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2 S. L. SINGH AND B. PRASAD

1. I NTRODUCTION

sup
a∈A

inf
b∈B

lim
c∈C

Fixed point theorems for multivalued contractions were first initiated by Markin [16] and
Nadler, Jr. [18]. Subsequently, a number of generalizations of Nadler’s multivalued contraction
principle were obtained in different settings (see, for instance, [4, 12, 14, 17, 19], [22]–[26],
[28, 30] and several references thereof). Fixed point theory in multivalued analysis finds appli-
cations in optimization/control theory, operating systems, disjunctive logic programs, informa-
tion theory, fractals and other areas of mathematical sciences (see, for instance, [7, 11, 15, 28]
and [30]). Hybrid fixed point theory for nonlinear single-valued and multivalued maps is a re-
cent development in multivalued analysis (see, for instance, [3, 14, 19], [21]–[26] and references
thereof). Recently Aamri et al. [1] and [2], Hicks and Rhoades [9, 10] and Moutawakil [17]
have obtained some fixed point theorems for single-valued and multivalued maps in d-bounded
symmetric spaces (see also [13]). The purpose of this paper is to present coincidence theorems
for hybrid contractions on symmetric spaces (not necessarily d-bounded). The completeness re-
quirement of the space is also relaxed. We derive fixed point theorems generalizing their results
([10] and [17]) and discuss some applications.

2. PRELIMINARIES

We will follow the notations and definitions used in [1, 2, 9, 10, 17] and [27].

Definition 2.1. A symmetric function on a nonempty setX is a nonnegative real-valued mapd
onX ×X such that

(i) d(x, y) = 0 if and only if x = y, and
(ii) d(x, y) = d(y, x) for all x, y ∈ X.

Let d be a symmetric on a setX and forr > 0 and anyx ∈ X, let

B(x, r) = {y ∈ X : d(x, y) < r} .

A topology t(d) on X is given byU ∈ t(d) if and only if for eachx ∈ U , B(x, r) ⊆ U , for
somer > 0.

A symmetricd is a semi-metric if for eachr > 0, B(x, r) is a neighbourhood ofx in the
topologyt(d).

Definition 2.2. Let (X, d) be a symmetric space. Then:
A nonempty subsetP of X is d-closed if and only ifP d = P , where

P d = {x ∈ X : d(x, P ) = 0}

and
d(x, P ) = inf {d(x, p) : p ∈ P} .

Definition 2.3. A nonempty setP is called d-bounded if and only ifδd(P ) < ∞, where

δd(P ) = sup {d(x, p) : x, p ∈ P} .

Definition 2.4. The space(X, d) is S-complete if for every d-Cauchy sequence{xn}, there
existsx in X with

lim
n→∞

d(xn, x) = 0.
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Definition 2.5. Let (X, d) be a symmetric space and letCB(X) be the set of all nonempty
d-closed and d-bounded subsets ofX. The Hausdorff metricH induced by the symmetricd is
defined in the usual way:

H(A, B) = max

{
sup
b∈B

d(b, A), sup
a∈A

d(a, B)

}
for all A, B ∈ CB(X). As noted in [1] and [17], the hyper space(CB(X), H) is a symmetric
space induced by the symmetricd.

Definition 2.6. The mapsf : X → X andT : X → CB(X) are (IT)-commuting at a point
x ∈ X if fTx ⊂ Tfx [12].

This definition essentially due to Itoh and Takahashi [12] has widely been used in hybrid
fixed point theory (see, for instance, [24]–[27]).

We remark that (IT)-commutativity of a hybrid pairT andf at a coincidence pointx ∈ X is
more general than its compatibility and weak compatibility at the same point (see [25, Example
1]).

In our results we need the following axioms essentially due to Wilson [29] for the symmetric
spaces (see also [1, 10] and [17]). Let(X, d) be a symmetric space. Then

(W.3) Given{xn}, x andy in X,

lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(xn, y) = 0 imply x = y.

(W.4) Given{xn}, {yn} andx in X,

lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(xn, yn) = 0 imply that lim
n→∞

d(yn, x) = 0.

If t(d) is Hausdorff then (W.3) holds (see Hicks and Rhoades [10, p. 330] ).

(iii) X is S-complete if for every d-Cauchy sequence{xn}, there exists anx in X with

lim
n→∞

d(xn, x) = 0.

(iv) X is d-Cauchy complete if for every d-Cauchy sequence{xn}, there exists anx in X
with xn → x in the topologyt(d).

We remark that S-completeness implies d-Cauchy completeness (see [1] and [17]).
We shall need the following results:

Lemma 2.1. Let (X, d) be a symmetric space. LetM be a d-bounded subset ofX and{yn} be
a sequence inM such that

d(yj, yj+1) ≤ qd(yj−1, yj), j = 1, 2, 3, . . . , where0 ≤ q < 1.

Then{yn} is a d-Cauchy sequence.

Proof. It may be completed using the relevant part of the proof of Theorem 2.2.1 [17, p. 28].

Lemma 2.2. ([17])Let (X, d) be a symmetric space. LetA, B ∈ CB(X) andλ > 1. For each
a ∈ A, there existsb ∈ B such that

d(a, b) ≤ λH(A, B).

Indeed, this result in a metric space is essentially due to Nadler, Jr. [18] andĆirić [4].
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4 S. L. SINGH AND B. PRASAD

3. M AIN RESULTS

First we give a coincidence theorem.

Theorem 3.1. Let (X, d) be a symmetric space satisfying(W.4). Let f : X → X andS, T :
X → CB(X) such that

(3.1) S(X) ∪ T (X) ⊆ f(X),

(3.2) H(Sx, Ty) ≤ k max {d(fx, fy), d(fx, Sx), d(fy, Ty)}
for all x, y ∈ X, where0 < k < 1.

If f(X) is d-bounded, and one off(X) or S(X) or T (X) is an S-complete subspace ofX,
thenf , S andT have a coincidence, i.e., there exists an elementz ∈ X such that

fz ∈ Sz ∩ Tz.

Proof. Pick x0 ∈ X. Construct sequences{xn} and{yn} in the following manner. Choose
x1 ∈ X such that

y1 = fx1 ∈ Sx0.

We may choose a pointx2 ∈ X such that

y2 = fx2 ∈ Tx1

and
d(y1, y2) = d(fx1, fx2) ≤ αH(Sx0, Tx1),

whereα = 1√
k

> 1, 0 < k < 1. Similarly, we choose a pointx3 ∈ X such that

y3 = fx3 ∈ Sx2

and
d(y2, y3) ≤ αH(Tx1, Sx2).

Continuing in this fashion, we may choose

y2n = fx2n ∈ Tx2n−1

and
y2n+1 = fx2n+1 ∈ Sx2n

such that
d(y2n, y2n+1) = d(fx2n, fx2n+1) ≤ αH(Tx2n−1, Sx2n).

Similarly,
d(y2n+1, y2n+2) = d(fx2n+1, fx2n+2) ≤ αH(Sx2n, Tx2n+1).

By (3.2),

d(y2n, y2n+1) = d(fx2n, fx2n+1) ≤ αH(Tx2n−1, Sx2n)

≤ αk. max {d(fx2n−1, fx2n), d(fx2n, Sx2n), d(fx2n−1, Tx2n−1)}
≤ αk. max {d(fx2n−1, fx2n), d(fx2n, fx2n+1), d(fx2n−1, fx2n)} .

This yields
d(y2n, y2n+1) ≤

√
kd(y2n−1, y2n).

Similarly,
d(y2n+1, y2n+2) ≤

√
kd(y2n, y2n+1).
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Both together imply

d(yn, yn+1) ≤
√

kd(yn−1, yn), n = 1, 2, 3, . . . .

So, by Lemma 2.1, the sequence{yn} is a d-Cauchy inf(X). Now suppose the subspacef(X)
is S-complete. Then, there exists an elementu ∈ f(X) such that

lim
n→∞

d(u, yn) = 0.

Notice that the subsequences{y2n−1} and{y2n} also converge tou. Sinceu ∈ f(X), there
exists an elementz ∈ f−1u such thatfz = u. From Lemma 2.2, for eachn ∈ {1, 2, 3, . . .},
there exists an elementfzn ∈ Sz such that

d(fzn, fx2n) ≤ εH(Sz, Tx2n−1),

whereε = 1√
k

> 1, 0 < k < 1.
Let

µ = lim
n→∞

d(fzn, fz).

Then by (3.2),

d(fzn, fx2n) ≤ εk. max {d(fz, fx2n−1), d(fz, Sz), d(fx2n−1, Tx2n−1)}
≤

√
k max {d(fz, fx2n−1), d(fz, fzn), d(fx2n−1, fx2n)} .

Makingn →∞, we get

µ ≤
√

k max{0, µ, 0}.
This givesµ = 0.

Thus, we have
lim

n→∞
d(fzn, fz) = 0

and
lim

n→∞
d(fx2n, fz) = 0.

So, by (W.4), we get
lim

n→∞
d(fx2n, fzn) = 0.

Notice thatfx2n ∈ Tx2n−1 andfzn ∈ Sz. So,

lim
n→∞

d(fx2n, Sz) ≤ lim
n→∞

d(fx2n, fz).

This gives
d(fz, Sz) = 0 andfz ∈ Sz.

Similar arguments givefz ∈ Tz.
Therefore,

fz ∈ Sz ∩ Tz.

If S(X) (respectivelyT (X)) is S-complete, then there exists

u ∈ S(X) ⊆ f(X)( respectivelyu ∈ T (X) ⊆ f(X)),

and the above argument establishes the result.

Now we apply Theorem 3.1 to obtain the following fixed point theorem.

Theorem 3.2.Let all the hypotheses of Theorem 3.1 hold. Ifffz = fz andf is (IT)- commut-
ing with each ofS andT , then the mapsf , S andT have a common fixed point.
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6 S. L. SINGH AND B. PRASAD

Proof. By Theorem 3.1, there exists az ∈ X such thatfz ∈ Sz and fz ∈ Tz. As f is
(IT)-commuting with each ofS andT at z,

fz = ffz ∈ fSz ⊂ Sfz

and
fz = ffz ∈ fTz ⊂ Tfz.

Hence
fu = u ∈ Su ∩ Tu,

whereu = fz.

We remark that the requirementfz = ffz in the above theorem is essential for the existence
of a common fixed point. In the absence of this requirement, the mapsf , S andT need not have
a common fixed point (see, for instance, [19, 22] and [23]).

Corollary 3.3. Let (X, d) be a d-bounded symmetric space satisfying(W.4). LetS, T : X →
CB(X) such that

(3.3) H(Sx, Ty) ≤ k max {d(x, y), d(x, Sx), d(y, Ty)}
for all x, y ∈ X, where0 < k < 1. If one ofS(X) or T (X) is an S-complete subspace ofX
thenS andT have a common fixed point.

Proof. It comes from Theorem 3.1 whenf is the identity map onX.

Corollary 3.4. Let (X, d) be a symmetric space satisfying(W.4). Let T (X) ⊆ f(X) and
f : X → X andT : X → CB(X) such that

(3.4) H(Tx, Ty) ≤ k max {d(fx, fy), d(fx, Tx), d(fy, Ty)}
for all x, y ∈ X, where0 < k < 1.

If f(X) is d-bounded, and one off(X) or T (X) is an S-complete subspace ofX, thenf and
T have a coincidence, i.e., there exists an elementz ∈ X such thatfz ∈ Tz. Further, iffz is a
fixed point off , andf is (IT)-commuting withT , thenfz is also a fixed point ofT .

Proof. It comes from Theorems 3.1 and 3.2 whenS = T .

Corollary 3.5. Let (X, d) be a symmetric space satisfying(W.4). Let f : X → X andS, T :
X → CB(X) such thatf(X) is d-bounded, and one ofS(X) andT (X) is S-complete subspace
of X, andS(X) ∪ T (X) ⊆ f(X) and satisfying

(3.5) H(Sx, Ty) ≤ kd(fx, fy),

for all x, y ∈ X, where0 < k < 1.
Thenf , S andT have a coincidence pointz (say). Further, iffz is a fixed point off , andf

is (IT)-commuting with each ofS andT , thenfz is a common fixed point off , S andT .

Proof. The proof is obvious as the condition (3.5) is contained in (3.2).

We remark that Corollaries 3.4 and 3.5 withS = T are improved versions of Moutawakil
[17, Th. 2.2.1] whenf is the identity map onX.

Now following Moutawakil [17], we give an application of Corollary 3.4. First following
[10, 17, 20] and [27] we give some definitions .

Definition 3.1. A functionF : R → [0, 1] is a distribution function if

(v) F is non-decreasing
(vi) F is left continuous,
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(vii)
inf
x∈R

F (x) = 0

and
sup
x∈R

F (x) = 1.

Definition 3.2. Let X be a set and= a function defined onX ×X such that=(x, y) = F (x, y)
is a distribution function. Consider the following conditions:

(viii) F (x, y, 0) = 0 for all x, y ∈ X.
(ix) F (x, y) = f if and only if x = y, wheref is the distribution function defined by

f(x) = 0 if x ≤ 0, andf(x) = 1 if x > 0.
(x) F (x, y) = F (y, x) for all x, y ∈ X.

(xi) If F (x, y, α) = 1 andF (y, z, β) = 1 thenF (x, z, α + β) = 1, for all x, y, z ∈ X.

If = satisfies (viii) and (ix), then it is called a PPM-structure onX and the pair(X,=) is
called a PPM-space and= satisfying (x) is said to be symmetric. A symmetric PPM-structure
= satisfying (xi) is a probabilistic metric structure and the pair(X,=) is a probabilistic metric
space.

Let (X,=) be a symmetric PPM-space. Forα, γ > 0 andx ∈ X, let

Nx(α, γ) = {y ∈ X : F (x, y, α) > 1− γ} .

A T1 topologyt(=) onX is defined as follows:

t(=) = {U ⊆ X : for eachx in U,

there existsα > 0, such thatNx(α, α) ⊆ U}.

Definition 3.3. Let (X,=) be a symmetric PPM-space. A sequence{xn} in X is called a
fundamental sequence if

lim
n,m→∞

F (xn, xm, t) = 1

for all t > 0. The space is called F-complete if for every fundamental sequence{xn} in X,
there exists anx ∈ X such that

lim
n→∞

F (xn, x, t) = 1

for all t > 0.
In space(X,=), the condition (W.4) is equivalent to the following:

(C.4)
lim

n→∞
F (xn, x, t) = 1

and
lim

n→∞
F (xn, yn, t) = 1

imply
lim

n→∞
F (yn, x, t) = 1

for all t > 0.

Definition 3.4. Let (X,=) be a symmetric PPM-space. A nonempty subsetP of X is called
=-closed if and only ifP= = P , where

P= =

{
x ∈ X : sup

a∈P
F (x, a, t) = 1 for all t > 0

}
.
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8 S. L. SINGH AND B. PRASAD

For the details of the topological preliminaries, one may refer to [6] and [20]. In all that
follows we denote the set of all nonempty=-closed subsets ofX by CB=(X) and the set of
nonnegative real numbers byR+.

The following is a slightly modified version of Moutawakil [17, Prop. 2.3.1].

Proposition 3.6. ([17]). Let (X,=) be a symmetric PPM-space. Letp a compatible symmetric
function fort(=). For A, B ∈ CB(X), set

E(A, B, ε)

= min

{
inf
a∈A

sup
b∈B

F (a, b, ε); inf
b∈B

sup
a∈A

F (a, b, ε)

}
, ε > 0,

and

P (A, B) = max

{
sup
a∈A

inf
b∈B

p(a, b); sup
b∈B

inf
a∈A

p(a, b)

}
.

Letf : X → X andT : X → CB(X). Then, if

F (fx, fy, t) > 1− t

implies
E(Tx, Ty, kt) > 1− kt, 0 ≤ k < 1,

for all t > 0 and allx, y ∈ X, implies that

P (Tx, Ty) ≤ kp(fx, fy).

In a symmetric PPM space(X,=), if p is a compatible symmetric function ont(=) then

CB=(X) = CB(X),

whereCB(X) is the set of all nonempty p-closed subsets of(X, p).

Hicks and Rhoades [10] obtained the following result showing that each symmetric PPM-
space admits a compatible symmetric function.

Theorem 3.7. ([10]). Let (X,=) be a symmetric PPM-space. Letp : X × X → R+ be a
function defined as follows:

p(x, y) =

{
0 if y ∈ Nx(t, t) for all t > 0,
sup {t : y /∈ Nx(t, t), 0 < t < 1} otherwise.

Then

(i) p(x, y) < t if and only ifF (x, y, t) > 1− t;
(ii) p is a compatible symmetric fort(=);

(iii) (X,=) is F-complete if and only if(X, p) is F-complete.

Now we present the following result in a symmetric PPM-space.

Theorem 3.8. Let (X,=) be a F-complete symmetric PPM-space that satisfies(C.4) such that
p is a compatible symmetric function fort(=). Let f : X → X andT : X → CB=(X) be
maps such that

F (fx, fy, t) > 1− t

implies
E(Tx, Ty, kt) > 1− kt, 0 ≤ k < 1,

for all x, y ∈ X.
Then there exists az ∈ X such thatfz ∈ Tz. Further, iff andT are (IT)-commuting just at

z, and iffz is a fixed point off , thenf andT have a common fixed point.
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Proof. Clearly(X, p) is a bounded and S-complete symmetric space and we have

p(fx, fy) < t

if and only if
F (fx, fy, t) > 1− t.

Givenε > 0, put t = p(fx, fy) + ε.
Then,

F (fx, fy, t) > 1− t.

Therefore
F (Tx, Ty, kt) > 1− kt, 0 ≤ k < 1,

for all x, y ∈ X.
From Proposition 3.6, we obtain

P (Tx, Ty) ≤ kt = kp(fx, fy) + kε.

As ε > 0 is arbitrary, on lettingε → 0,

P (Tx, Ty) ≤ kp(fx, fy).

An application of Corollary 3.5 withS = T completes the proof.

Corollary 3.9. ([17]) Let (X,=) be a F-complete symmetric PPM-space that satisfies(C.4)
such thatp is a compatible symmetric function fort(=). LetT : X → CB=(X) be a multival-
ued mapping such that

F (x, y, t) > 1− t

implies
E(Tx, Ty, kt) > 1− kt, 0 ≤ k < 1,

for all x, y ∈ X andt > 0. Then there existsz ∈ X such thatz ∈ Tz.

Proof. It comes from Theorem 3.8 whenf is the identity map onX.
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