

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 3, Issue 2, Article 16, pp. 1-10, 2006

COINCIDENCES AND FIXED POINTS OF HYBRID MAPS IN SYMMETRIC SPACES

S. L. SINGH AND B. PRASAD

Received 13 November, 2005; accepted 21 March, 2006; published 28 November, 2006.

VEDIC MRI, 21 GOVIND NAGAR, RISHIKESH 249201, INDIA. vedicmri@gmail.com

DEPARTMENT OF MATHEMATICS, GURUKULA KANGRI UNIVERSITY, HARDWAR 249404, INDIA.

ABSTRACT. The purpose of this paper is to obtain a new coincidence theorem for a singlevalued and two multivalued operators in symmetric spaces. We derive fixed point theorems and discuss some special cases and applications.

Key words and phrases: Coincidence, Fixed point, Hybrid maps, Symmetric space.

2000 Mathematics Subject Classification. Primary 54H25. Secondary 47H10, 47H50, 54E70.

ISSN (electronic): 1449-5910

^{© 2006} Austral Internet Publishing. All rights reserved.

The authors are extremely thankful to Professor Sever Dragomir for his kind suggestions and Mr. Yash Kumar for his technical support.

1. INTRODUCTION

$\sup_{a \in A} \inf_{b \in B} \lim_{c \in C}$

Fixed point theorems for multivalued contractions were first initiated by Markin [16] and Nadler, Jr. [18]. Subsequently, a number of generalizations of Nadler's multivalued contraction principle were obtained in different settings (see, for instance, [4, 12, 14, 17, 19], [22]–[26], [28, 30] and several references thereof). Fixed point theory in multivalued analysis finds applications in optimization/control theory, operating systems, disjunctive logic programs, information theory, fractals and other areas of mathematical sciences (see, for instance, [7, 11, 15, 28] and [30]). Hybrid fixed point theory for nonlinear single-valued and multivalued maps is a recent development in multivalued analysis (see, for instance, [3, 14, 19], [21]–[26] and references thereof). Recently Aamri et al. [1] and [2], Hicks and Rhoades [9, 10] and Moutawakil [17] have obtained some fixed point theorems for single-valued and multivalued maps in d-bounded symmetric spaces (see also [13]). The purpose of this paper is to present coincidence theorems for hybrid contractions on symmetric spaces (not necessarily d-bounded). The completeness requirement of the space is also relaxed. We derive fixed point theorems generalizing their results ([10] and [17]) and discuss some applications.

2. **Preliminaries**

We will follow the notations and definitions used in [1, 2, 9, 10, 17] and [27].

Definition 2.1. A symmetric function on a nonempty set X is a nonnegative real-valued map d on $X \times X$ such that

(i)
$$d(x, y) = 0$$
 if and only if $x = y$, and

(ii)
$$d(x, y) = d(y, x)$$
 for all $x, y \in X$.

Let d be a symmetric on a set X and for r > 0 and any $x \in X$, let

$$B(x,r) = \{ y \in X : d(x,y) < r \}.$$

A topology t(d) on X is given by $U \in t(d)$ if and only if for each $x \in U$, $B(x,r) \subseteq U$, for some r > 0.

A symmetric d is a semi-metric if for each r > 0, B(x, r) is a neighbourhood of x in the topology t(d).

Definition 2.2. Let (X, d) be a symmetric space. Then: A nonempty subset P of X is d-closed if and only if $\overline{P}_d = P$, where

$$\overline{P}_d = \{ x \in X : d(x, P) = 0 \}$$

and

$$d(x, P) = \inf \left\{ d(x, p) : p \in P \right\}$$

Definition 2.3. A nonempty set P is called d-bounded if and only if $\delta_d(P) < \infty$, where

$$\delta_d(P) = \sup \left\{ d(x, p) : x, p \in P \right\}.$$

Definition 2.4. The space (X, d) is S-complete if for every d-Cauchy sequence $\{x_n\}$, there exists x in X with

$$\lim_{n \to \infty} d(x_n, x) = 0.$$

Definition 2.5. Let (X, d) be a symmetric space and let CB(X) be the set of all nonempty d-closed and d-bounded subsets of X. The Hausdorff metric H induced by the symmetric d is defined in the usual way:

$$H(A, B) = \max\left\{\sup_{b\in B} d(b, A), \sup_{a\in A} d(a, B)\right\}$$

for all $A, B \in CB(X)$. As noted in [1] and [17], the hyper space (CB(X), H) is a symmetric space induced by the symmetric d.

Definition 2.6. The maps $f : X \to X$ and $T : X \to CB(X)$ are (IT)-commuting at a point $x \in X$ if $fTx \subset Tfx$ [12].

This definition essentially due to Itoh and Takahashi [12] has widely been used in hybrid fixed point theory (see, for instance, [24]–[27]).

We remark that (IT)-commutativity of a hybrid pair T and f at a coincidence point $x \in X$ is more general than its compatibility and weak compatibility at the same point (see [25, Example 1]).

In our results we need the following axioms essentially due to Wilson [29] for the symmetric spaces (see also [1, 10] and [17]). Let (X, d) be a symmetric space. Then

(W.3) Given $\{x_n\}$, x and y in X,

$$\lim_{n \to \infty} d(x_n, x) = 0 \text{ and } \lim_{n \to \infty} d(x_n, y) = 0 \text{ imply } x = y.$$

(W.4) Given $\{x_n\}, \{y_n\}$ and x in X,

$$\lim_{n \to \infty} d(x_n, x) = 0 \text{ and } \lim_{n \to \infty} d(x_n, y_n) = 0 \text{ imply that } \lim_{n \to \infty} d(y_n, x) = 0.$$

If t(d) is Hausdorff then (W.3) holds (see Hicks and Rhoades [10, p. 330]).

(iii) X is S-complete if for every d-Cauchy sequence $\{x_n\}$, there exists an x in X with

$$\lim_{n \to \infty} d(x_n, x) = 0$$

- (iv) X is d-Cauchy complete if for every d-Cauchy sequence $\{x_n\}$, there exists an x in X with $x_n \to x$ in the topology t(d).
- We remark that S-completeness implies d-Cauchy completeness (see [1] and [17]). We shall need the following results:

Lemma 2.1. Let (X, d) be a symmetric space. Let M be a d-bounded subset of X and $\{y_n\}$ be a sequence in M such that

$$d(y_j, y_{j+1}) \le q d(y_{j-1}, y_j), j = 1, 2, 3, \dots, \text{ where } 0 \le q < 1.$$

Then $\{y_n\}$ is a d-Cauchy sequence.

Proof. It may be completed using the relevant part of the proof of Theorem 2.2.1 [17, p. 28]. ■

Lemma 2.2. ([17])*Let* (X, d) *be a symmetric space. Let* $A, B \in CB(X)$ *and* $\lambda > 1$ *. For each* $a \in A$, *there exists* $b \in B$ *such that*

$$d(a,b) \le \lambda H(A,B).$$

Indeed, this result in a metric space is essentially due to Nadler, Jr. [18] and Cirić [4].

3. MAIN RESULTS

First we give a coincidence theorem.

Theorem 3.1. Let (X, d) be a symmetric space satisfying (W.4). Let $f : X \to X$ and $S, T : X \to CB(X)$ such that

$$(3.1) S(X) \cup T(X) \subseteq f(X),$$

$$(3.2) H(Sx,Ty) \le k \max\left\{d(fx,fy), d(fx,Sx), d(fy,Ty)\right\}$$

for all $x, y \in X$, where 0 < k < 1.

If f(X) is d-bounded, and one of f(X) or S(X) or T(X) is an S-complete subspace of X, then f, S and T have a coincidence, i.e., there exists an element $z \in X$ such that

$$fz \in Sz \cap Tz.$$

Proof. Pick $x_0 \in X$. Construct sequences $\{x_n\}$ and $\{y_n\}$ in the following manner. Choose $x_1 \in X$ such that

$$y_1 = fx_1 \in Sx_0.$$

We may choose a point $x_2 \in X$ such that

$$y_2 = fx_2 \in Tx_1$$

and

$$d(y_1, y_2) = d(fx_1, fx_2) \le \alpha H(Sx_0, Tx_1),$$

where $\alpha = \frac{1}{\sqrt{k}} > 1, 0 < k < 1$. Similarly, we choose a point $x_3 \in X$ such that

$$y_3 = fx_3 \in Sx_2$$

and

$$d(y_2, y_3) \le \alpha H(Tx_1, Sx_2).$$

Continuing in this fashion, we may choose

$$y_{2n} = fx_{2n} \in Tx_{2n-1}$$

and

$$y_{2n+1} = fx_{2n+1} \in Sx_{2n}$$

such that

$$d(y_{2n}, y_{2n+1}) = d(fx_{2n}, fx_{2n+1}) \le \alpha H(Tx_{2n-1}, Sx_{2n})$$

Similarly,

$$d(y_{2n+1}, y_{2n+2}) = d(fx_{2n+1}, fx_{2n+2}) \le \alpha H(Sx_{2n}, Tx_{2n+1}).$$

By (3.2),

$$d(y_{2n}, y_{2n+1}) = d(fx_{2n}, fx_{2n+1}) \le \alpha H(Tx_{2n-1}, Sx_{2n})$$

$$\le \alpha k. \max \left\{ d(fx_{2n-1}, fx_{2n}), d(fx_{2n}, Sx_{2n}), d(fx_{2n-1}, Tx_{2n-1}) \right\}$$

$$\le \alpha k. \max \left\{ d(fx_{2n-1}, fx_{2n}), d(fx_{2n}, fx_{2n+1}), d(fx_{2n-1}, fx_{2n}) \right\}.$$

This yields

$$d(y_{2n}, y_{2n+1}) \le \sqrt{kd(y_{2n-1}, y_{2n})}$$

Similarly,

$$d(y_{2n+1}, y_{2n+2}) \le \sqrt{kd(y_{2n}, y_{2n+1})}$$

Both together imply

$$d(y_n, y_{n+1}) \le \sqrt{k} d(y_{n-1}, y_n), n = 1, 2, 3, \dots$$

So, by Lemma 2.1, the sequence $\{y_n\}$ is a d-Cauchy in f(X). Now suppose the subspace f(X) is S-complete. Then, there exists an element $u \in f(X)$ such that

$$\lim_{n \to \infty} d(u, y_n) = 0.$$

Notice that the subsequences $\{y_{2n-1}\}$ and $\{y_{2n}\}$ also converge to u. Since $u \in f(X)$, there exists an element $z \in f^{-1}u$ such that fz = u. From Lemma 2.2, for each $n \in \{1, 2, 3, \ldots\}$, there exists an element $fz_n \in Sz$ such that

$$d(fz_n, fx_{2n}) \le \varepsilon H(Sz, Tx_{2n-1}),$$

where $\varepsilon = \frac{1}{\sqrt{k}} > 1, 0 < k < 1$. Let

$$\mu = \lim_{n \to \infty} d(fz_n, fz).$$

Then by (3.2),

$$d(fz_n, fx_{2n}) \leq \varepsilon k. \max \{ d(fz, fx_{2n-1}), d(fz, Sz), d(fx_{2n-1}, Tx_{2n-1}) \} \\ \leq \sqrt{k} \max \{ d(fz, fx_{2n-1}), d(fz, fz_n), d(fx_{2n-1}, fx_{2n}) \}.$$

Making $n \to \infty$, we get

$$\mu \le \sqrt{k} \max\{0, \mu, 0\}.$$

This gives $\mu = 0$.

Thus, we have

$$\lim_{n \to \infty} d(fz_n, fz) = 0$$

and

$$\lim_{n \to \infty} d(fx_{2n}, fz) = 0.$$

So, by (**W.4**), we get

 $\lim_{n \to \infty} d(fx_{2n}, fz_n) = 0.$

Notice that $fx_{2n} \in Tx_{2n-1}$ and $fz_n \in Sz$. So,

$$\lim_{n \to \infty} d(fx_{2n}, Sz) \le \lim_{n \to \infty} d(fx_{2n}, fz).$$

This gives

$$d(fz, Sz) = 0$$
 and $fz \in Sz$.

Similar arguments give $fz \in Tz$. Therefore,

$$fz \in Sz \cap Tz.$$

If S(X) (respectively T(X)) is S-complete, then there exists

$$u \in S(X) \subseteq f(X)$$
 (respectively $u \in T(X) \subseteq f(X)$),

and the above argument establishes the result. \blacksquare

Now we apply Theorem 3.1 to obtain the following fixed point theorem.

Theorem 3.2. Let all the hypotheses of Theorem 3.1 hold. If ffz = fz and f is (IT)- commuting with each of S and T, then the maps f, S and T have a common fixed point.

6

Proof. By Theorem 3.1, there exists a $z \in X$ such that $fz \in Sz$ and $fz \in Tz$. As f is (IT)-commuting with each of S and T at z,

$$fz = ffz \in fSz \subset Sfz$$

and

$$fz = ffz \in fTz \subset Tfz.$$

Hence

$$fu = u \in Su \cap Tu,$$

where u = fz.

We remark that the requirement fz = ffz in the above theorem is essential for the existence of a common fixed point. In the absence of this requirement, the maps f, S and T need not have a common fixed point (see, for instance, [19, 22] and [23]).

Corollary 3.3. Let (X, d) be a d-bounded symmetric space satisfying (W.4). Let $S, T : X \to CB(X)$ such that

(3.3)
$$H(Sx, Ty) \le k \max\{d(x, y), d(x, Sx), d(y, Ty)\}$$

for all $x, y \in X$, where 0 < k < 1. If one of S(X) or T(X) is an S-complete subspace of X then S and T have a common fixed point.

Proof. It comes from Theorem 3.1 when f is the identity map on X.

Corollary 3.4. Let (X, d) be a symmetric space satisfying (W.4). Let $T(X) \subseteq f(X)$ and $f: X \to X$ and $T: X \to CB(X)$ such that

 $(3.4) H(Tx,Ty) \le k \max\left\{d(fx,fy), d(fx,Tx), d(fy,Ty)\right\}$

for all $x, y \in X$, where 0 < k < 1.

If f(X) is d-bounded, and one of f(X) or T(X) is an S-complete subspace of X, then f and T have a coincidence, i.e., there exists an element $z \in X$ such that $fz \in Tz$. Further, if fz is a fixed point of f, and f is (IT)-commuting with T, then fz is also a fixed point of T.

Proof. It comes from Theorems 3.1 and 3.2 when S = T.

Corollary 3.5. Let (X, d) be a symmetric space satisfying (W.4). Let $f : X \to X$ and $S, T : X \to CB(X)$ such that f(X) is d-bounded, and one of S(X) and T(X) is S-complete subspace of X, and $S(X) \cup T(X) \subseteq f(X)$ and satisfying

$$(3.5) H(Sx,Ty) \le kd(fx,fy),$$

for all $x, y \in X$, where 0 < k < 1.

Then f, S and T have a coincidence point z (say). Further, if fz is a fixed point of f, and f is (IT)-commuting with each of S and T, then fz is a common fixed point of f, S and T.

Proof. The proof is obvious as the condition (3.5) is contained in (3.2).

We remark that Corollaries 3.4 and 3.5 with S = T are improved versions of Moutawakil [17, Th. 2.2.1] when f is the identity map on X.

Now following Moutawakil [17], we give an application of Corollary 3.4. First following [10, 17, 20] and [27] we give some definitions .

Definition 3.1. A function $F : R \to [0, 1]$ is a distribution function if

- (v) F is non-decreasing
- (vi) F is left continuous,

(vii)

and

$$\inf_{x \in R} F(x) = 0$$
$$\sup_{x \in R} F(x) = 1.$$

Definition 3.2. Let X be a set and \Im a function defined on $X \times X$ such that $\Im(x, y) = F(x, y)$ is a distribution function. Consider the following conditions:

- (viii) F(x, y, 0) = 0 for all $x, y \in X$.
 - (ix) F(x,y) = f if and only if x = y, where f is the distribution function defined by f(x) = 0 if $x \le 0$, and f(x) = 1 if x > 0.
 - (x) F(x, y) = F(y, x) for all $x, y \in X$.
 - (xi) If $F(x, y, \alpha) = 1$ and $F(y, z, \beta) = 1$ then $F(x, z, \alpha + \beta) = 1$, for all $x, y, z \in X$.

If \Im satisfies (viii) and (ix), then it is called a PPM-structure on X and the pair (X, \Im) is called a PPM-space and \Im satisfying (x) is said to be symmetric. A symmetric PPM-structure \Im satisfying (xi) is a probabilistic metric structure and the pair (X, \Im) is a probabilistic metric space.

Let (X, \Im) be a symmetric PPM-space. For $\alpha, \gamma > 0$ and $x \in X$, let

$$N_x(\alpha, \gamma) = \{ y \in X : F(x, y, \alpha) > 1 - \gamma \}.$$

A T_1 topology $t(\Im)$ on X is defined as follows:

 $t(\mathfrak{S}) = \{ U \subseteq X : \text{ for each } x \text{ in } U, \}$

there exists $\alpha > 0$, such that $N_x(\alpha, \alpha) \subseteq U$.

Definition 3.3. Let (X, \mathfrak{F}) be a symmetric PPM-space. A sequence $\{x_n\}$ in X is called a fundamental sequence if

$$\lim_{n,m\to\infty} F(x_n, x_m, t) = 1$$

for all t > 0. The space is called F-complete if for every fundamental sequence $\{x_n\}$ in X, there exists an $x \in X$ such that

$$\lim_{n \to \infty} F(x_n, x, t) = 1$$

for all t > 0.

In space (X, \Im) , the condition (**W.4**) is equivalent to the following:

(C.4)

$$\lim_{n \to \infty} F(x_n, x, t) = 1$$

and

$$\lim_{n \to \infty} F(x_n, y_n, t) = 1$$

imply

$$\lim_{n \to \infty} F(y_n, x, t) = 1$$

for all t > 0.

Definition 3.4. Let (X, \mathfrak{F}) be a symmetric PPM-space. A nonempty subset P of X is called \mathfrak{F} -closed if and only if $\overline{P}_{\mathfrak{F}} = P$, where

$$\overline{P}_{\Im} = \left\{ x \in X : \sup_{a \in P} F(x, a, t) = 1 \text{ for all } t > 0 \right\}.$$

For the details of the topological preliminaries, one may refer to [6] and [20]. In all that follows we denote the set of all nonempty \Im -closed subsets of X by $CB_{\Im}(X)$ and the set of nonnegative real numbers by R^+ .

The following is a slightly modified version of Moutawakil [17, Prop. 2.3.1].

Proposition 3.6. ([17]). Let (X, \mathfrak{F}) be a symmetric PPM-space. Let p a compatible symmetric function for $t(\mathfrak{F})$. For $A, B \in CB(X)$, set

$$\begin{split} & E(A,B,\varepsilon) \\ & = \min\left\{\inf_{a\in A}\sup_{b\in B}F(a,b,\varepsilon); \inf_{b\in B}\sup_{a\in A}F(a,b,\varepsilon)\right\}, \varepsilon > 0, \end{split}$$

and

$$P(A, B) = \max\left\{\sup_{a \in A} \inf_{b \in B} p(a, b); \sup_{b \in B} \inf_{a \in A} p(a, b)\right\}.$$

Let $f: X \to X$ and $T: X \to CB(X)$. Then, if F(fx, fy, t) > 1 - t

implies

$$E(Tx, Ty, kt) > 1 - kt, 0 \le k < 1,$$

for all t > 0 and all $x, y \in X$, implies that

$$P(Tx, Ty) \le kp(fx, fy)$$

In a symmetric PPM space (X, \mathfrak{F}) , if p is a compatible symmetric function on $t(\mathfrak{F})$ then

$$CB_{\Im}(X) = CB(X).$$

where CB(X) is the set of all nonempty p-closed subsets of (X, p).

Hicks and Rhoades [10] obtained the following result showing that each symmetric PPM-space admits a compatible symmetric function.

Theorem 3.7. ([10]). Let (X, \mathfrak{T}) be a symmetric PPM-space. Let $p : X \times X \to R^+$ be a function defined as follows:

$$p(x,y) = \begin{cases} 0 & \text{if } y \in N_x(t,t) \text{ for all } t > 0, \\ \sup \{t : y \notin N_x(t,t), 0 < t < 1\} & \text{otherwise.} \end{cases}$$

Then

- (i) p(x, y) < t if and only if F(x, y, t) > 1 t;
- (ii) *p* is a compatible symmetric for $t(\Im)$;
- (iii) (X, \mathfrak{F}) is *F*-complete if and only if (X, p) is *F*-complete.

Now we present the following result in a symmetric PPM-space.

Theorem 3.8. Let (X, \mathfrak{F}) be a F-complete symmetric PPM-space that satisfies (C.4) such that p is a compatible symmetric function for $t(\mathfrak{F})$. Let $f : X \to X$ and $T : X \to CB_{\mathfrak{F}}(X)$ be maps such that

$$F(fx, fy, t) > 1 - t$$

implies

$$E(Tx, Ty, kt) > 1 - kt, 0 \le k < 1,$$

for all $x, y \in X$.

Then there exists a $z \in X$ such that $fz \in Tz$. Further, if f and T are (IT)-commuting just at z, and if fz is a fixed point of f, then f and T have a common fixed point.

Proof. Clearly (X, p) is a bounded and S-complete symmetric space and we have

p(fx, fy) < t

if and only if

F(fx, fy, t) > 1 - t.

Given $\varepsilon > 0$, put $t = p(fx, fy) + \varepsilon$. Then,

$$F(fx, fy, t) > 1 - t.$$

Therefore

$$F(Tx, Ty, kt) > 1 - kt, 0 \le k < 1,$$

for all $x, y \in X$.

From Proposition 3.6, we obtain

$$P(Tx, Ty) \le kt = kp(fx, fy) + k\varepsilon.$$

As $\varepsilon > 0$ is arbitrary, on letting $\varepsilon \to 0$,

$$P(Tx, Ty) \le kp(fx, fy).$$

An application of Corollary 3.5 with S = T completes the proof.

Corollary 3.9. ([17]) Let (X, \mathfrak{F}) be a F-complete symmetric PPM-space that satisfies (C.4) such that p is a compatible symmetric function for $t(\mathfrak{F})$. Let $T : X \to CB_{\mathfrak{F}}(X)$ be a multivalued mapping such that

F(x, y, t) > 1 - t

implies

$$E(Tx, Ty, kt) > 1 - kt, 0 \le k \le 1,$$

for all $x, y \in X$ and t > 0. Then there exists $z \in X$ such that $z \in Tz$.

Proof. It comes from Theorem 3.8 when f is the identity map on X.

REFERENCES

- M. AAMRI, A. BASSOU and D. El MOUTAWAKIL, Common fixed points for weakly compatible maps in symmetric spaces with application to probabilistic spaces, *Appl. Math. E-Notes*, 5 (2005), pp. 171–175.
- [2] M. AAMRI and D. El MOUTAWAKIL, Common fixed points under contractive conditions in symmetric spaces, *Appl. Math. E-Notes*, 3 (2003), pp. 156–162.
- [3] A. AHMAD and A. R. KHAN, Some common fixed point theorems for nonself hybrid contractions, *J. Math. Anal. Appl* **213** (1997), pp. 275–286.
- [4] Lj. B. ĆIRIĆ, Fixed points for generalized multi-valued contractions, *Mat. Vesnik* **9** (24) (1972), pp. 265–272.
- [5] Lj. B. ĆIRIĆ, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (2) (1974), pp. 267–273.
- [6] G. CONSTANTIN and V. I. ISTRĂŢESCU, *Elements of Probabilistic Analysis*, Kluwer Academic Publishers, Dordrecht, 1989.
- [7] H. W. CORLEY, Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl. 120 (1980), pp. 528–532.
- [8] T. L. HICKS, Fixed point theory in probabilistic metric spaces II, *Math. Japon.* 44 (3) (1996), pp. 487–493.

- [9] T. L. HICKS and B. E. RHOADES, Fixed point theorems for pairs of mapping in d-complete topological spaces, *Internat. J. Math. Math. Sci.* **16** (1993), pp. 259–266.
- [10] T. L. HICKS and B. E. RHOADES, Fixed point theory in symmetric spaces with applications to probabilistic spaces, *Nonlinear Anal.* **36** (1999), pp. 331–344.
- [11] P. HITZLER and A. K. SEDA, *Multivalued mappings, fixed point theorems and disjunctive databases*, 3rd Irish Workshop on Formal Methods (IWFM–99).
- [12] S. ITOH and W. TAKAHASHI, Single-valued mappings, multivalued mappings, and fixed point theorems, *J. Math. Anal. Appl.* **59** (1977), pp. 514–521.
- [13] J. JACHYMSKI, J. MATKOWSKI and T. SWIATKOWSKI, Nonlinear contractions on semimetric spaces, J. Appl. Anal. I (1995), pp. 125–134.
- [14] H. KANEKO and S. SESSA, Fixed point theorems for compatible multivalued and single-valued mappings, *Internat. J. Math. Math. Sci.* 12 (1989), pp. 257–262.
- [15] M. L. LAPIDUS and M. van FRANKENHUIJSEN (eds.), Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Proceedings of Symposia in Pure Mathematics, V. 72, Part I & II, Amer. Math. Soc., 2004.
- [16] J. T. MARKIN, A fixed point theorem for set-valued mappings, Bull. Amer. Math. Soc. 74 (1968), pp. 639–640.
- [17] D. E. MOUTAWAKIL, A fixed point theorem for multivalued mappings in symmetric spaces, *Appl. Math. E-Notes*, 4 (2004), pp. 26–32.
- [18] S. B. NADLER, Jr., Multivalued contraction mappings, *Pacific J. Math.* **30** (1969), pp. 475–488.
- [19] S. A. NAIMPALLY, S. L. SINGH and J. H. M. WHITFIELD, Coincidence theorems for hybrid contractions, *Math. Nachr.* **127** (1986), pp. 177–180.
- [20] B. SCHWEIZER and A. SKLAR, Probabilistic Metric Spaces, North-Holland, Amsterdam, 1983.
- [21] N. SHAHZAD, Coincidence points and R-subweakly commuting multivalued maps, *Demonstratio Math.* 36 (2003), pp. 427–431.
- [22] S. L. SINGH, K. S. HA and Y. J. CHO, Coincidence and fixed points of nonlinear hybrid contractions, *Internat. J. Math. Math. Sci.* 12 (1989), pp. 247–256.
- [23] S. L. SINGH and S. N. MISHRA, Nonlinear hybrid contractions, J. Natur. Phys. Sci. 5-8 (1991– 1994), pp. 191–206.
- [24] S. L. SINGH and S. N. MISHRA, On general hybrid contractions, J. Austral. Math. Soc. Ser. A 66 (1999), pp. 244–254.
- [25] S. L. SINGH and S. N. MISHRA, Coincidences and fixed points of nonself hybrid contractions, J. Math. Anal. Appl. 256 (2001), pp. 486–497.
- [26] S. L. SINGH and S. N. MISHRA, Coincidence and fixed points of reciprocally continuous and compatible hybrid maps, *Internat. J. Math. Math. Sci.* 10 (2002), pp. 627–635.
- [27] S. L. SINGH and B. D. PANT, Coincidence and fixed point theorems for a family of mappings on Menger spaces and extension to uniform spaces, *Math. Japon.* 33 (1988), pp. 957–973.
- [28] R. WEGRZYK, Fixed Point Theorems for Multivalued Mappings and their Applications to Functional Equations, Dissertation Math. (Rozprawy Mat., 201), 1982.
- [29] W. A. WILSON, On semi-metric spaces, Amer. J. Math. 53 (1931), pp. 361–373.
- [30] E. ZEIDLER, Nonlinear Functional Analysis and its Applications I: Fixed Point Theorems, Springer-Verlag, New York, Inc. 1986.