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ABSTRACT. This study conducts an a posteriori error analysis for a mathematical model of
atmospheric pollution in a bounded domain. The finite element method is employed to approx-
imate solutions to convection-diffusion-reaction equations, commonly used to model pollutant
transport and transformation. The analysis focuses on deriving reliable and efficient error indi-
cators for both temporal and spatial discretizations. Theoretical results establish upper and lower
bounds for the discretization errors, ensuring optimal mesh refinement. Numerical simulations,
supported by graphical representations, validate the theoretical findings by demonstrating the
convergence of error indicators. These results confirm the effectiveness of the finite element
method for solving atmospheric pollution models and highlight the importance of adaptive tech-
niques for improving numerical accuracy.

Key words and phrases: Partial differential equations; Variational methods; Atmosphere pollution; Numerical analysis; Finite
element method; A posteriori error.

2010 Mathematics Subject Classification. Primary 65N30, 65N15; Secondary 76D05, 86A10.

ISSN (electronic): 1449-5910
© 2025 Austral Internet Publishing. All rights reserved.

https://ajmaa.org/
mailto:wahidi.bello@fast.uac.bj
mailto:adetolajamal@unstim.bj
mailto:moustaphad530@gmail.com
mailto:bsaley@yahoo.fr
https://www.ams.org/msc/


2 A. W. BELLO AND J. ADETOLA AND D. MOUSTAPHA AND S. BISSO

1. INTRODUCTION

Atmospheric pollution is a critical issue with significant environmental and health impacts,
including climate change, species extinction, ozone layer depletion, and ice cap melting. Math-
ematical models, particularly convection-diffusion-reaction equations, are used to predict pol-
lutant concentrations in the atmosphere, known as immission concentrations. These models
account for transport, diffusion, and chemical reactions of pollutants, with applications in air
quality prediction and ecological studies. Since analytical solutions are often unavailable, nu-
merical methods such as finite differences and finite elements are essential.

Finite difference methods have been widely applied to discretize convection-diffusion-reaction
equations, particularly for complex geometries and nonlinear boundary conditions [23, 24, 28].
Adaptive meshing techniques improve solution accuracy by refining grids in critical regions
[24]. Finite element methods, including Galerkin and Petrov-Galerkin approaches, offer robust
solutions for convection-diffusion problems, addressing convergence and stability challenges
[16, 21, 22]. Combined methods leverage the strengths of both approaches [27]. Applications
include flame modeling [15], ecological migration [18], and industrial processes [17, 19].

A posteriori error analysis is crucial for assessing numerical accuracy without exact solutions.
It provides reliable error bounds and guides adaptive mesh refinement [12, 29, 30, 34]. This
work extends prior studies [1, 4] by proving theoretical convergence results for the finite element
method and conducting a posteriori error analysis for a pollution model. Numerical simulations
validate these findings.

The paper is organized as follows: Section 2 introduces the model and its discretizations.
Section 3 constructs and proves the reliability and efficiency of error indicators. Section 4
presents numerical results, and Section 5 concludes.

2. THE CONTINUOUS, SPACE SEMI-DISCRETE AND FULL DISCRETISATION PROBLEMS

2.1. Notation. Given a separable Banach space X , provided with the norm ∥ · ∥X , for any
t ∈ [0, T ], we denote by L2(0, t, X) the space of measurable functions v from (0, t) to X such
that:

∥v∥L2(0,t,X) =

(∫ T

0

∥v(·, s)∥2X ds

)1/2

.

We define also the space C(0, t, X) of continuous functions v mapping [0, t] to X .
Let (·, ·) stand for the inner product on L2(Ω) or L2(Ω)d, and, by extension, for the duality

pairing between H−1(Ω) and H1
0 (Ω), with Ω a domain in Rd, d ∈ {1, 2, 3}.

2.2. Model. Let T > 0, Ω ⊂ Rd (d = 2, 3) a bounded domain with a sufficiently regular
boundary. Let f ∈ L2(0, T ;H−1(Ω)), u0 ∈ L2(Ω).

Consider the model: find a function u such that:

(2.1)


∂u
∂t

+ E⃗ · (α∇u) + σu = µ∆u+ f on [0, T ]× Ω,

u = 0 on ∂Ω,

u(·, 0) = u0 on Ω,

where E⃗ is a vector in Rd with all elements equal to 1, α is the air velocity, σ > 0 is the pollutant
deterioration rate, µ > 0 is the diffusion coefficient, and f(t;x) is the pollution source intensity.

The space H1(Ω) is equipped with the norm of any v ∈ H1(Ω) defined by:

∥v∥H1(Ω) =

(∫
Ω

|∇v|2 +
∫
Ω

|v|2
)1/2

.
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2.3. Weak formulation.

Theorem 2.1. The weak formulation of the problem 2.1 is: find a function u ∈ L2(Ω) such that:

(2.2)

{
at(u, v) = ℓ(v), ∀v ∈ H1

0 (Ω),

u(x, 0) = u0(x), ∀x ∈ Ω,

where the bilinear and linear forms are defined by:

at(u, v) =

∫
Ω

∂u(x, t)

∂t
v(x) +

∫
Ω

E⃗ · (α∇u(x, t))v(x) + µ

∫
Ω

∇u(x, t) · ∇v(x) + σ

∫
Ω

u(x, t)v(x),

ℓ(v) =

∫
Ω

f(x, t)v(x).

The problem 2.2 has a unique solution in L2(0, T ;H1
0 (Ω)) ∩ C(0, T ;H1

0 (Ω)) ∩ H1
0 (Ω) with

∂u
∂t

∈ L2(0, T ;H1
0 (Ω)).

Proof. See [4].

2.4. Discretisation.

2.4.1. Time discretisation. We define a sequence (t0, t1, . . . , tN) of reals such that 0 = t0 ≤
t1 ≤ · · · ≤ tN = T , and denote the time step by τ p = tp − tp−1, with p ∈ {1, 2, . . . , N}.
The semi-discretisation of problem 2.2, obtained by applying the backward Euler scheme, is
formulated as follows: given u0, find a sequence (up)1≤p≤N in H1

0 (Ω) such as:

(2.3) ap(up, v) =

∫
Ω

up−1(x)v(x) dx+ τ p

∫
Ω

f(x, tp)v(x) dx, ∀v ∈ H1
0 (Ω),

where

ap(up, v) =

∫
Ω

up(x)v(x) dx+ τ p

∫
Ω

E⃗ · (α∇up(x))v(x) dx+ τ pσ

∫
Ω

up(x)v(x) dx.

2.4.2. Space discretisation. For any p ∈ {1, 2, . . . , N} and h > 0, let Tph be a triangulation of
Ω such that h = maxK∈Tph

hK , with hK the diameter of element K, and Ω̄ being the union of all
elements in Tph. We approximate the continuous space V = L2(0, T,H1

0 (Ω))∩C(0, T,H2(Ω)∩
H1

0 (Ω)) by a P1-Lagrange finite element space Vph defined as follows:

Vph = {vph ∈ C(Ω̄) : ∀K ∈ Tph, vph ∈ P1(K)}.

In turn, the full discretisation is: given an approximation ũ0 of u0, find a sequence (uph)1≤p≤N

in Vph such that:

(2.4) aph(uph, vph) =

∫
Ω

up−1(x)vph(x) dx+ τ ph

∫
Ω

f(x, tph)vph(x) dx, ∀vph ∈ Vph,

where

aph(uph, vph) =

∫
Ω

uph(x)vph(x) dx+ τ ph

∫
Ω

E⃗ · (α∇uph(x))vph(x) dx

+τ phµ

∫
Ω

∇uph(x) · ∇vph(x) dx+ τ phσ

∫
Ω

uph(x)vph(x) dx.

According to theorem 1.7 [1], there exists a linear operator L : H1
0 (Ω) → Vph such that the

following estimation holds.
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∥v − L v∥L2(K) <
∼
hK∥v∥H1

0 (K̃)

∥v − L v∥L2(∂K) <
∼
h
1/2
K ∥v∥H1

0 (K̃)

where K̃ is the patch of the element K, i.e., the set of all elements sharing an edge/face with
the element K.

3. A POSTERIORI ERROR ANALYSIS

In this section, we perform an a-posteriori error analysis. Widely used in the literature, the
a-posteriori estimation uses the data of the problem, without involving the exact solution, to
control the error. In other words, the a-posteriori error analysis aims to bound the approxima-
tion error by quantities that don t require the exact solution, such as the domain, the model
parameters, etc. The error is bounded by two quantities named respectively the upper bound
and the lower bound. As the problem we are dealing with is time-dependent, we investigate the
analysis in time, then in space, and then combine them to infer the global error. At each of these
stages, we determine the upper bound and the lower bound of the error. Before we will neeed
the following operators and functions :

3.1. A-posteriori error estimation in time. The upper bound and the lower bound in an a-
posteriori analysis are computed from quantities named local indicators. They are built using
the residual equation, which is deduced from the variational formulation of the problem. To
simplify the following analysis, we introduce some notation.

Given a sequence (vp)0≤p≤N in H1
0 (Ω) ⊕ Vph, we denote its Lagrange interpolant, which is

affine on each interval [tp−1, tp] and equal to vp at tp, i.e., defined by:

(3.1) ∀t ∈ [tp−1, tp], vp(x, t) =
tp − t

τ p
vp−1 +

t− tp−1

τ p
vp.

Further, we denote by πτv the step function of the sequence (vp)0≤p≤N , constant and equal to
v(tp) on each interval (tp−1, tp).

The time discretisation error is denoted by eτ = u − uτ . This error satisfies the residual
equation (3.2). Here, we deduce the residual equation by using the definition of the bilinear
form at, and the fact that u and uτ are respectively solutions of the problems (2.1) and (2.2).

(3.2)
at(eτ , v) =

∫
Ω

(f(x, t)− πτf(x, t)) v(x) +

∫
Ω

αE⃗ · ∇ (up(x)− uτ (x, t)) v(x)

+ µ

∫
Ω

∇ (up(x)− uτ (x, t)) · ∇v(x) dx+ σ

∫
Ω

(up(x)− uτ (x, t)) v(x).

We can notice that for any t ∈ (tp−1, tp), one has:

(3.3) up(x)− uτ (x, t) =
tp − t

τ p
(up(x)− up−1(x))

Inspired by [2, 3, 5], from the residual equation, we define the time local indicators as follows:

τ p =

(
∥∇(uph − up−1,h)∥2 dx+ µ∥E⃗ · ∇(uph − up−1,h)∥2 dx+ σ

∫
K

|uph − up−1,h|2 dx
)1/2

.

In the remaining analysis, we will frequently use the following inequality. Given two numbers
a and b, one has:

(3.4) ab ≤ a2 + b2

2
.
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Lemma 3.1. For any v ∈ H1
0 (Ω), one has:

∫
Ω
E⃗ · ∇v(x)v(x) dx = 1

2

∫
∂Ω

v(x)2E⃗ · n(x) dϵ.
Proof. We consider the case d = 2. The same procedure holds in the case d = 3. According to
Theorem 2.8 of [7], one has :∫

Ω

E⃗ · ∇v(x) dx = −
∫
Ω

(v(x), v(x)) · ∇v(x) dx+

∫
∂Ω

v(x)(v(x), v(x)) dϵ

= −
∫
Ω

E⃗ · ∇v(x)v(x) dx+

∫
∂Ω

v(x)2E⃗ · n(x) dϵ

where dϵ is a positive measure defined on the boundary ∂Ω.
Then one can deduce that:∫

Ω

E⃗ · ∇v(x)v(x) dx =
1

2

∫
∂Ω

v(x)2E⃗ · n(x) dϵ.

Theorem 3.2 (Upper bound). For any n ∈ {0, 1, . . . , N}, we have:

(3.5)

∥eτ (t)∥2 + α

∫ tn

0

∫
∂Ω

eτ (x, t)
2E⃗ · n(x) dϵ− α∥eτ (t)∥2 − µ∥∇eτ (t)∥2 ≤

n∑
p=1

η2τp

+
1

σ
∥f − πτf∥2L2(0,tn;H−1(Ω))

+
n∑

p=1

τ p

(
∥E⃗ · ∇(up−1 − up−1,h)∥2 + µ∥∇(up−1 − up−1,h)∥2 + σ∥up−1 − up−1,h∥2

)
+

n∑
p=1

τ p

(
∥E⃗ · ∇(up − up,h)∥2 + µ∥∇(up − up,h)∥2 + σ∥up − up,h∥2

)
.

Proof. The time discretization error eτ satisfies equation 3.2. Taking v = eτ (·, t), and using the
Cauchy-Schwarz inequality, for t ∈ [tp−1, tp], we get:

at(eτ , eτ (·, t)) ≤ ∥f(t)−πτf(t)∥∥eτ (t)∥+ϕ∥E⃗·∇(up−uτ (t))∥∥eτ (t)∥+µ∥∇(up−uτ (t))∥∥∇eτ (t)∥
+σ∥up − uτ (t)∥∥eτ (t)∥.

We express the right-hand side of this estimation as a sum through the use of inequality 3.4.
Also, we refer to the definition of the bilinear form at. Then, by rearranging each term, one
gets:
(3.6)

∂t∥eτ (t)∥2 + α

∫
∂Ω

eτ (t)
2E⃗ · n(x) dϵ− α∥eτ (t)∥2 − µ∥∇eτ (t)∥2 <

∼

1

σ
∥f(t)− πτf(t)∥2

+α∥E⃗ · ∇(up − uτ (t))∥
+µ∥∇(up − uτ (t))∥2 + σ∥up − uτ (t)∥2.

For each p ∈ {0, 1, . . . , n}, we integrate the previous inequality over the interval (tp−1, tp), and
we use equation 3.3 in the last two terms, which yields to the integral

∫ tp
tp−1

tp−t

τp
dt = τp

3
since

the quantity up − up−1 doesn’t depend on time.
(3.7)

∥eτ (t)∥2 + α

∫ tn

0

∫
∂Ω

eτ (x, t)
2E⃗ · n(x) dϵ− α∥eτ (t)∥2 + µ∥∇eτ (t)∥2 <

∼

1

σ
∥f − πτf∥2L2(0,tn,H−1(Ω))

+α
n∑

p=1

τ p∥E⃗ · ∇(up − up−1)∥2 + µ
n∑

p=1

τ p∥∇(up − up−1)∥2 + σ
n∑

p=1

τ p∥up − up−1∥.
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6 A. W. BELLO AND J. ADETOLA AND D. MOUSTAPHA AND S. BISSO

In order to introduce the quantities uph and up−1,h, we apply the triangular inequality in the
last two terms on the right-hand side. Then, we square each of these inequalities and express
the right-hand side as the sum of the squares of their terms, even if it means repeatedly using
inequality 3.4. Thus, we obtain:

∥E⃗ ·∇(up−up−1)∥2 ≤ ∥E⃗ · (⃗uph−up−1,h)∥2+ ∥E⃗ ·∇(up−uph)∥2+ ∥E⃗ ·∇(up−1,h−up−1)∥2

∥∇(up − up−1)∥2 ≤ ∥∇(uph − up−1,h)∥2 + ∥∇(up − uph)∥2 + ∥∇(up−1,h − up−1)∥2

∥up − up−1∥2 ≤ ∥uph − up−1,h∥2 + ∥up − uph∥2 + ∥up−1,h − up−1∥2.

Corollary 3.3. For any n ∈ {0, 1, . . . , N}, we have:

(3.8)

∥∥∥∥∂eτ∂t

∥∥∥∥2

L2(0,tn;,H−1(Ω))

<
∼

n∑
p=1

η2τp +
1

σ
∥f − f̄∥2L2(0,tn,H−1(Ω))

+
n∑

p=1

τ p

(
µ∥E⃗ · ∇(up−1 − up−1,h)∥2 + µ∥up−1 − up−1,h∥2 + σ∥up−1 − up−1,h∥

)
+

n∑
p=1

τ p

(
α∥E⃗ · ∇(up − uph)∥2 + µ∥up − uph∥2 + σ∥up − uph

)
+ .

Proof. By definition, we know that:∥∥∥∥∂eτ (t)∂t

∥∥∥∥
H−1(Ω)

= sup
v∈H1

0 (Ω)

(
∂eτ (t)
∂t

, v
)

∇v
.

From the residual equation (6), we deduce the following:(
∂eτ (t)

∂t
, v

)
≤ (f(t)− πτf(t), v) + α(E⃗∇(up − uτ (t)), v) + µ(∇(up − uτ (t)),∇v)

+(up − uτ (t), v) + α(E⃗∇eτ (t), v) + µ(∇eτ (t),∇v) + σ(eτ (t), v)

Except for the first term on the right-hand side, where we make use of the continuity of a
linear form, we apply the Cauchy-Schwarz inequality and the Poincaré inequality. These lead
for t ∈ (tp−1, tp) to the following bound:∥∥∥∥∂eτ (t)∂t

∥∥∥∥
H−1(Ω)

<
∼
∥f(t)− πτf(t)∥H−1(Ω) + ϕ∥E⃗∇(up − uτ (t))∥+ µ∥∇(up − uτ (t))∥+ σ∥up − uτ (t)∥

+α∥E⃗∇eτ (t)∥+ µ∥∇eτ (t)∥+ σ∥eτ (t)∥.

We can upper bound the right-hand side of this estimation using the same procedure as in the
proof of Theorem 2.

Now, let s find an upper bound for the local estimator. To this end, we use the triangle
inequality and inequality 3.4. One has:

η2τp <∼
ατ p∥E⃗∇(uph − up)∥2K + ατ p∥E⃗∇(up − up−1)∥2K + ατ p∥E⃗∇(up−1 − up−1h)∥2K

+µτ p∥∇(uph − up)∥2K + µτ p∥∇(up − up−1)∥2K + µτ p∥∇(up−1 − up−1,h)∥2K
+στ p∥uph − up∥2K + στ p∥up − up−1∥2K + στ p∥up−1 − up−1,h∥2K .
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In this inequality, we just need to estimate the terms ατ p∥E⃗∇(up − up−1)∥2K + µτ p∥∇(up −
up−1)∥2K + στ p∥up − up−1∥2K . For this purpose, we use the residual equation (6) and replace v
by up−uτ (t). Then, we transform the right-hand side into a sum with inequality (8) and obtain:∫
Ω

αE⃗ · ∇(up − uτ (t))× (up − uτ (t)) + µ∥∇(up − uτ (t))∥2 + σ∥up − uτ (t)∥2 <
∼

1

2
∥∂teτ (t)∥2

+
1

2
∥up − uτ (t)∥2 +

1

2
α∥E⃗∇eτ (t)∥2 +

1

2
α∥up − uτ (t)∥2 +

1

2
µ∥∇eτ (t)∥2

+
1

2
µ∥∇(up − uτ (t))∥2 +

1

2
σ∥eτ (t)∥2 +

1

2
σ∥f(t)− πτf(t)∥2 +

1

2
σ∥up − uτ (t)∥2.

3.2. A-posteriori error estimation in space. We recall that up and uph represent respectively
the solution of the problem 2.3 and 2.4. Then, we define the space approximation error by
eph = up − uph. We deduce the residual equation by using the definition of the bilinear form
ap, and the fact that up and uph are respectively the solution of the problems 2.3 and 2.4. The
approximation error ep,h satisfies equation 3.9:

The space approximation error is eph = up − uph, satisfying:
(3.9)

ap(eph, v) = τ p
∑

K∈Tph

∫
K

rph(x)v(x) dx+ τ p
∑

K∈Tph

∫
∂K\∂Ω

Gph(x)v(x) dϵ, ∀v ∈ H1
0 (Ω),

where rph = f(tp)− uph−up−1,h

τp
− αE⃗ · ∇uph − σuph.

Any interior edge γ is shared by two triangles K and K ′. According to the orientation, the
value of the normal derivative ∂uph

∂n
along γ varies. We define the jump discontinuity of the

normal flux on the edge γ as follows:[
∂uph

∂n

]
= nK · (∇uph)K − nK′ · (∇uph)K′ .

From equation 3.9, we expand the last term on the right-hand side and regroup its terms using
the jump discontinuity to obtain the space residual equation below 3.10:
(3.10)

ap(ep,h, v) = τ p
∑

K∈Tp,h

∫
K

rph(x)v(x) dx+ τ p
∑

K∈Tph

∫
∂K\∂Ω

Gph(x)v(x) dϵ, ∀v ∈ H1
0 (Ω),

where Gph is the residual defined by Gph = −
[
∂up,h

∂n

]
.

Consequently, one can deduce the Galerkin orthogonality relation given for any vph ∈ Vph

by:
ap(eph, vph) = 0.

Theorem 3.4. For any p ∈ {1, 2, . . . , N}, the space approximation error satisfies:

(3.11) ∥eph∥H1
0 (Ω) ≤ τ p

∑
K∈Tph

(
h2
K∥∇rph∥2K + h

1/2
K ∥Gph∥2∂K\∂Ω

)
.

Proof. Let v ∈ H1(Ω). The interpolant L v of v belongs to Vph, and by the Galerkin orthogo-
nality relation, we have:

ap(eph, v) = ap(eph, v − L v).
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We apply the continuous and discrete versions of the Cauchy-Schwarz inequality to obtain:

(3.12) ap(eph, v) ≤ τ p

 ∑
K∈Tph

∥∇rph∥2K∥v − L v∥2K + ∥Gph∥2∂K\∂Ω∥v − L v∥2∂K\∂Ω

1/2

.

Using the estimate (5), we obtain:

ap(eph, v) <
∼
τ p

∑
K∈Tph

(
h2
K∥∇rph∥2K + h

1/2
K ∥Gph∥2∂K\∂Ω

)1/2

∥v∥Ω.

Replacing v with eph and using the coercivity of the bilinear form ap, we get:

∥ep,h∥2H1
0 (Ω) <∼

τ p
∑

K∈Tph

(
h2
K∥∇rp,h∥2K + h

1/2
K ∥Gp,h∥2∂K\∂Ω

)
.

Usually, the exact residuals Gp,h and rp,h are replaced by an approximated residual element
respectively [6]. A way of doing that consists in projecting the residual Gp,h and rp,h onto
finite-dimensional spaces. In the literature, it is common to use the mean values of each of
these residuals as projections. We introduce Ḡp,h and r̄ph as the corresponding approximations
of the residuals Gph and rph:

r̄ph =
1

|Ω|

∫
Ω

rph(x) dx,

Ḡph =
1

|Ω|

∫
Ω

Gph(x) dx.

However, the estimation 3.11 suggests that we define the local indicators (ηK)K∈Tph
as follows:

ηK =
(
h2
K∥r̄ph∥2K + h

1/2
K ∥Ḡph∥2K

)1/2

.

Then, we define also the residual terms (ξK)K∈Tph
as:

ξK =
(
h2
K∥r̄ph − rph∥2K + h

1/2
K ∥Ḡph −Gph∥2K

)1/2

.

With these notations, we apply the triangular inequality to the estimation 3.11 and use the
inequality 3.4 to obtain the upper bound of the approximation by the following corollary.

Corollary 3.5 (Global upper bound). For any p ∈ {1, 2, . . . , N}, one has:

(3.13) ∥eph∥H1
0 (Ω) <∼

τ p
∑

K∈Tph

(η2tp + η2K).

4. NUMERICAL RESULTS

As for our numerical results, we proceeded in three steps. Firstly, we simulated the indicators
by taking different time steps. We found that as time increases, we have an optimal convergence
of our constructed indicators. This allows us to conclude the equivalence of our indicators with
the error. In a second step, we proceeded at chosen times to the calculation of the spatial
indicators by acting on the discretization step. Our numerical results also give us an optimal
convergence. Finally, we compared the two error indicators to the theoretical error, which
confirms the theoretical results found. Then we put, α = 1, σ = 1, µ = 0.5 and f defined by :

f(x, y, t) =
[π
2

(
α1 cos

(π
2
x
)
sin

(π
2
y
)
+ α2 sin

(π
2
x
)
cos

(π
2
y
))]

e
−
(

π2

2
µ+σ

)
t
.
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rph = f(tp)−
uph − up−1,h

τ p
− αE · ∇uph + µ∆uph − σuph.

The formular of local indicator depending to the time we use is defined as foffow :

ηpt =
(
ατ p∥∇(up,h − up−1,h)∥2K + µ∥E · ∇(up,h − up−1,h)∥2K + στ p∥up,h − up−1,h∥2K

) 1
2

We recall that the space error indicator is noted : ηK and is calculated on each element of the
mesh. Thus, at each instant, we calculate the norm L2 of the vector containing the value of the
error indicator in space for all the elements of the mesh. We will also do the same thing for the
time error indicator, noted ηtp.

Figure 1:

Figure 2:

Analyzing Figures 1, 2 we notice that when h tends to 0, ||u − uh||L2 and ||u − uh||L∞

tend towards 0 and therefore the numerical solution uh tends towards the exact solution u of
the problem. Therefore, the numerical method used is convergent in time. We also note that
||ηK ||L2 tends to 0 when h tends to 0; this means that the temporal error influences the spatial
error. We also see that ||ηK ||L2 is less than ||ηtp||L2 . Which means that the error due to spatial
discretization is better controlled than that due to temporal discretization.
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5. CONCLUSION

In this research work, proven convergence using error indicators of the pollution model in a
domain bounded by the atmosphere. the method is globally convergent, but the convergence
is dominated by the temporal discretization error. This implies that, even if the method glob-
ally converges to the exact solution, the speed of this convergence is mainly determined by the
temporal error and therefore, improving the temporal precision can improve the overall conver-
gence.

DECLARATIONS

Conflict of Interest. The authors declare that they have no conflict of interest for the publica-
tion of this paper.

Authors’ Contributions. All authors read and approved the final manuscript.

REFERENCES

[1] M. AINSWORTH and J. T. ODEN, A posteriori error estimation in finite element analysis, Wiley,
New York, (2000).

[2] A. BERGAM, C. BERNARDI, and Z. MGHAZLI, A posteriori analysis of the finite element dis-
cretization of some parabolic equations, Math. Comput., 74 (2005), pp. 1117–1138.

[3] C. BERNARDI, F. HECHT, and R. VERFÜRTH, A posteriori error analysis of the method of
characteristics, Math. Models Methods Appl. Sci., 21 (2011), Article 10.

[4] K. GAEL, D. MOUSTAPHA, and S. BISSO, Resolution and numerical simulation of a pollution
model in a bounded domain of the atmosphere, Int. J. Adv. Appl. Math. Model., 11 (2023), pp.
192–208.

[5] M. PICASSO, Adaptive finite elements for a linear parabolic problem, Comput. Methods Appl.
Mech. Eng., 167 (1998), pp. 223–237.

[6] R. VERFÜRTH, A review of a posteriori error estimation techniques for elasticity problems, Com-
put. Methods Appl. Mech. Eng., 176 (1999), pp. 419–440.

[7] C. ZUILY, Éléments de distributions et d équations aux dérivées partielles, Dunod, Paris, (1983).

[8] R. BECKER and B. J. P. KAUS, Numerical modeling of Earth systems, Lecture Notes for USC
GEOL557, (2018).

[9] B. B. PANDITA and V. S. KULKARNI, Finite difference approach for non-homogeneous problem
of thermal stresses in cartesian domain, Int. J. Adv. Appl. Math. Mech., 3 (2015), pp. 100–1012.

[10] F. BEN BELGACEM, Équations d évolutions paraboliques, ENIT-LAMSIN et UTC-UMAC,
(1999).

[11] J.-C. CUILLIÈRE, Introduction à la méthode des éléments finis, Dunod, (2016).

[12] D. BRAESS and R. VERFÜRTH, A posteriori error estimators for the Raviart-Thomas element,
SIAM J. Numer. Anal., 33 (1996), pp. 2431–2444.

[13] R. VERFÜRTH, A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput.
Appl. Math., 50 (1994), pp. 67–83.

[14] K. W. HOUÉDANOU, J. ADETOLA, and A. MOHAMED, A posteriori error analysis for a new
fully mixed isotropic discretization of the stationary Stokes-Darcy coupled problem, Abstr. Appl.
Anal., 2020 (2020), Article 1.

AJMAA, Vol. 22 (2025), No. 2, Art. 8, 11 pp. AJMAA

https://ajmaa.org


A POSTERIORI ERROR ANALYSIS FOR ATMOSPHERIC POLLUTION MODEL 11

[15] M. FRAISSE, Quelques aspects mathématiques d un modèle réduit de réaction-diffusion avec con-
vection, Université de Lille, (2011).

[16] J. DONEA, Méthodes d éléments finis pour les problèmes de convection-diffusion, Revue de Mé-
canique Appliquée, 2003 (2003).

[17] D. VRIES, Estimation et prédiction des systèmes de convection-diffusion-réaction à partir de
mesures ponctuelles, Université de Delft, (2008).

[18] O. PARDO, Contribution à l étude et à la modélisation d un modèle de convection-diffusion
dégénéré, Université de Pau et des Pays de l Adour, (2002).

[19] M.-J. JASOR, Perturbations singulières d équations non linéaires de diffusion-convection, Univer-
sité de Bordeaux, (1992).

[20] T. P. H. VANNESTE, Modélisation numérique des équations de convection-diffusion-réaction, J.
Math. Appl., 2020 (2020).

[21] E. STEIN, E. RAMM, W. A. WALL, and M. BISCHOFF, Finite element methods for convection-
diffusion problems, Appl. Numer. Math., 2008 (2008).

[22] C. LA BORDERIE, Introduction aux éléments finis, Éditions Techniques de l Ingénieur, (2010).

[23] J. D. S. OLIVEIRA and L. R. S. FERREIRA, Finite difference methods for convection-diffusion-
reaction in complex geometries, J. Comput. Phys., 2014 (2014).

[24] G. A. F. SEQUEIRA and J. M. M. FERREIRA, Adaptive meshing techniques for coupled
convection-diffusion-reaction systems, Comput. Mech., 2016 (2016).

[25] C. JOHNSON and P. NITHIARASU, Galerkin methods for convection-diffusion problems, Finite
Elem. Anal. Des., 2005 (2005).

[26] A. T. PATERA and G. D. MERA, Variation techniques in finite element methods, J. Appl. Math.,
2011 (2011).

[27] P. G. BAKHVALOV, Numerical methods for convection-diffusion-reaction problems, Springer,
(1989).

[28] R. J. LEVEQUE, Finite volume methods for hyperbolic problems, Cambridge University Press,
(2002).

[29] B. RIVIÈRE and I. YOTOV, Locally conservative coupling of Stokes and Darcy flows, SIAM J.
Numer. Anal., 42 (2005), pp. 1959–1977.

[30] L. J. WILLIAM, S. FRIEDHELM, and I. YOTOV, Coupling fluid flow with porous media flow,
SIAM J. Numer. Anal., 40 (2003), pp. 2195–2218.

[31] J. YU, M. A. A. MAHBUB, F. SHI, and H. ZHENG, Stabilized finite element method for the
stationary mixed Stokes-Darcy problem, Adv. Difference Equ., 2018 (2018), Article 346.

[32] K. W. HOUÉDANOU and B. AHOUNOU, A posteriori error estimation for the Stokes-Darcy
coupled problem on anisotropic discretization, Math. Methods Appl. Sci., 40 (2017), pp. 3741–
3774.

[33] S. NICAISE, B. AHOUNOU, and W. HOUÉDANOU, A residual-based a posteriori error estimates
for a nonconforming finite element discretization of the Stokes-Darcy coupled problem: isotropic
discretization, Afrika Mat., 27 (2016), pp. 701–729.

[34] H. RUI and R. ZHANG, A unified stabilized mixed finite element method for coupling Stokes and
Darcy flows, Comput. Methods Appl. Mech. Eng., 198 (2009), pp. 2692–2699.

AJMAA, Vol. 22 (2025), No. 2, Art. 8, 11 pp. AJMAA

https://ajmaa.org

	1. Introduction
	2. The continuous, space semi-discrete and full discretisation problems
	2.1. Notation
	2.2. Model
	2.3. Weak formulation
	2.4. Discretisation

	3. A posteriori error analysis
	3.1. A-posteriori error estimation in time
	3.2. A-posteriori error estimation in space

	4. Numerical results
	5. Conclusion
	Declarations
	Conflict of Interest
	Authors' Contributions

	References

