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2 S. L. SNGH AND B. PRASAD

1. INTRODUCTION

sup inf lim
ac A bEB ceC
Fixed point theorems for multivalued contractions were first initiated by Markih [16] and

Nadler, Jr.[18]. Subsequently, a number of generalizations of Nadler's multivalued contraction
principle were obtained in different settings (see, for instance, [4, 12, 14, 17/ 19],[[22]-[26],
[28,[30] and several references thereof). Fixed point theory in multivalued analysis finds appli-
cations in optimization/control theory, operating systems, disjunctive logic programs, informa-
tion theory, fractals and other areas of mathematical sciences (see, for instance, [7, 11, 15, 28]
and [30]). Hybrid fixed point theory for nonlinear single-valued and multivalued maps is a re-
cent developmentin multivalued analysis (see, for instance, [B, 14} 19],[21]-[26] and references
thereof). Recently Aamri et all_[1] and![2], Hicks and Rhoadés [9, 10] and Moutawakil [17]
have obtained some fixed point theorems for single-valued and multivalued maps in d-bounded
symmetric spaces (see al50/[13]). The purpose of this paper is to present coincidence theorems
for hybrid contractions on symmetric spaces (not necessarily d-bounded). The completeness re-
quirement of the space is also relaxed. We derive fixed point theorems generalizing their results
([10] and [17]) and discuss some applications.

2. PRELIMINARIES
We will follow the notations and definitions used in [1./ 2| 9] 10, 17] and [27].

Definition 2.1. A symmetric function on a nonempty s&tis a nonnegative real-valued map
on X x X such that

() d(z,y) = 0ifand only ifz = y, and
(i) d(z,y) =d(y,z) forall z,y € X.
Let d be a symmetric on a séf and forr > 0 and anyr € X, let
B(z,r) ={y € X : d(z,y) <r}.

A topologyt(d) on X is given byU € t(d) if and only if for eache € U, B(z,r) C U, for
somer > 0.
A symmetricd is a semi-metric if for each > 0, B(z,r) is a neighbourhood aof in the

topologyt(d).

Definition 2.2. Let (X, d) be a symmetric space. Then:
A nonempty subseP of X is d-closed if and only i, = P, where

Py={z € X :d(x,P) =0}
and
d(z, P) = inf {d(z,p) : p € P}.
Definition 2.3. A nonempty sef” is called d-bounded if and only &;(P) < oo, where
64(P) = sup{d(z,p) : x,p € P}.

Definition 2.4. The spac€ X, d) is S-complete if for every d-Cauchy sequerfes, }, there
existsz in X with

lim d(z,,z) = 0.

n—oo
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Definition 2.5. Let (X, d) be a symmetric space and IEtB(X) be the set of all nonempty
d-closed and d-bounded subsetsXaf The Hausdorff metrid? induced by the symmetri¢ is
defined in the usual way:

H(A, B) = max {sup d(b, A),supd(a, B)}
beB acA
forall A, B € CB(X). As noted in[[1] and [17], the hyper spa@@B(X), H) is a symmetric
space induced by the symmettic

Definition 2.6. The mapsf : X — X andT : X — CB(X) are (IT)-commuting at a point
re Xif fTx CTfx[12].

This definition essentially due to Itoh and Takahashi [12] has widely been used in hybrid
fixed point theory (see, for instance, [24]27]).

We remark that (IT)-commutativity of a hybrid pdirand f at a coincidence point € X is
more general than its compatibility and weak compatibility at the same point (see [25, Example

1]).
In our results we need the following axioms essentially due to Wilsan [29] for the symmetric
spaces (see alsdl [1,/10] and[[17]). L&k, d) be a symmetric space. Then

(W.3) Given{z,}, z andy in X,
lim d(z,,z) =0and lim d(z,,y) = 0imply z = y.

n—oo

(W.4) Given{z,}, {y,} andz in X,
lim d(z,,z) =0and lim d(z,,y,) = 0imply that lim d(y,,z) = 0.

n—oo

If t(d) is Hausdorff then\(v.3) holds (see Hicks and Rhoadésl[10, p. 330] ).
(i) X is S-complete if for every d-Cauchy sequereg }, there exists am in X with

lim d(z,,z) = 0.

n—oo

(iv) X is d-Cauchy complete if for every d-Cauchy sequeficg}, there exists am in X
with x,, — z in the topologyt(d).

We remark that S-completeness implies d-Cauchy completeness|(see [1]land [17]).
We shall need the following results:

Lemma 2.1. Let (X, d) be a symmetric space. L&t be a d-bounded subset &fand{y, } be
a sequence i/ such that

d(yj, yj—l—l) < qd(yj—la yj),j = 1, 2, 3, ey where0 < q << 1.
Then{y,} is a d-Cauchy sequence.
Proof. It may be completed using the relevant part of the proof of Theorem 2.2.1 [17, m 28].

Lemma 2.2. ([17])Let (X, d) be a symmetric space. Ldt B € CB(X) and\ > 1. For each
a € A, there exist$ € B such that

d(a,b) < \H(A, B).

Indeed, this result in a metric space is essentially due to Nadlér, Dr. [1&}igiad4].
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3. MAIN RESULTS
First we give a coincidence theorem.

Theorem 3.1. Let (X, d) be a symmetric space satisfyif4/4). Letf : X — X andS,T :
X — CB(X) such that

(3.1) S(X)UT(X) C f(X),

(3.2) H(Sz,Ty) < kmax {d(fz, fy),d(fz,Sx),d(fy, Ty)}

forall x,y € X, where0 < k < 1.
If f(X) is d-bounded, and one ¢ X) or S(X) or T'(X) is an S-complete subspace.of
thenf, S andT have a coincidence, i.e., there exists an elementX such that

fzeSzNnTz.

Proof. Pick z, € X. Construct sequencds:,,} and{y,} in the following manner. Choose
x1 € X such that

y1 = fr1 € Sxo.
We may choose a point, € X such that
Yo = frg € Ty
and
d(ylv ?/2) = d(fxlv fo) S OéH(S'rm Tx1)7

wherea = \/lE > 1,0 < k < 1. Similarly, we choose a point; € X such that

ys = frs € Sy

and
d(y2,ys3) < aH(Txy, Sxs).
Continuing in this fashion, we may choose

Yon = foon € Ty

and
Yont1 = [Tant1 € STy
such that
d(Yan, Yon+1) = d(fT2n, froni1) < aH(Ton-1, San).
Similarly,
d(Y2n+1, Yan+2) = d(fTant1, fronte) < aH(ST2p, TT2p41).
By 8.2),
d(Y2n, Yonr1) = d(fron, fron1) < aH(Twg, -1, Sta,)
< ak.max{d(fro,_1, fron), d(fTon, Sxopn), d(fron_1,TTon—1)}
< ak.max{d(fra_1, fron),d(fron, frans1), d(fTon_1, fron)} .
This yields
d(Yan, Yont1) < \/Ed(an—b Yon)-
Similarly,

d(Yon+1, Yont2) < \/Ed(y%m Yon+1)-
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Both together imply

d(ynvyn—i-l) S \/Ed(yn—l7yn)7n = 17 27 37 s

So, by Lemma 211, the sequenigg, } is a d-Cauchy iry(X). Now suppose the subspageX )
is S-complete. Then, there exists an elemeat f(.X) such that

lim d(u,y,) =0.

Notice that the subsequencgs,, 1} and{y.,} also converge ta. Sinceu € f(X), there
exists an element € f~'u such thatfz = u. From Lemmd 2]2, for each € {1,2,3,...},
there exists an elemelfit,, € Sz such that

d(fznv fx2n) S €H(SZ, TIZn—l)a

_ 1
wherea_\/—E>1,0<k<1.
Let

p=lim d(fz, /)
Then by 3.2),
d(fzn, fron) < ek.max{d(fz, fron_1),d(fz,S2),d(fron_1,Txon1)}
< Vkmax {d(fz, fran—1),d(fz, fzn),d(fron_1, fron)} .
Makingn — oo, we get
1< VEmax{0, u, 0}.

This givesy = 0.
Thus, we have
lim d(fz,, fz) =0

n—oo

and

lim d(fxza,, fz) = 0.
So, by W.4), we get

lim d(fxon, fz,) = 0.
Notice thatfz,, € Tz,, 1 andfz, € Sz. So,

lim d(fxon, Sz) < lim d(fron, f2).
This gives
d(fz,Sz) =0andfz € Sz.

Similar arguments givgz € Tz.
Therefore,

fzeSznTz.
If S(X) (respectivelyl’ (X)) is S-complete, then there exists

u e S(X) C f(X)(respectivelyu € T(X) C f(X)),
and the above argument establishes the regult.
Now we apply Theorern 3.1 to obtain the following fixed point theorem.

Theorem 3.2. Let all the hypotheses of Theorem|3.1 holdf ft = fz and f is (IT)- commut-
ing with each ofS and T, then the mapg, S andT have a common fixed point.
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Proof. By Theorem| 311, there existsaa€ X such thatfz € Sz andfz € Tz. As fis
(IT)-commuting with each o andT at z,

fe=ffze fSzC Sfz
and

fe=ffze fTzCTfz.
Hence

fu=ue SunTu,
whereu = fz. 1
We remark that the requiremefit = f fz in the above theorem is essential for the existence

of a common fixed point. In the absence of this requirement, the hagpand’ need not have
a common fixed point (see, for instance,/[19, 22] and [23]).

Corollary 3.3. Let (X, d) be a d-bounded symmetric space satisfyMg4). LetS, 7 : X —
CB(X) such that

(3.3) H(Sz, Ty) < kmax {d(z,y), d(z, Sx),d(y, Ty)}

forall z,y € X, where0 < k < 1. If one of S(X) or T'(X) is an S-complete subspace.of
thenS and7 have a common fixed point.

Proof. It comes from Theorein 3.1 whefis the identity map orX. &

Corollary 3.4. Let (X,d) be a symmetric space satisfyif@/.4). Let7(X) C f(X) and
f:X — XandT : X — CB(X) such that

(3.4) H(Txz,Ty) < kmax{d(fz, fy),d(fx,Tx),d(fy, Ty)}

forall x,y € X, where0 < k < 1.

If f/(X) is d-bounded, and one ¢f X) or T'(X) is an S-complete subspaceXfthenf and
T have a coincidence, i.e., there exists an elementX such thatfz € Tz. Further, if fz isa
fixed point off, and f is (IT)-commuting witly", thenfz is also a fixed point of .

Proof. It comes from Theorenjs 3.1 apd 3.2 when= 7. g

Corollary 3.5. Let (X, d) be a symmetric space satisfyi(g/.4). Letf : X — X andS,T :
X — CB(X) suchthatf(X) is d-bounded, and one 6f X ) and7'(X) is S-complete subspace
of X, andS(X)UT(X) C f(X) and satisfying

(3.5) H(Sz,Ty) < kd(fz, fy),

forall x,y € X, where0 < k < 1.
Thenf, S andT have a coincidence point(say). Further, iffz is a fixed point off, and f
is (IT)-commuting with each ¢f andT, thenfz is a common fixed point ¢f, S andT'.

Proof. The proof is obvious as the conditign (8.5) is containedl in (%2).

We remark that Corollarigs 3.4 apd 3.5 with= 7" are improved versions of Moutawakil
[17, Th. 2.2.1] whery is the identity map onX.

Now following Moutawakil [17], we give an application of Corolldry B.4. First following
[10,[17,20] and[2[7] we give some definitions .

Definition 3.1. A function /' : R — [0, 1] is a distribution function if

(v) Fis non-decreasing
(vi) Fis left continuous,
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(vii)
R =0
and
sup F'(z) = 1.
TER

Definition 3.2. Let X be a set anék a function defined oX' x X such that(z,y) = F(z,y)
is a distribution function. Consider the following conditions:
(viii) F(xz,y,0)=0forallz,y € X.
(ix) F(x,y) = fifand only if z = y, where f is the distribution function defined by
f(z)=0if x <0,andf(z) =1if x > 0.
X) F(z,y) = F(y,x) forall z,y € X.
(xi) If F(z,y,a) =1andF(y,z,0) =1thenF(z,z,a+ () =1,forallz,y, z € X.

If & satisfies[(viii) and[(ik), then it is called a PPM-structure ¥nand the pair( X, ) is
called a PPM-space andl satisfying [(X) is said to be symmetric. A symmetric PPM-structure

S satisfying [X) is a probabilistic metric structure and the gair ) is a probabilistic metric

space.
Let (X, ) be a symmetric PPM-space. kory > 0 andx € X, let
N:v(aav) = {y €cX: F(l’7y,04) >1 _7}

A T, topologyt () on X is defined as follows:
t(¥) ={U C X : foreachzin U,
there existsy > 0, such thatV,(«,«a) C U}.

Definition 3.3. Let (X, ) be a symmetric PPM-space. A sequedeg} in X is called a

fundamental sequence if
lim F(x,,2n,,t) =1

for all t > 0. The space is called F-complete if for every fundamental sequgngein X,

there exists an € X such that
lim F(z,,x,t) =1

forallt > 0.
In space(X, $), the condition|{V.4) is equivalent to the following:
(C.9
lim F(z,,x,t) =1
and
lim F(zp,yn,t) =1
imply
lim F(y,,z,t) =1
forallt > 0.
Definition 3.4. Let (X, 3) be a symmetric PPM-space. A nonempty sulidetf X is called
$-closed if and only ifPg = P, where
Py = {x € X :sup F(z,a,t)=1forallt > O}.
acP

AJMAA
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For the details of the topological preliminaries, one may refef to [6] and [20]. In all that
follows we denote the set of all nonempdyclosed subsets of by C'Bs(X) and the set of
nonnegative real numbers /" .

The following is a slightly modified version of Moutawakil [17, Prop. 2.3.1].
Proposition 3.6. ([17]). Let (X, ) be a symmetric PPM-space. Lea compatible symmetric
function fort (). For A, B € CB(X), set
E(A,B,¢)

beB acA

= min {inf sup F'(a,b,¢); inf sup F(a, b, 6)} ,e >0,
acA peB

and
P(A, B) = max {sup inf p(a,b);sup inf p(a, b)} :

acA bEB beB a€A

Letf: X — XandT : X — CB(X). Then, if

F(fx, fy,t)>1—1t
implies

E(Tx, Ty, kt) >1—Fkt,0<k <1,
forallt > 0andallz, y € X, implies that
P(Tx,Ty) < kp(fz, fy).

In a symmetric PPM spadgeX, ), if p is a compatible symmetric function of1¥) then

CBa(X) = CB(X),
whereC' B(X) is the set of all nonempty p-closed subset&afp).

Hicks and Rhoades [10] obtained the following result showing that each symmetric PPM-
space admits a compatible symmetric function.

Theorem 3.7. ([10]). Let (X, <) be a symmetric PPM-space. Let: X x X — R* be a
function defined as follows:

(2,1) = 0 if y € N,(t,t) forall ¢t > 0,
PRI sup{t:y ¢ No(t,1),0 <t <1} otherwise.
Then
() p(x,y) <tifandonly if F(x,y,t) > 1 —t;
(i) pis acompatible symmetric fo();
(i) (X,<)is F-complete if and only ifX, p) is F-complete.
Now we present the following result in a symmetric PPM-space.

Theorem 3.8. Let (X, ¥) be a F-complete symmetric PPM-space that satigfied) such that
p is a compatible symmetric function fofS). Letf : X — X and7 : X — CBg(X) be
maps such that
F(fx, fy,t)>1—1t
implies
E(Tx, Ty, kt) >1—kt,0<k <1,

forall z,y € X.

Then there exists a€ X such thatfz € Tz. Further, if f andT are (IT)-commuting just at
z, and if fz is a fixed point off, then f andT" have a common fixed point.
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Proof. Clearly (X, p) is a bounded and S-complete symmetric space and we have

p(fz, fy) <t
if and only if
F(fx, fy,t) >1—t.
Givene > 0, putt = p(fx, fy) + ¢.
Then,

F(fx, fy,t) >1—t.
Therefore
F(Tx, Ty, kt) >1—-kt,0<k <1,
forall z,y € X.
From Proposition 3|6, we obtain

P(Txz,Ty) < kt = kp(fz, fy) + ke.

As e > (0 is arbitrary, on letting — 0,
P(Tz,Ty) < kp(fz, fy).
An application of Corollary 3]5 witly = 7" completes the proo#
Corollary 3.9. ([17]) Let (X, ) be a F-complete symmetric PPM-space that satigfi2d)
such thatp is a compatible symmetric function ft(y). LetT : X — C'Bg(X) be a multival-
ued mapping such that
F(z,y,t) >1—t

implies

E(Tx, Ty, kt) >1—kt,0<k <1,
forall =,y € X andt > 0. Then there exists € X such that: € T-.

Proof. It comes from Theorein 3.8 whefis the identity map ocX. n
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