^{\lambda p} - 4^{p}|} \right)^{\frac{1}{p}} \right\} \|x\|_{X}^{\lambda}$$

for all $x \in X$.

Proof. The result follows by Theorems 3.17 and 3.18.

REFERENCES

- [1] J. ACZÉL and J. DHOMBRES, *Functional Equations in Several Variables*, Cambridge University Press, 1989.
- [2] D. AMIR, Characterizations of Inner Product Spaces, Birkhäuser, Basel, 1986.
- [3] Y. BENYAMINI and J. LINDENSTRAUSS, *Geometric Nonlinear Functional Analysis*, Vol. 1, Colloq. Publ., Vol. 48, Amer. Math. Soc., Providence, RI, 2000.
- [4] P.W. CHOLEWA, Remarks on the stability of functional equations, *Aequationes Math.*, 27 (1984), pp. 76–86.
- [5] S. CZERWIK, On the stability of the quadratic mapping in normed spaces, *Abh. Math. Sem. Univ. Hamburg*, **62** (1992), pp. 59–64.

- [6] P. GÅVRUTA, A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), pp. 431–436.
- [7] A. GRABIEC, The generalized Hyers–Ulam stability of a class of functional equations, *Publ. Math. Debrecen*, 48 (1996), pp. 217–235.
- [8] D. H. HYERS, On the stability of the linear functional equation, *Proc. Natl. Acad. Sci.*, 27 (1941), pp. 222–224.
- [9] P. JORDAN and J. VON NEUMANN, On inner products in linear metric spaces, *Ann. of Math.*, **36** (1935), pp. 719–723.
- [10] K. JUN and Y. LEE, On the Hyers–Ulam–Rassias stability of a Pexiderized quadratic inequality, *Math. Inequal. Appl.*, **4** (2001), pp. 93–118.
- [11] K.-W. JUN and H.-M. KIM, The generalized Hyers–Ulam–Rassias stability of a cubic functional equation *J. Math. Anal. Appl.* **274** (2002), pp. 867–878.
- [12] PL. KANNAPPAN, Quadratic functional equation and inner product spaces, *Results Math.*, 27 (1995), pp. 368–372.
- [13] S.-B. LEE, W.-G. PARK and J.-H. BAE, On the stability of a mixed type functional equation, J. Chungcheong Mathematical Society, Vol. 9 (2006), No. 1, pp. 69–77.
- [14] A. NAJATI and M. B. MOGHIMI, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2007), pp. 399-415.
- [15] TH.M. RASSIAS, On the stability of the linear mapping in Banach spaces, *Proc. Amer. Math. Soc.*, 72 (1978), pp. 297–300.
- [16] S. ROLEWICZ, *Metric Linear Spaces*, PWN-Polish Sci. Publ., Warszawa, Reidel, Dordrecht, 1984.
- [17] F. SKOF, Local properties and approximations of operators, *Rend. Sem. Mat. Fis. Milano*, 53 (1983), pp. 113–129.
- [18] S.M. ULAM, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.