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ABSTRACT. In this paper, we introduce new geometric constafk, a,, b;, ¢;,2) to measure

the difference between isosceles orthogonality and special Carlsson orthogonalities. At the same
time, we also present the geometric cons@iX, a;, b;, ¢; ), which is a generalization of the rec-
tangular constant proposed by Joly. According to the inequality on isosceles orthogonality, we
give the boundary characterization of these geometric constants. Then the relationship between
these geometric constants and uniformly non-square property can also be discussed. Further-
more, we show that there is a close relationship between these geometric constants and some
important geometric constants.
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2 H. XIE AND Q. LIU AND Y. LI

1. INTRODUCTION

Orthogonality plays a vital role in Euclidean geometry. It can be found in the fourth axiom of
Euclidean geometry and the Pythagorean theorem. Banach space geometry differs from Euclid-
ean geometry in that there is no unique notion of orthogonality. As Banach space geometry
developed, many different orthogonalities have been introduced into the general normed linear
space. In 1934, Roberis [20] introduced Roberts orthogonality: a vedsasaid to be Roberts
orthogonal to a vectoy (z L y) if

[ + ayll = |z — ayll, Va € R.

In 1935, Birkhoff [4] introduced Birkhoff orthogonality: a vecteris said to be Birkhoff or-
thogonal to a vectoy (x L y) if

|z + ay|| > ||z||,Va € R.

Later, James [8] introduced isosceles orthogonality and Pythagorean orthogonality: arvector
is said to be isosceles orthogonal to a vegtor L y) if

lz+yll = llz -yl
A vectorz is said to be Pythagorean orthogonal to a vegtor L p y) if
lz = ylI* = ll=[* + [lyl>
More studies on orthogonality can refer tol[2, 3].

It is well known that different orthogonalities on inner product spaces are equivalent. On
Banach spaces, however, this does not necessarily hold. It is therefore of great interest to study
different orthogonality. In recent years, many scholars have studied the difference between
different orthogonality by means of geometric constants|_In [10] and [11], Ji et al. studied the
difference between Birkhoff orthogonality and isosceles orthogonality by introducing geometric
constantsD(X) and D’(X). To discuss the relationship between Birkhoff orthogonality and
Roberts orthogonality, Papini and Wu [18] introduced a geometric conBt&OK ). Following
their work, Mizuguchi[[17] proposed geometric constaBtg X ) and/B(.X) to describe the
relationship between Birkhoff orthogonality and isosceles orthogonality. Meanwhile, he also
investigated the geometric constd®t’ (X ), which can be considered as the geometric constant
IB(X) on the unit sphere. Based on the parallelogram law and isosceles orthogonality, Liu et
al. [16] introduced a new geometric const&ttX ), denoted as

= + 2y + |22 + y]|?
Q(X):sup{ cr,2ye X,x Lryo.
Sllz +y||?

They gave some properties of this geometric constant, and also used it to characterized the inner
product space.

In this paper, we introduce two new geometric constéftts, a;, b;, ¢;, 2) andC'(X, a;, b;, ¢;).
The geometric constant( X, a;, b;, ¢;, 2) can be used to estimate the difference between isosce-
les orthogonality and special Carlsson orthogonalities. The geometric coast&nd,, b;, ¢;)
is a generalization of the rectangular constant. We will give some properties of these constants
and connections to other constants.

2. PRELIMINARIES

In this paper( X, || - ||) will be a real normed space of dimension at least two.Ret= {z €
X :||z|]| <1} betheunitballandy = {z € X : ||z|| = 1} be the unit sphere.
First, we give the following lemma, which is often used in later proofs.

Lemma 2.1. [8, Lemma 4.1, p. 294[f = L y, then
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(1) [l + kyl| < [K]llz + y[| and ||z £ y|| < ||z + ky
) llz + kyll < llz + y[l and[k[[lz £ y[| < [lo+ ky

A Banach spacg is called uniformly non-squaré|[9] if there exist9a (0, 1) such that
either ||z + y|| < 2(1 —d) or ||z — y|| < 2(1 —§) foranyx,y € Sx. If for anye > 0 there
existsz,y € Sx such that|x + y|| > 2 — ¢, then we say thak is not uniformly non-square.

Let X be areal normed space, the von Neumann-Jordan corta ) is defined by

=+ yl* + [l — ylI* }
Cna(X) Sup{ et &Y € X, (z,y) # (0,0) ¢.
The von Neumann-Jordan constéht; (X) of the spaceX was first considered by Jordan and
von Neumann[13], and has since been studied by many scholars, yielding many properties. For
instance,l < Cy;(X) < 2. For further details on von Neumann-Jordan constant, we refer the
reader to[[14, 15].

In [7], Gao and Lau introduced the James constinY) of a Banach spac&’, which is
defined as

[ if [k] > 1;
|, if k] < L.

J(X) = sup{min{||z + y|, |z — yl[} : z,y € Sx}.
An equivalent definition of the James constant is the non-square constant:
J(X) =sup{llz +yl| : 2,y € Sx,x L1y}
The basis properties of(X') are given in[[7, 14]:
v2 < J(X) <2
(ii)lf X is an inner product space, théifiX) = v/2; the converse is not necessarily correct.
(i) J(X) < 2if and only if X is uniformly non-square.

3. THE CONSTANT C(X, a;, b;, ¢;,2)

In [5], Carlsson introduced Carlsson-orthogonalities: a vectsrsaid toC'-orthogonal to a
vectory(z Lo y) if

n

> aillbir + ciy|* =0
=1
wherea;, b;,c; € R,i =1,...,n, are such that

Zn:albf = Zn:aic? =0 and Xn: a;b;c; # 0.
=1 =1 =1

This generalizes isosceles and Pythagoream orthogonalities. He gave a characterization of the
inner product space by Carlsson-orthogonalities. Later, Alonso étlal. [1] proved that Carlsson-
orthogonalities and Birkhoff orthogonality are equivalent in inner product space. Motivated by
their work, we introduced a new geometric constant to measure the difference between special
Carlsson-orthogonalities and isosceles orthogonality, defined as follows:

?_ a; b,I‘i‘Czy 2
L ail H7xhy$uw%mﬁﬁ

—aj|[bjz + c;y|?
wherea;, b, ¢c; e R,i=1,...,j—1,j4+1,...,n,aresuchthat_;" | a;b? +-a;b5 = > 7" | a;ci+
CLjCJZ =0, Z?:l a;bic; + CijjCj 7é 0 andaj, bj =¢ € R — {O},j =1,...,n.

Theorem 3.1.Let X be a normed space, then

C(X7 a;, bs, ¢, 2) = sup {

ab?  a;c? )
—a.b?’ —a.b2’
a;b; —a;b;

1< C(X, ai,bi,ci,2) < Zmax{
i=1

AJMAA Vol. 19(2022), No. 2, Art. 9, 12 pp. AIMAA


https://ajmaa.org

4 H. XIE AND Q. LIU AND Y. LI

Proof. Without loss of generality, we assurbie# 0. If |¢;| < |b;| foranyi =1, ...

1,...,n—1,by Lemmg 2.]1, we have
Ci
sz + ciyl* = ble + =yl
< bl +yll*.
If |b;] < |ci], then we get
-+ el <2 () o+l

= cillz+yl*

Hence

1biz + ciy|* < max{b?, c7}H|z + y||
wherei=1,...,7—1,7+1,...,n— 1. It follows that

Z?:l a;||bix + Cin2 Zmax{a b2, ac 2}
e Teult = a2 mnti

ale a;c
= g max{— T b2}
j j

This shows that
2
CLZ a;C;
C<X alvbmch < Zmax{ b2’ Cljb?}
On the other hand, we let# 0,y = 0in C(X, a;, b;, ¢;, 2). Then we obtain

n )
C(X7 aiabivci72) Z M = 17

2
—ajb

which completes the proof of the theorem.

aj_17.]+

We provide the following examples to illustrate that the geometric conétakt a;, b;, ¢;, 2)

can reach the upper bound and lower bound.

Example 3.1.Let X = (R?, || - ||), thenC(X, a;, b;, ¢;,2) = >, max{—

alc
b2’ —a;b?

Proof. Takingz = (1,0),y = (0, 1), then||z + y|| = ||z — y|| = 1. Thus we get

(X, ag, by, c3,2) > 2i=] ai”bi“‘fi@/‘@o

Z max{a;b?, a;c?}

-721

_ a;b;
B Zmax{—ajw’ —a]bz}
=1

According to Theorerp 31, we deduce that

C(X, a;,b;,¢i,2) Zn:ma {—= aib; ic? —=}
iy Viy iy = X ) .
’ 1 b2 ajb§

|
Example 3.2.Let X is an inner product space, then( X, a;, b;, ¢;, 2) = 1.
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Proof. If X is an inner product space, by parallelogram rule, we have
=+ yll* = ll=l* + Iyl
Therefore
iy aillbiz +eyll* 3o ai(Bll® + ¢llyll?)
—ajl|bjz + c;yll? —a; (b3 [|z[]* + Slyl?)
_—a; (B3 ]ll* + SFlly[1*)
—a; (b3 ll=)1* + ¢ llyl?)
=1.
This implies thatC'(X, a;, b;, ¢;,2) < 1. By Theorenj 3]1, we get

C(X, a;, bi, G, 2) =1.

By following the ideas in[16], we can prove the next theorem, which gives the relationship
between the geometric constaintx, a;, b;, ¢;, 2) and not uniformly non-square.

Theorem 3.2.Let X be a finite-dimensional normed space. Thérs not uniformly non-square
if and only if

a;b?  a;c? )
B2 —q.b2
a;b; —a;b;

C(X, ag, bi, Ci, 2) = Z max{
i=1

Proof. Suppose thak is not uniformly non-square, then there existsy, € Sx such that
|20+ yall = 2, |20 — yull — 2

whenn — oco. Letting

= andv =
YT ’ 2
then we sedu + v|| = ||ju — v|| = 1. Thus we get

bi—FCi bl — C; 2

5 Tn + 5 Yn

HbiU,‘i‘CiUH2 :‘
bi—f—Ci )2
foranyi=1,...,5—1,j+1,...,n.

<
<(|%3
Next we want to conclude thdib;u + c;v||? — max{b?,c¢?} forany: = 1,...,5 — 1,5 +

bi — C;
2

2 2
is Ci

= max{b
1,...,n,itis bestto split the argument into two cases.

Case 1.b;,c; > 0. By triangle inequality, we have
2

bi—FCZ‘ bi+Ci
+

bi 4 .= n
l|biu + c;v|| ‘ 5@ 5
bi—l—Ci

N(E

Yn — CilYn

2
0 + gall — |cz~r||ynu)
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and
bi + ¢ bi + ¢ ’
by + co||* = Ty — Yn + bitjn
2 2
bi + ¢ ’
e )

— 02(n — 00),

which giveg|b;u + c;v||> — max{b?, c

Z7’L

Case 2.b;c; < 0. Itis easily seen that
bl' — C; bl — C

5 Tnt T

bi—C

2

|bsu + c;v]|? = ‘ n + Cin

-

2
wm+%wwmm0

and
2
bi — C; bl — C;

||bzu + Civ||2 = 9 Yn — 9 Tp + bixn

b — i 2
z(’ Wm—%W%MmD

— 02(71 — 00).

This implies||b;u + c¢;v||* — max{b?, ¢

’L7 Z

Hence we have

a;b?
27 2
a;b; —ajb

C(X,a;,b;,¢,2) > Zmax{ }
=1

It follows from Theoreni 3]1 that

152 2
C(X, CLi,bi,Cz, Zmax{ ¢ 4ic }

D)
—a]b

Conversely, without loss of generality we can assume there exists{1,...,j — 1,5 +
1,...,n—1} such that? > ¢ foranyi =1,... k. If

C(X,a;,b;,¢i,2) Zmax{ a, ' b2}
then we see that there exists, y; on a f|n|te dimensional normed spagewith z; L
satisfying
E?:l a||bizy + ¢y ||? . Zf:l a;b} + Zzn k+1 aic;
—a;l|bjer +eyl? —a;b} '
By Lemmdg 2.1, we have

”ble + ciylHZ < bleLCl + y1H2(i =1,..., k)

and
1bix1 + e |)® < Gller +wml*(i=k+1,...,n).
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Since
Sy @bl +yil?+ Y a0 ab? Y aic
—ajlbjz1 + cju? B —a;b3 ’
then we get
Hble + C@'y1H2 = b?”l’l + y1H2(’i =1,..., k)
and

by + canll® = Eller + ul*(i =k +1,...,n).
By triangle inequality, we have
b1 + eyl < |bi — cilllza || + leilllzy + o, i=1,...,k
b1 + caynll < lei = billlyall + bl llos + o], i=k+1,....n
and
cillloal] + leilller —wll, i=1,...,k

{ |biz1 + iy |
cilllyall + 1bil[|ler =, i=k+1,...,n

‘ < ‘bi +
|biz1 + cion|| < |bs +
If o > 0, then we see

(]b,-\ - |Ci|)\|ﬂ31 + ?JlH < |b; — Cz"||f’31||

= (1bo| = el =1, k),

and
(leil = b lz1 + il < lei — bl lya |
= (lei] = bl ll i =k +1,...,n).
If a8 <0, then
([0s] = leiDllz1 + |l < [bs + cill|21]]
= (|bi| = [e:Pl[al|(@ = 1,... k),
and

(les| = 1BiD) 1z + [l < [bs + cil [y |
= (lei] = 16Dl llG =k +1,...,n).
Hence we obtain
max ||z + 1| < minf{|z1 ][, |y}
This gives
max{[|zy + y1l], [|21 =y} = max{[|zy + wll, [[#1 + w1} < min{{lz ], [[y.]]}-

To prove thatX is not uniformly non-square, we may assume tkias uniformly non-square,
then there exists € (0, 2) such that

.{H T +y T —y
min +
max{|lz +yl, |z —yl} ~ max{[|x +y|, [z -y}

Y

foranyz,y € X. This shows

2 I} <2-0

! & H
min ,
{HmMW$+MHM—yM max{||z +yl|, |z — yl[}

AJMAA Vol. 19(2022), No. 2, Art. 9, 12 pp. AIMAA
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Accordingly,

2 .
max{[|lz +yll, lz = yll} > 5—5 min{llz[l, llyll},

which contradicts the fact that
max{[|z1 + yill, [[z1 — v} < min{{l2 ], [y ]|}
Therefore, we deduce that is not uniformly non-squares

Corollary 3.3. Let X be a finite-dimensional normed space. Théms uniformly non-square
if and only if

u a;b?  a;c?
CX,(Zi,bi,Ci,Q < ma #,L .
( )< 2 max{ —a,i? —a 2
i=1 J J
The geometric constagt( X, a;, b;, ¢;, 2) is closely related to other geometric constants. Be-

low we show that the relationship betwe€0X, a;, b;, ¢;, 2) andCy s (X).

Theorem 3.4.Let X be a normed space, then
2a;b?  2a;c? 2a;|b? — 2|
C(X,a;,b;,¢,2) < Zmln{ b2’ — bQ}C’NJ +Zij2

Proof. Note that, the geometric constafit; ;(X') can be written in the following equivalent

form:
2= )” + llyll*)
Cnys(X :sup{ cx,y € X, (x,y 0,0
wiX) T+ o2+ Nz — o2 @:9) #0.0)

For allz,y € X such that: L, y, by triangle inequality, we have
2oim aillbiz + cyll* _ S, ailllbi] + [leyl)?
—ajllbjr +cyll? T —agbille -yl

< i 2ai([[bizl® + [leiy]®)
- —a;bi||x +ylf?

> iy min{aib?, aic?} (2)|z]* + 2[|y)1*) + 2ai]b} — ][l + y]I*
—a;b5(|lx + y|I* + [lz — y[1?)

- 2a,b; b?  2a;c? 2az|b |
< E mm{ b2’ — b2}CNJ + g . b2 )
j

This completes the prooi

<2

In the next theorem, we give the relation between betweek, a;, b;, ¢;, 2) and the James
constant.

Theorem 3.5.Let X be a normed space, then

> i @ilbi — ¢)?
—4a;b?

J(Jf) S C(Xy a;, bi7 Ci,y 2)

Proof. For anyz,y € Sy, let

u:x—I—y andv:u.
2 2

AJMAA Vol. 19(2022), No. 2, Art. 9, 12 pp. AIMAA
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Clearly,u L; v. Therefore

Doy agllbiu + cvl|?
—aj||bju + cjvl?
_ 2inaillbi(@ +y) + ci(z —y)|
—4ajb2
S 2in a; (0|l + yl|* + ¢ ||l — yl|? = 2|bicill|z + yl| |z — yl])
- —4a]b2

Zn 1 ai(bl Ci)2
> L .
- —46@62 J(2)

C(X, ag, bi, C;, 2) Z

This completes of the proog

4. THE CONSTANT C(X, a;, b;, ¢;)

The rectangular constapi{ X') of a real normed linear spac€é was introduced by Joly

[12] as follows:
]| + Ayl }
X)=supq———,x L :
00 = s {1 il L

Joly gave upper and lower bounds for the geometric constaand v/2, respectively. It is
also demonstrated that in normed linear spaces of dimensidhs.(X) = /2 if and only if
X is inner product space. Latgr(X) = /2 and inner product space are also equivalent in
two-dimensional spaces was proved by Del Rio and Benitez [6].

In normed space, there is a difference between Birkhoff orthogonality and isosceles orthogo-
nality. Inspired by the work of Joly and Carlsson, we propose a generalized rectangular constant
on isosceles orthogonality, defined as follows:

Yo aillbir + eyl
|z + v

C(X,ai,bi,ci):sup{ ’JJJ_[ y?(x7y)7£(070)}

wherea;, b;,c; € R,i = 1,...,n such that

Z a?b? = Za%z and a?b? + aic? —a2b2+ac forany i # j.

=1

We give the characterization of the geometric cons@fX, a;, b;, ¢;) on normed space in
the following theorem. To complete the proof easily, we first give a lemma, which is the well-
known Dvoretzky’s theorem.

Lemma 4.1.[19, Theorem 10.43, p. 41¢or anye > 0, any infinite-dimensional Banach
spaceX contain/;s(1 4 ¢)— uniformly.

Theorem 4.2.Let X be a infinite-dimensional normed space, then

Zazb2 ) < C(X, a4, b, ¢) < Zmax{ai|bi|,ai|ci|}.
i=1

AJMAA Vol. 19(2022), No. 2, Art. 9, 12 pp. AIMAA
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Proof. If = L; y, by the proof in Theorein 3.1, we know

> i aillbir + ey < > iy max{a;|bi|, ailc;| |z + v
lz +yl - lz +yl

n
= Zmax{&i\bifyai‘cﬂ}-
i=1

This gives

C(X, a,bi,¢;) < max{as|byl, ailes]}.
=1
Actually, for any Hilbert spacé/, we havel|z + y||*> = ||z||* + ||y||* for all z,y € X. Then
we see

Yy aillbir +cyll 3 ai/ (bl + [leiyll?

[ + ]| Vil + flyll?

21,2 2.2
aibi—iraici

_n\/alb2 + a3cs

_\/—\/ —|—a101

n(> " a2?)

=1

foranyz,y € Sx. This showsC'(H, a;, b;,¢;) > \/n (>, a?b?). Furthermore, by parallelo-
gram rule, we have

<Z?:1 a;|bir + Cz‘y!|)2
|z + v

<N 2im @b + eyl
lz +yl?

_n i (@bl + afetllyl?)
1 + [yl

=n (Zn: a?bf) ,
i=1

which givesC'(H, a;, b;, ¢;) < /n(>__, a?b?). Thus we obtain

C(H7 i, bi7 Ci) —

AJMAA Vol. 19(2022), No. 2, Art. 9, 12 pp. AIMAA
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This completes of the prook
The following example gives the case of the upper bound for the geometric cofi¢fant;, b;, ¢;).
Example 41. LetX = <R2, H . Hoo)a thenC(X, Q;, bi, Ci) = Z?:l max{ai\bi], al\cl\}

We give the connection betweél X, a;, b;, ¢;) and no uniformly non-square in the following
theorem.

Theorem 4.3.Let X be a finite-dimensional normed space. Thérs not uniformly non-square
if and only if

C(X, a1, bi,c;) = Y max{ai|by], aile]}.
=1

Proof. The proof is similar to that of Theorem 3.2 by some minor modifications, thus we omit
it. u
Corollary 4.4. Let X be a finite-dimensional normed space. Théms uniformly non-square
if and only if
C(X, a;, bz‘, Ci) < Z maX{ai\biL CLZ‘CZ‘}
=1
5. CONCLUSION

In this article, we introduce two new geometric consténtX’, a;, b;, ¢;, 2) andC'(X, a;, b;, ¢;).
The constanC' (X, a;, b;, ¢;,2) can be used to measure the difference between isosceles or-
thogonality and special Carlsson orthogonalities. The geometric corstaqta;, b;, ¢;) can
be considered as a generalization of the rectangular constant. First, we give upper and lower
bounds for these constants. Then we characterize uniformly non-square spaces by using these
constants. In addition, we show the relationship between these geometric constants and some
important geometric constants.
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