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2 PAOLO D’A LESSANDRO

1. INTRODUCTION

This paper is a continuation df![4], in which the same author has presented a generaliza-
tion to infinite dimension of the image space theory of polyhedra (as illustrated, in the finite
dimensional case, in|[5],[3]. 1] and![2]).

In such generalization, polyhedra are countable intersections of closed semispaces in a real
separable Hilbert spacH. SinceH is separable, the study is carried out/dn Both finite
dimension and finite number of intersecting semispaces are replaced by their countably infinite
counterparts (with finite dimension and / or finite intersection as a special case).

Therefore, as is well known, the unit ball (of the usual normRinbecomes a polyhedron
and the same is true for the unit ball in Separability allows to include in this setting any
closed convex set, narrowing the gap between linear and convex programming.

We will keep here the assumption that the linear transformat@r(sr @), defining the
inequality constraint (or the extended inequality constraint, for the case of optimization), be
continuous. This assumption has been shownlin [4] to be a rather mild one.

For a first simpler foray in the infinite dimensional range space territory,lin [4], we also
assumed that rangg(G) (and R(@)) be closed (such ranges will be at times more simply
denoted byF, leaving to the context to specify which of the two subspaces we refer to). This
restriction has some interest in its own, and includes, for example, the case ¢ba§) is a
Fredholm operator. Naturally this special theory bears the maximum possible resemblance with
the finite dimensional case. In particular, we showed that the classification of seven possible
types of polyhedra goes through to infinite dimension.

There are two important set to consider in range space: the first is the slack set, which can
be considered to be the polyhedron as seen from the range space viewpoint and has the form
(v+ F)N P (wherev is the bound vector an# is the positive cone, which, incidentally, has no
interior in infinite dimensions). The second is the feasibility cone, which has the fo#mP
and is the set of all bound vector that make the polyhedron non-void. Thus the motivation for
the cited restriction was to have closed slack sets and to facilitate closedness of the feasibility
cones.

Still the restriction is obviously a blanket hypothesis, which entails leaving out of the ensuing
class of polyhedra, for example, such an important cases as the weakly compact convex bodies,
as will be shown in the present paper.

In this respect however, intuition suggests that the radical dissymmetry between domain space
(where feasible sets are always closed) and range space, where various issues look intractable
whenR(G) (or R(G)) are not closed (and hence the feasibility cones are surely not closed in
turn) appear rather strange. Indeed one may suspect that, by some hidden and deep mechanisms,
this dissymmetry should vanish in some way.

Actually one of the major goals of this paper is to show that this intuition is correct and to
unveil the mechanisms, whereby the apparent inviability of range space techniques when the
relevant operator ranges are not closed, does dissolve. In the crucial case of strict tangency
(namely when/'~ N P = {0}) non closedness turns out to be irrelevant, in the sense that we
may solve optimization problems using the closuré&ﬁﬁ) instead ofR(CA}) itself.

Thus range space techniques in infinite dimension are at no disadvantage with respect to
domain space techniques. Moreover, we show here, not only that finite dimensional range
space algorithms of optimization can be extended to infinite dimensions, but also that they can
be complemented by various finite dimensional approximation techniques.

In the case wheré' meets the "quasi interior" (which is also called here intern - see the sequel
for its definition) of the positive cong, the finite dimensional result{ + P is the whole space
whoever isF) is weakened to a density result. This is not much of a concern in optimization
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because, as we will show, the case wf@(@) is intern is anyway of no practical use, just as
happens in the finite dimensional case.

But this fact is, at first sight, of much concern in the weakly tangent case (namely the case
where F' is neither strictly tangent nor intern t8). In fact, in this case, there is an intern
relaxation and the density property for such relaxation apparently jeopardizes the extension to
infinite dimensions of the fundamental concept of strictly tangent relaxation (seele.g. [1] for the
finite dimensional case).

Despite these adverse circumstances, we will be able to show that the existence of the strictly
tangent relaxation goes through untouched in the infinite dimensional case, although this gen-
erates (as might be expected) a solution for the whole system, that satisfies the remaining block
of constraints either exactly or to an arbitrarily small degree of approximation.

Further comments on this topics are given in the conclusion, along to a guide for a few emen-
dations for the preceding papér [4] and a brief guide to the connections with the present paper.
For the moment we only add that the results of Sedtion 4 (which studies the feasibility cone)
have been given minimizing the use of the relativized product topology in favor of standard
Hilbert spaces techniques. However it is possible to give, for some of the Theorems of Section
[, alternative (and much shorter) proofs, based on the results regarding the product topology
given in [4]. We did not include such alternative proofs for the sake of brevity.

Some of the optimization methods introduced in the papers cited at the beginning, were based
on the computation of extreme rays of certain polyhedral cones, in order to derive both enumer-
ative algorithms (which solve whole classes of problems) as well as on evolutive algorithms.
In infinite dimensions the approach based on internal generation of cones requires, of course,
the computation of infinite generating sets. This problem is left open here, as it seems initially
more convenient, and more promising on the practical side, to try to generalize an optimization
method based on tangency conditions rather than internal generation (introduced, for the finite
dimensional case in[3]).

Such method was called primal external linear programming method, as it reaches the opti-
mum, expressed as the condition of tangency of an affine space to the positive cone, starting
from an initial condition of void intersection (so that, so to speak, the affine lands on the cone).
This method enjoys exact finite convergence in finite dimension. Incidentally, the "dual” pos-
sibility of reaching the optimum from an initial condition in which the affine and the cone are
intersecting (so that, so to speak, the affine emerges on the boundary of the cone) is precisely
the evolutive method introduced in [2], which also enjoys exact finite convergence.

In the sections devoted to Optimization we will show that the primal external method goes
through in infinite dimension, naturally in terms of asymptotic convergence. Moreover, we
introduce various techniques that allow to find approximate solutions, solving suitable finite
dimensional problems.

2. A SPECIAL CASE OF MINIMUM DISTANCE OF CLOSED CONVEX SETS

The minimum distance problem for two closed convex sets is an important ingredient of the
optimization technique illustrated in the sequel. We need now to clarify a few facts that will be
of use later on.

In particular, we will be interested to the special case where the two sets are the positive cone
P of I, and a closed affine + F, whereF is a closed linear subspace ands an arbitrary
vector.

Consider two closed convex disjoint sefsand D in [,. Assume that

d(C,D) =inf{||z=w|:z€C,y e D} >0
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The minimum distance problem consists in verifying the existence of two peiats’ and

y € D such that:
|lx —y|| = inf{||z =w|:z € C,y € D}

and, in the positive case determining at least one such pair or, possibly and better yet, the set of
all the minimum distance pairs.

An immediate sufficient condition for existence of a solution is that D (which is convex)
be closed. In fact, if this is the case, the Projection Theorem insures that there exists a (unique)
minimum norm vector inC' — D, and this in turn implies that pairs of vectors that solve the
minimum distance problem far' and D do exist. Notice tha€' and D are disjoint if and only
if 0 ¢ C'— D. Since{0} is compact, ifC' — D is closed, the Strong Separation Theorem ([6]
Corollary 14.4) impliesi({0}, C — D) > 0, which is equivalent ta/(C, D) > 0.

The following Lemma is an important tool in the development of the Optimization techniques
introduced in the sequel. Assume that, for two closed convex(setsd D, the minimum dis-
tance problem has solution. Denote the projection§'@mnd onD by P and Pp respectively.
Then we can state the following:

Lemma 2.1.LetCand D be closed, convex and disjoint sets witld’, D) > 0. Then two points
x € C'andy € D (with = # y) are a solution pair for the minimum distance problem if and
only if:

Ppr=yandPoy =«

Proof. Necessity is obvious for, it andy make a solution pair, the two conditions hold a
fortiori by the very definition of projection. Sufficiency follows easily from the fact that, by
virtue of the projection Theorem, vectays— = andz — y are, respectively, normal 0 at =
and normal taD aty. n

3. CoONVEX CONES AND LINEAR SUBSPACES

We gather in this Section some mathematical preliminaries on cones and subspaces, instru-
mental for the study of polyhedra and optimization over polyhedra. There is a lot more on this
topic, and a few results are also included for completeness only.

We are mainly interested if3 and its positive cond’, but, at times, if it obvious that no
additional effort is required, we make more general statements. However, we do not strive for
maximum generality.

In the [, environment we will sometimes have to consider three topologies. The native
(strong) topology, denoted hy, the weak topology, denoted B and the (relative) prod-
uct topology, denoted by

We start with a few useful Lemmata:

Lemma 3.1. Suppose that’ and G are closed subspaces of Hilbert spale that F' | G,
and that, for two non-void subsetsand D of H,C C FandD C G. ThenC + D is closed if
and only if bothC' and D are closed. Moreover:

y=Pry+Poyc C+ D<= Ppyc CandPgy € D

Proof. We can assume without restriction of generality that- F- because, if this were not
the case we can take in lieu &f the Hilbert spacef; = F' + G, which is in fact a closed
subspace oH. Suppose that’ and D be closed and consider a sequefieg in C' + D with
{z:;} — z. We can write in a unique way:

Zi = PF,Z@' +PG,Zi

with Prz; € C'andPgz; € D. By continuity of projection and the assumption tiiaand D
be closed{ Prz;} — Prz € C and{Pgz;} — Pgz € D, but sincePrz + Pz = z it follows
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z € C'+ D and we are done. Conversely suppose that, for exampsenot closed so that there
exists a sequencgl;} in D, that converges td ¢ D, but, of coursed € G. Take a vector
c € C. The sequencéc + d;} converges te + d. Butc = Pr(c+ d) andd = Pg(c+ d), and
therefore, by uniqueness of the decomposition, it is not possible to expredsas a sum of a
vector inC plus a vector inD. It follows thatc + d ¢ C' + D. The second statement follows
immediately from uniqueness of decomposition of a vegtiorthe sumPry + Pgy, and we so
are doneg

In the sequel we will often writ&'y € H, Pry = yr andPgy = yg.

Remark 3.1. This Lemma has an obvious extension for a finite family of mutually orthogonal
closed subspace. we do not make a formal statement for the sake of brevity

In the following Lemma proper cone means "not equal to the whole space”. Beware that
Phelps ([7]) calls proper cone what is for us a pointed cone (see the definition below).

Lemma 3.2. A closed cone in a Hilbert spac# is proper if and only if it is contained in a
closed half-space.

Proof. Let C be a closed proper cone. Then there is a singlétdrdisjoint fromC'. Singletons
are convex and compact and therefore the Strong Separation Corollary 14.4 in [6] applies. The
rest is immediaten

The following Lemma on inclusion of translated cones is valid in a very general setting.

Lemma 3.3. Given two closed con&s; and (5 in a real linear topological spacé’ and two
vectorsy; andys:

y1+01Cy2+02<:>y1—y26023nd01C02
y1+01 :y2+02<:>y1 — UYs Elm(Cg) and01 = (Y

Proof. The second statement is an immediate consequence of the first one. As to the first state-
ment, sufficiency is obvious. Next suppose that although

h—y+C=y+C CC

there is a vector in C that does not belong 10,. Thuskz is in Cy but notinC,. By hypothesis
y + kz € Cy, for any positive integek. Therefore{(y/k) + z} is in Cy. But this sequence
converges ta and so, being’; closedz € C5. This contradiction concludes the proqf.

Next we recall the following definition:

Definition 3.1. Let C' be a (convex) cone in a linear spa€e Thelineality spaceof a coneC,
denoted byin(C), is the linear subspace:

lin(C)=Cn(=C)
The coneC' is calledpointedif lin(C) = {0}.

The lineality space of a cone is the maximal linear subspace contained in the cone itself. If
E is alinear topological space then(ifis closed/in(C) is obviously closed too.

Lemma[ 3.8 has the following very intuitive consequence about lines and convex cones. A
line is a one dimensional affine space, that is, a set of the fgrmy = w+az : @ € R} where
w,z € F.

Lemma 3.4. No closed pointed cone in a linear topological spdcean contain a whole line.
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Proof. Let C be the cone ah= {y : y = w + az : a € R} be the line, which is, evidently, a
translated closed cone. Thus:

lCC<—=welC&{y:y=az:a€ R} CC
The second of these conditions contradicts that the €¢bhe pointed. Thus we are done.

We note in passing that the image under a linear isomorphism of a cone is pointed if and only
if the cone is pointed, and that the origin is the only extreme point of a €ommand only if C'
is pointed. IfC is not pointed it has no extreme points. For brevity, we omit the proofs of these
statements.

In finite dimension, if a cone is not pointed, it can be decomposed in the sum of a pointed
cone plus its lineality spacel[8]. This decomposition can be generalized to infinite dimension,
under the assumption that the lineality space be closed. This fact was stated without proof in
[4]. 1t is convenient to restate this result here and include a proof.

Theorem 3.5. Consider a convex con€ in a Hilbert spaceH and assume that its lineality
space be closed. Then
(lin(C)* N C) = Piincyr C
where the conéin(C)+ N C is pointed. Consequently, @ is closed the coné;, )L C is
closed too. Moreover, the coidécan be expressed as:
C = 1in(C) + (lin(C)" N C) = 1in(C) + Py C
Proof. First we prove that
C =1in(C) + (lin(C)* N C)
That the rhs is contained in the |hs is obvious. Consider any vecto€' and for brevity letl”
= lin(C'). Decompose: € C":
(3.1) T =2Tp+ TpL
wherezr € T'andap: € I'. Nextapr = 2 — 2z as sum of two vectors i@ is in C and hence
in Tt N C. Thus we have proved that tlhks is contained in the'hs. Next we show that the
conelin(C)+ N C'is pointed. Suppose that both a vectof 0 and its opposite-z belong to
lin(C)* N C and decompose as above[(3]1). Because(C)* N C C lin(C)*, zr = 0, SO
thatx = xp1 # 0. Do the same forz, to conclude that. and—zx. are inC (but obviously
not inlin(C)). Because this is a contradictidimp(C)+ N C is pointed. Finally we prove that:
lZTL(C)L NnC = le(C)J_C
In fact,
P.(TtnC)=T*NnC c P.(0)
On the other hand if € P, (C), for somew € C, z = Priw = w — Prw so thatz € C.
Hencez e T+ N C. i
Next we dwell a little on cone polarity.

Definition 3.2. Given a cone in a real Hilbert spaég thepolar coneof a coneC’, denoted by
CP? is given by:

CP={n:(ny) < 0,vy € C}

ThatC? is a convex cone is immediate by direct computation. As usual, thanks to the continuity
of the inner product, it is also immediate to show that the adhes always closed.
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One can readily prove that the following formulas hold:

(-Cy = ~C7
(cry =c
cP=C"

The cong(C?)? will be briefly denoted by’??

Remark 3.2. The polar cone of a convex cone is the normal cone at the origin to the given
convex cone. Also, the polar cone of a closed convex cone is the set of all points in the space,
whose projection onto the cone, coincides with the origin.

Note that if the cone is a linear subspdcéhen:
FP=F*

Notice also that polarity is anti-monotone in a way similar to orthogonal complementation.
In fact,

if C; C CythenC? D CY

The analogy with orthogonal complementation goes on a long way. A first noteworthy ex-
ample arises looking at the polar of a sum of cones:

Proposition 3.6. Let C; and (5 are two convex cones then:
(C1+Cy)P =CTNCY

Proof. SinceC, andC, are convex cones(; + Cy D C; andCy + Cy D Oy, so that (C +
Cy)P C C7 and(Cy + Cy)? € C% and hencdC; + Cy)P € CY N CY. On the other hand if
z € CYNCHthenVy € C1, w € Cy, (2,y) < 0and(z,w) < 0 so that summing these two,
(z,y +w) < 0 which shows thatC} + C»)? D C7 N C%. This completes the prooi.

Theorem 3.7.LetT be an operatotH — H andC a cone inH. Then
(TCY =T1C?

Proof. In fact
(TCY ={n:(n,Tz) <0:VxeC}

={n:(T*n,z) <0:Vz € C} =T*1CP

It is now in order to deal with the crucial notion sirict tangencyand with the positive cone
P of [,.

Definition 3.3. A non-dense (linear) subspagés said to be strictly tangent to a pointed closed
coneC'if F~ NC = {0}.

Remark 3.3. It is important to notice that this property is hereditary under inclusion, in the
sense that if” is strictly tangent to a pointed closed cafighen any linear subspace bfis
also strictly tangent t@ .

Definition 3.4. In H = [, we define the positive cone by:
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The coneP is closed, pointed and with void interior. Moreover:
PP =—-P
and:
Ppp — P

Let 91 be the set of positive integers
Fory € I, we introduce the notation:

ip(y) = {i:y; > 0}
iz(y) = {i:y: =0}

in(y) = {i:y <0}

It will useful in the sequel to bear in mind that the projection a vecton P is obtained from
w zeroing all its negative components. The projection of a vector énis instead obtained
zeroing all its positive components. When convenient, we will use the notation:

Ppw =wt andP_pw = w™
Note that
w=w"+w andw® Lw~

It is possible to show that this decomposition in a vectoPiplus a vector inP? = —P is
unique, under the requirement that the decomposition be orthogonal.

Actually a similar, but much more general, result can be stated, which provides another im-
portant example of the analogy with orthogonal complementation. However, for the sake of
brevity, and since we won't need this generality in the sequel, we omit a proof of the following:

Theorem 3.8.Let H areal Hilbert space and’ a proper convex cone iff. Then for any vector
x € H there exists a unique decomposition of the farm z¢ + x¢» under the conditions that
2o € Coxer € CPandxg Laey.

From the above computation about the polar of a sum of cones, the important formula below,
valid for an arbitrary subspade, follows:

(F+PP=F-n-P

Although P has a void interior, one can surrogate interior and boundary by means of the
concepts of quasi-interior (more briefly intern) and quasi boundary (more briefly extern).

Definition 3.5. The set of all strictly positive vectorg, : y; > 0,Vi} is denoted byP" and
called the intern of. The setP\ P" is denoted by"" and called the extern d?.

Definition 3.6. We say that a linear subspagés intern toP if
FNPY#¢

We say that a closed subspacés weakly tangent or extern B if it is neither strictly tangent
nor intern.
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4, THE CONE '+ P

In this Section we study the coné + P in [,, establishing various important results, in
particular some main Theorems stating that;'ifs closed and strictly tangent 1, thenF' is
contained in an closed hyperplane strictly tangen®?{dhe lineality space of’ + P is F', and
F + Pis closed.

We start with the following:

Theorem 4.1. A closed hyperplané is strictly tangent toP if and only if L+ is intern to P
(or, equivalently, there is a normalto L withn € PY). Moreover, ifL is strictly tangent taP,
L + P is a proper cone, more precisely, it is a closed semispace, and:

lin(L+ P) =L

Proof. First statement: one direction is straightforward becausé-ifs intern to P then L
must clearly be strictly tangent in order not to violate orthogonality. Conversely sugpisse
strictly tangent toP and letL*+ = £({n}) (with, of coursen L L). Clearlyn cannot have zero
components, for otherwise the fact thais strictly tangent would be easily falsified by a vector
with a single positive component in correspondence of the index for which the component of
is zero. By a similar simple argumentcannot have pair of non-zero components of opposite
sign. Thus eithen € PY or —n € PV and so we are done with the first statement. Suppose,
without restriction of generality, that € PV. Then:

L+PcCN(n,.)+PcC

C{y:(n,y) 20t +P=A{y:(n,y) =0}
Hence we have proved that+ P is a proper cone. Clearlyn(L + P) D L. If this inclusion
were proper, we would haven(L + P) = H, which is a contradiction. Thusn(L + P) = L.
Finally note that, if we writey = vy, + vy, the condition(n,y) > 0 yieldsy;. = an with
a > 0. Thus:
{y:(n,y) >0} CL+P
ThereforeL + P = {y : (n,y) > 0} as statedn

Next we cover the case in which a finite dimensional space is strictly tangéhtith the
following:

Theorem 4.2.1f a finite dimensional) subspadeis strictly tangent taP, then F' is contained
in a closed hyperplané strictly tangent toP (or, equivalently there exists a vecter F' with
n € PV). Consequentlyl” + P is a proper cone. Moreover:

lin(F + P) = F

Proof. Consider the sequence of coordinate subspBges L({e; : i = 1,..k})fork =1,2, ...

For sufficiently largek, F C I'y, in order not to contradict that is finite dimensional. Fix such
ak and inl'y, which for simplicity we denote by, apply the finite dimensional theory (séé [1])
to conclude that if” our statement hold good, so that there is a vegtor the interior of the
positive cone of* with u L F'. Next take any € PV and consider the vectar= p + Pr.e. It

is obvious by construction that such vector has the properties specified in the statement and so
we are done for this part of the Theorem. Next Let {n}*+. Thenfory € F + P C L + P,
writey = w + z with w € F andz € P and then, with obvious meaning of symbols, we can
also writey = w + z;, + an with o > 0. If we also want—y € F' + P thena < 0. Hence

a = 0. Buttheny — w = z;, € Pimpliesz;, = 0 and soy = w. Thuslin(F + P) = F. This
completes the proof

The following Theorem extends this result to the infinite dimensional case.
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Theorem 4.3.If a closed (infinite dimensional) subspaEds strictly tangent taP, then F'is
contained in a closed hyperplarestrictly tangent toP (or, equivalently, there exists a vector
nl F withn € PY). Consequentlyf” + P is a proper cone. Moreover:

lin(F+ P)=F

Proof. The proof is based on two separation exercises, arguing on which we will deduce our
thesis. The weakly compact convex det= C~({e'}} C P clearly contains the origin. Thus

we consider a vectof € P with, to fix ideas||¢| < 1, and the weakly compact convex
setV = C~({¢'+(}) = ¢+ YT C P. Clearly ¥ is disjoint from{0}. Next we can apply

to ¥ and F’ the strong separation principle ([6]) and consequently affirm that there exists a
weakly continuous (and hence strongly continuous) functiomal) (with n # 0) that strongly
separatesV andF'. Clearly it must ben, F') = 0 andinf{(n,y) : y € ¥} = (n,{) = m > 0.
Moreover,Vz,

(n,e"+)=n;+n,Q)>m=mn; >0

Thusn € P, n # 0 (and so(n, P) = [0,4+0)), n.LF, and sa(n, .) weakly separates’ and P.

We don't know aboutz(n). It might well beip(n) = 91, in which case we were done, but
also it might beip(n) C 9t properly, and so, to begin with, we go on with another separation
exercise. For each positive integetet K = {1,..,k}. Consider the sefl = C~({¢’ : i €
K,et+ (¢ :i¢ K}). Define® = C({e' : i € K})andA = C ({e+( : i ¢ K}) so
thatll = C- (O UA) = (U[z : y] : « € O,y € A)~. Then use the same separation principle
arguing in a similar manner as before, but taking care of using, for vectdrstire minimum

of the functional o\ itself. In this way we find a functiondl, .), with v € P, v # 0 (and so

(n, P) = [0,400)), vLF strongly separatingl and F', Moreover this time we can claim that
ip(v) D K. At this point consider the sét = {w, |w| = 1,w € P,wLF}. We have just
shown that? is non-void, and in fact that it is an infinite set. In what follows bear in mind that
making finite sums of elements 6f (and renormalizing the sum), we obtain another element
of €2, with an index set of positive components containing those of each addend vector. Next
order the elements &t with the order- defined by:

w' = w' if ip(w') D ip(w?) properly

Clearly there are towers with respect to this ordeflinBy the maximal principle there is a
maximum towerZ in Q. Note that7 is countable and so we can writle = {n!, n?, ..}.
Finally take a vectof € PV and define:

oo
0=
=1

It is readily verified that, by construction, we have thereby defined a non-zero veéfpisuch
thatn € PY andn_LF (and of course we might renormalizevithout changing this properties).
NextletL = {n}+. Thenfory € F+ P C L+ P, writey = w+ zwithw € F andz € P
and then, with obvious meaning of symbols, we can also writew + z;, + an with o > 0. If
we also want-y € '+ P thena < 0. Hencea = 0. Buttheny —w = 2z, € Pimpliesz;, =0
and soy = w. Thuslin(F + P) = F. This concludes the prook

It is now in order to cover the intern subspace case. Notice that we do not assume, in the first
part of next Theorem, that the subspace to be closed.

Theorem 4.4. Suppose that a subspageis intern toP. Then:
(F+P)"=H
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A closed subspacg is intern to P if and only if F* is strictly tangent taP. Obviously the role
of ' and F+ can be interchanged. Consequently a closed subspas@&xtern toP if and only
if F* is also extern taP.

Proof. Consider a vector € F'N PY. For any integei > 0, we can add te-z € F' + P the
vectorw € P, which has all the component equal to minus the corresponding component of
except theth, which is equal to zero. The resulting vectet + w is such that—z + w); < 0
and all the other components are zero. It follows from this that the ¢bmeP contains both
the basd ¢’} and the basé—e'}. HenceF + P contains the dense linear subspacée’}) and
thereforeF' + P itself is dense. Now, if iF" + P is dense, then:

(F+ Py =Fn-P={0}
and this means thdt+ is strictly tangent taP. If F- is strictly tangent taP, by the preceding
Theorem, it is contained in a closed hyperpldnalso strictly tangent t@, and with the unit
normaln € PY. Thus:
Frc L= F*=F>L({n})
and, becausg({n}) is intern toP, we are doneg

At this point we know that, if the closed subspagtas strictly tangent taP, then F' is the
lineality space oft” + P and thatF* is intern toP. The next natural step is to apply o+ P
the decomposition Theorgm B.5. In view of such a Theorem, we get:

F+P=F+Pp(F+P)=F+Pp. P

This formula motivates us to take a close look at the cBpeP, under the assumption that

F* is intern to P. In the next Theorem we will use a basic capping technique for pointed
cones, compared to the theory in e.g. [7]. In fact our capping method uses continuous linear
functionals, and the right topology for obtaining compactness of the capped cone s the
topology. Incidentally, this is also the right topology to introduce the the infinite dimensional
counterpart of polytope (seel [4]).

Regarding the following proof, we will work with sequential compactness. This is legal
because the underlying topological spakew(ith the relative product topology) is metrizable
(see Theorem 6.10 inl[6]), and a metrizable space is sequentially compact if and only if it is
compact. We exploit this fact to simplify notations and exposition, although a proof using nets
would be possible.

Theorem 4.5. If a closed subspacg is intern P, then the (pointed) conB- P is closed.

Proof. Consider a unit vectof € F N PY. We use the functiondlf, .) to cap the coné’. Let
for o > 0:

Yo ={y: (fiy) <a}
Then we represent the cone as the union of what we call caps of integetlevei

P=U{E,NnP:r=12,.}
To simplify notations we use a short symbol for the cap of level
Q.=%.NP

Thus

P =uU{Q,}andPr P = U{PrQ,}
(we omitr = 1,2, ... for brevity). Now we know from[[4] that each caQ, is (convex and}t
- compact. Becausg € f N P it follows that P f = f. We now claim that:

ye P, oyePrPand(f,y) <r
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which will be used in the equivalent form:
yEPFP\PFQTﬁyEPFPand(f,y) >Tr
In fact suppose that € P, so thaty = Prw with w € Q... Then

(f.y) = (f. Prw) = (Pp f,w) = (f,w) <r
Conversely suppose that fgore PP itis true that(f,y) < r. Theny = Prw with w € P and

(f7y) = (f?PFw> - (prﬂl)) = (f?w) S r
so thaty € PrQ,. Now consider a (strongly) convergent sequefigg — y in P P. We
claim that for sufficiently large, {y'} is eventually inP €, (For simplicity we will denote
PrQ, by ¥,). For if this were not true, so that-, {y’} would be repeatedly i#, P\ ¥,, then,
in view of what we have just proved, the sequeficg v')} could not converge. But this is a
contradiction, becausg, .) is continuous. It follows that we can assume (and neither we do
change symbols) that the sequerigé} is in ¥,., and writingVi, y* = Py z*, we have tha{:'}
is in Q,. Because), is (sequentially)t’ - compact, there is a subsequencq df}, which we
will denote with the same symbéL’}, which converges, in th& -topology to a (unique) limit
z € ,. Using the properties of th& -topology as well as basic Hilbert space factsXjf is
the coordinate subspacelgfgenerated bye?, .., e}, then we can write:

Vk, im{Px, 2"} —, Px, 2
Vi, h}gn{Pszi} — 2
liin{Psz} — 2

where— means: converges strongly. Therefore,using the last, foeany), there exisk(e)
such that: .
Vk >k, || Px.z — 2| < 3
and,using the first, for any, ¢ > 0,there exists ai(k) such that:
g
2

Notice, incidentally, thai(%k) can be taken to be an increasing function and thus it is invertible.
From the last two inequalities, we have that> k, Vi > i(k):

A > 1(k>' HPXkZi - PXkZH <

1Px2" = 2l < | Px, 2" = Px,2ll + | Px,z — 2| < e

Now we can extract from the double sequence a diagonalized sequence.c Faké/37,

k(1/3j),i(k(1/3;)) and defing{w’} = {Px, , ,, 2'*(/%)}, which is evidently in2, and con-
verges strongly ta € Q... We slight modify the subsequence taking a funcfiof) > k(1/3y)

in such a way thak(.) is strictly increasing withy. We substitute the functioiik(.)) accord-
ingly and end up with a subsequence (denoted by the same syfnbdl)= {ka(j>zi("?)}.

Using the second limit we can say:

Vi, j, 3h(i, j) s.t.Yh > h(i, j), | Px, 2" — 2'|| < 1/3j

Next we extract a subsequence frémi} and a corresponding subsequence fiam} accord-
ing to the following procedure. For = 1 takez" = 2! and takew! = w"" in such a way
thath = min{j s.t. k(j) > h(r,1)}. The subsequent steps are similar. Giw&n= 27,
2"l is chosen in{z7™1, 27*2 .} in such a way as to minimizk(i, ), andw™*! is chosen in
{whF h(+2 1 taking the minimum index for which k(5) > h(r, 1/3r). By construction
we can write:

Vo 2 1 (2 —w|| < w” — Py 2| + [ Px,2” — Px, 2|l + | Px, 2 — 2] < 1/r
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Therefore both{w"} and{z"} converges strongly to the same limit But { P-z"} is a subse-
quence of{y’} and hence converge stronglygpas well as, by continuity of,, to Py z. By
uniqueness of limity = Prz. Thusy € ¥, = PQ, C P P. Itfollows that PP is closed
and the proof is finisheds

We are now in a position to quickly prove the following main

Theorem 4.6. If a linear subspacéd’ of [, is closed and strictly tangent t8, thenF’ + P is
closed. Consequently, # is not closed:
(F+P)"=F +P

Proof. As to the first statement suppoBds closed and strictly tangent #8. Then, as we have
proved:

F+P=F+PpP
where the cone pointeB,. P C F* is closed. Thus by an application of Lem@] 3.1 the first
statement is proved. Next, by what we have just proved:

(F+P) CF +P

On the other hand
F~+PC(F+P)
comes from an elementary topological computation, and hence the proof is fingshed.

The generalization to non-closed subspaces of this result goes through only half the way.
Nevertheless, in Sectiqrj 8, we will manage to achieve a full generalization, under strict tan-
gency, of Optimization Theory for non closed range operators.

But for now here is our result for strictly tangent non closed subspaces.

Theorem 4.7.Suppose the subspagés non-closed and strictly tangent f&. Then inF' + P,
and a fortiori inlin(F + P), there are no vectors d8 = '~ \ F'. Moreover:

lin(F + P) = F

Proof. We start observing that if for two vectose F'~\F andd € F thenn = (y —0) ¢ F.
In fact if it weren € F'itwould also bey =+ € F, which is a contradiction. Let € F'+ P
so that: = y + w with y € F'andw € P. Suppose that € F~\F. Thenw =z —y € F~\F.
SinceF'- NP = {0}, w = 0. Butthenz =y € F, which is a contradiction. Hence i+ P,
and a fortiori inlin(F' + P), there are no vectors @f~\ F'. At this point we obviously know:

Fclin(F+P) Clin(F-+P)=F"

where we have applied Theor¢ml4.3. Combining this with the first part of the present Theorem,
which insures:

lin(F+P)N(F\F)=¢
the reverse inclusion follows:
lin(F+P)CF
and hence:
lin(F+P)=F
as we wanted to show.
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5. POLYHEDRA

We first provide an overview of the setting for infinite dimensional polyhedta imThen we
will connect weakly compact convex bodies, which are always polyhedra, to non-closed range
operators and strict tangency.

We define polyhedra as follows:

Definition 5.1. A polyhedrong (in [,) is a countable intersection of closed semispaces:
G=n{r:(¢"2)<v,i=12..}
whereg’ € I, andg’ # 0, Vi. If v; = 0, Vi theng is a cone and is called polyhedral cone.

Without restriction of generality, we can divide each inequality||p}|, and hence we can
assume, whenever convenient, thet| = 1.
We may also express a polyhedron by:

G =0G(G,v)={x: Gz <wv}

whereG is an infinite matrix whose rows are the vectgtsthe order< denotes the product
vector ordering inkR”, andv € R™ (called the bound vector) has componentsNote that( is
continuougl,, S) — (R™, X). However the matrix; does not represent in general an operator
(lg,S) — (lQ,S)

Once polyhedra are defined in this way, well known properties of separable Hilbert spaces
allow us to state that any closed convex set is a polyhedron (seele.g. [4]):

Theorem 5.1.Consider a non-void strongly closed convex subset H in a separable Hilbert
spaceH and letD be a countable dense subsetfof Then,v( € B(C) (the boundary of),

there exists a sequence of support poitg of C, such that{z;} — ( strongly, where{z;}

is in the countable sef(D\C'). Thus there exists a countable set of support points dense in
B(C). Moreover, the countable intersection of supporting semispaces defined by the points of
the countable seP(D\C') and the corresponding normals (i.e. yfe D\C the normal is

y — Pcy) coincides withC'. Hence any non-void closed convex &et a polyhedron and any
non-void closed cone is a polyhedral cone.

Regarding translations of polyhedra we can state:

Lemma 5.2. The translate of a polyhedron is a polyhedron. In particular, if we translate a
polyhedrong by the opposite one of its points (so thatd € G —t) then, in the representation
of G — t, the bound vector is non-negative.

Proof. Just note that
—t+ G(G,v) = G(G,v — Gt)
|

We are especially interested to the case witelis an(l,,S) — (I3, S)) operator and the
bound vector is irl,. This restriction is milder than one may expect.
In fact we can state (after![4]):

Theorem 5.3. Consider a polyhedrog (G, v) and assume that the bound vectoe [, then
the same polyhedron is representable as

G={z:Tz <~}

wherey € [, andI is an operator (i.e. continuous linear transformatig®hy), S) — (I, S). All
polyhedral cones (and all closed subspaces), all bounded polyhedra and all convex and weakly
compact set can be (and will be) represented in this way. In the case of cones we can always
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assume that = 0. Moreover, by the preceding Lemma, this class of polyhedra is closed under
translation.

Remark 5.1. As to convex and weakly compact sets, there might well be in their definition
some redundant constraints that prevent the bound to stay. iHowever, because the set is
contained in a closed sphere, it is obvious that they may be replaced by new constraints in such
way that the bound stay ih,. We underline that the method of giving and taking redundant
constraints could be used to achieve more favorable features in various cases. An example in
point is the Theorem for weakly compact convex bodies below.

Throughout the rest of the paper the assumption¢hat an operator and < [, will be in
force.

Note that the positive cong of [, is a polyhedral cone with! = —1.

The feasibility problem for a polyhedro@(G,v) is that of determining whether or not
G(G,v) # ¢.

We now state some general necessary and sufficient range space conditions for the polyhe-
dronG(G, v) to be non-void, which are formally identical to their finite dimensional counterpart
(e.g. [1]), and are readily proved much in the same way. They are given by:

GGv)#p=veR(G)+P e
(W+R(G)NP#d= (v-P)NR(G) # ¢
The set
S=w+R(G)NP
is called theslack sef(essentially the slack set can be considered as the polyhedron, as viewed

from the Range Space side). The slack set is of course closedif is closed.
Another important set, which determines a polyhedron by a suitable inverse image is

Y=w—-P)NR(G)=v—-S5
In fact we can write:

G(G,v) =G(X)
Using a suitable form of the Induced Map Theorem (aslin [4]) we can write
G = G|y vyt

where both map are continuous), - is one to one fromV(G)* ontoR(G) and, also, itis
a topological isomorphism if and only R(G) is closed. From this it follows:

g(G,U) = (G|N(G)L>712 +N(G>

Note that ifV'(G) = {0} andR(G) is closed, this formula implies thg = ¢ (because’ has
void interior).
The next Theorem characterizes polyhedra that are weakly compact convex bodies.

Theorem 5.4. Assume thag is bounded and has non-void interior. Th@radmits a represen-
tation whereR (() is strictly tangent taP. Moreover,R(G) cannot be closed and must be
one to one.

Proof. Without restriction of generality we can assume that G° (for otherwise we can
translateg by —t wheret € G). Let D be a countable dense subsefofApplying the usual
argument based on projecting the 80 G on G and exploiting the fact that the projection is
continuous and contractive, we can affirm that in the boun#&g) of G there is a countable
dense subset of support points. Notice that in view of radialitytae origin itself cannot be a
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support point. Le{ ¢’} be the set of such support points ajnd } the set of their (normalized)
normals. If not already present (but from Theofen 5.1, this is exactly how the inequality system
may be built), add to the inequalities describing the polyhedron, each inequality:

(n?,z) < (n?, %)
as well as the constraint:
(—n?,2) < —min{(n?,2) : v € G}

where we have of course exploited the fact fias weakly compact. The polyhedron stays the
same in the new representation. In what follows recall that in the new representation the bound
vector is non-negative. Becauée is radial at0, it suffices to prove that for each © # 0,

x € G there are two functionals, in the system of inequalities, that assume opposite sign on
Notice that(n’, ¢?) > 0, because we know thgt # 0 and if it were(n’, ¢?) = 0, given that

the above constraint can be read as:

(n?,z) < (n,?) = max{(n/,z) : x € G}

we would qualify the origin as a support point, which is a contradiction. It follows that the func-
tional (—n/, .) assumes a negative value ¢t and so we are done for any vector proportional
to some ¢’. Next consider any other # 0, € G, and notice that, clearly, there must be an
a > 1 such thatr € B(G). It suffices to argue on the vectar: which, for simplicity, we call
againz. At this point note that there is a closed sph&rearound the origin of radius > 0

such thatS, ¢ G. By the way we expressed the constraints defined by the functiomalg

and this inclusion relations we can wriig:

(w,2) < (W), ¢7) = max{(nz) : 0 € G} > r

Now we know that there exists a sequercé} in B(G) converging toz strongly. Take an
integery >> 1 andk such that:

lz = ¢* </
and write:
(nkv .CC) = (nk7x - Ck> + (nka Ck)
and notice thatn*, ¢*) > r and (by CBS inequality):

(n*,x =) <r/u
which evidently impliegn*, z) > 0. It follows, as before that the functiongt-n*, .) assumes
a negative value at, and so we are also done with any other poinB¢§). It remains one last
observation to complete the proof of the first statement. We have now, in our inequality systems,
new rows, so that the ensuing extended matrix, that we still€allmight not represent an
operator anymore. However the new bound vector, which we stilb¢#dl, by construction, in
l~. Therefore, if we finally transform our polyhedron according to the proof of Theprgm 5.3, we
obtain a new matrix, still called, (along with a new bound vector still callede [5), which
now represents an operator, while clearly the property of strict tangency remains invariant.
Finally we turn to the last statement and observe that in the expression:

g(G,U) = (G|N(G)L>712 +N(G>

it must be N (G) = {0} in order to not contradict boundedness. Theref@rmust be one to
one (in other words a linear isomorphism). Next®(G) were closed(=| )+ would be a
topological isomorphism. But then, sinEes a subset of” and therefore cannot have interior,
it would follow thatG (G, v) has no interior. But this is a contradiction and, consequeRtly;)
cannot be closed. This concludes the pragof.
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Remark 5.2. This Theorem could be generalized using the spéicg/ (G, v)) in place ofH.
But we do not pursue this here.

6. OPTIMIZATION , THE STRICTLY TANGENT AND THE INTERNAL CASE

The linear optimization problem (LP) consists in determining whether a (non-zero) continu-
ous linear functionaf has a maximum on a (non void) polyhedi@((G, v) and, in the positive
case, in determining both the maximum and the subsét(of, at least, one point @f) where
the maximum is attained. We indicate this problem writing:

max(f,z):x € G(G,v) ={z:Gr <v}

The problem ideasibleif G(G,v) # ¢. Assuming feasibility, we look for, if it exists at all,
the maximum of the set of reagG), which is convex and hence is a non-void interval. If and
only if the interval has finite right extremum and is right closed, the problem admits (exact)
solutions.

In [4] three cases were considered, the last of which is divided in two subcases. Here we
prefer to classify directly four possible cases.

First, the polyhedron is voidupfeasible problein Of course in this case the problem van-
ishes.

Second, the polyhedron is non-void, Bub(f(G)) = oo (feasible unbounded problgm

Third, the polyhedron is non-void, ardp(f(G)) < oo, but f(G) is right open. In this case
we can compute the supremumof the functional on the polyhedrap, but this supremum is
not attained in any point € G (feasible bounded indefinite problgmHowever, one should
consider in this case approximate solutions, that is points in the domain space, on which the
functional takes on the value — ¢, for some arbitrary > 0.

Fourth, the polyhedron is non-voidup(f(G)) < oo and f(G) is right closed, so that the
supremum of the functional is attained on some poioitG (feasible bounded definite problgm
In this case we defineia = max{f(z) : z € G(G,v)}.

An important special case in which the problem is feasible bounded and definite, whatever
might be, is wherg is bounded and hence a weakly compact set. In this case, Sirsceeakly
continuous,f(G) must be compact too and hence it must be a closed bounded interval.

Next, we define:
é=(d )= ()

where clearly—f is disposed as a row artds a real parameter. The matrﬁ(represents again
an operator{ — H, whereH is an extended Hilbert space of whi¢his a closed subspace of
codimensionl. Note that, in the case of infinite dimensions, spaH%ndﬁ are isomorphic.
Also we leave to the context to distinguish between the positive cBnasd P, using for both
the same symbabP.

It seems reasonable to exclude tlms(@) be dense in{. Throughout the rest of the paper
this assumption will be in force. It will appear justified on formal ground in the sequel.

In this setting problem LP is recasted in the form:

max{h : é(@,i}\(h)) # ¢}

(notationwise, we should write more correcfly, (1)), howeverG (G, 3(h)) is more sug-
gestive, especially if, for brevity, we drop the arguments).

To determine if a maximum exists, we have to look forafthat will be the maximum value
of the functional orG (G, v)) such that, ifh < h, thené(@, v(h)) is non-void, whereas, for all
h > h, G(G,5(h)) is void, We will use two of the previously recalled feasibility conditions, to
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state two equivalent optimality conditions. The first is formulated saying that it must exist an
(which, in the positive case will be the maximum of the problem) such that

©(h) + R(G)) NP +#¢for h<h
and R
@(h) + R(G))NP =¢for h>h

In this way the optimality condition has the form of a tangency condition.
In the second formulationk must be such that:

3(h) € R(G)) + Pfor h<h
and R B
v(h) ¢ R(G))+ Pfor h>h

In presence of strict tangency, feasibility may or may not occur. For the finite dimensional

case this is stated inl[1]. Lets make an infinite dimensional example. Suppogé(tﬁ;aﬁs
closed. Then we know from[4] th&(G) is closed too. Next suppogé(ﬂis strictly tangent

to P. ThenR(G) is strictly tangent too. Now we know from Theorems|4.3 4.6 that the
feasibility coneR(G) + P is a proper closed cone. Thus the bound vectoray or may not be
in such a cone and thus the problem may or may not be feasible.

In the next Theorem we assess the situation for strict tangency (for the moment assuming
R(G) is closed) and for the intern case, both in the case of cIOFS(e@) and in that of non-

closedR(G).

Theorem 6.1. If R(@) Is closed and strictly tangent tB then feasibility of the optimization

problem implies that the same problem is also bounded and definﬁe{ab (closed or not) is
intern to P and the optimization problem is feasible, then it is also unbounded.

Proof. We know from the previous analysis th@(@) + P is a proper closed cone. And also
hat :
e R(G)+PCL+P
where L is a closed hyperplane strictly tangentfoand finally that thatl. + P is a closed
semispace. Let be the external normal to the closed semispage P, so that:
L+P={y:(ny) <0}

We also know that € —PY. Next we claim that the line

l={v(h):heR}

cannot be contained ih. In fact, if it were so, take a difference of two vectors in this line to
obtain a vector of the form:
(M
== (o)

with n > 0. Because € L, it follows that L. cannot be strictly tangent. This is a contradiction
and thereforé is not contained irl.. On the other hand if we take an arbitrary vegjaf [ and
denote the first coordinate axi§{c'}) by X; we can write:

l:y+X1

But then(n, 1) = R and this implies that a whole halfline is in+ P (corresponding té > h
for a certain reah) and all the more such a halfline is outside the closed (&) + P.

Thus, because the problem is feasibile, (R(G) + P) is a closed half line. This means that
the LP problem is bounded and definite. As to the intern case, we know from Thieotem 4.4 that,
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whether or noR(@) be closedR(G) + P is dense. Since we assume feasibility, there is at least
apointw € [N (R(G) + P). We have seen in the proof of Theor4.4 tNatC R(G) + P.

~

But then, sincé = w + X; andR(G) + P is a cone, it follows:

~

[CR(G)+ P
and this means that the LP problem is unbounded.

The linel = {v(h) : h € R}, mentioned in the proof, will be called feasibility line, for
obvious reasons connected with the previously recalled feasibility conditions.

7. OPTIMIZATION , THE WEAKLY TANGENT CASE

~

We now study the extern case. We assume that R(G) be closed.

We will show that the system can be partitioned in two blocks in such a way that the first
"subsystem" is internal, whereas the second is strictly tangent. If the functional falls in the first
block, then the whole system, if feasible, is also unbounded. If the functional falls in the second
subsystem then if the whole system is feasible, the strictly tangent relaxation is obviously also
feasible and therefore, as we know, it is bounded definite.

Recall from [4] that there exists a maximal fagdé of P (corresponding to an index set
denoted byY') whose relative intern (the term is self-explanatory) is mefbyReasoning in
the same way as the intern case, we may affirm that P O L£(M). It might well happen
that ¥ + P D L(M)~, in which case the argument in [4] allow us to define a strictly tangent
relaxation.

But, whenF + P D L(M)~ is false, the argument inl[4] cannot be applied. However, we
prove here that, surprisingly enough, the definition of a strictly tangent relaxation goes through
formally identical to that of the finite dimensional case, even in this general case.

Naturally, the technique of proof is quite different. Itis based on the idea of altering the intern
relaxation and leaving unchanged the rest of the system. This will allows us to exploit a finite
dimensional argument to reach the desired conclusion.

Once we show that we are able to define a strictly tangent relaxation we use the same ar-
gument as in Theorem 8.1.1 in [1] to infer from an optimal the solution of the relaxation, an
optimal solution of the whole problem (a process that was called "backtracking" in such ref-
erence). However, we face the hurdle that the intern block has a feasibility cone that is only
dense. For this reason we can derive from the solution of the strictly tangent relaxation a solu-
tion for the whole system, which, at least in general, satisfies the constraint given by the internal
subsystem to an arbitrary degree of approximation.

~

Theorem 7.1. Assume thaR (G) is closed and extern t& and that the problem is feasible.
Deleting the rows offin Y (and doing the same on the componentg)ofve obtain a block

G, out of G. This corresponds to rewriting the extended inequality system as (a reshuffling of
the order of inequalities might be required):

N Gy (%1
orse=(8)+= (1)

where, according to the cases, the first row of either blbak block 2 corresponds to the
functional. Recall that, as proved 4] R(G;) andR(G>) are closed. The second block makes

up a strictly tangent (feasible) system, (called the strictly tangent relaxation) no matter what
block the row corresponding to functional happen to belong. If the inequality corresponding
to the functional is in the first block then the LP problem is unbounded whatever may be the
constant components (from the second component on) of the bound vectopbldEkthe
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inequality corresponding to the functional is in the second block, then the second block defines
a strictly tangent, and hence bounded and definite, LP problem with maximumin this

latter case either of the following two cases are possible. First case: the whole LP problem is
bounded definite, its maximum is equal to that of the strictly tangent relaxétion< v, and

is independent aof;. Second case: for any> 0 it is possible to find an vectoy such that it is

an optimum solution for the strictly tangent relaxation dfte x — v || < e.

Proof. We first of all prove that the systetd,x < v, is strictly tangent. Indeed note that this
property (or the lack thereof) is intrinsic to the second block, the first one being used only as
an mean to reach the desired conclusion. At this point, without changing symbols, we relax
the first system leaving only a finite number of inequalities. The new system is intern as well,
the difference being that now the maximal face whose relative intern is mﬁt(ﬁy is finite
dimensional. At this point the proof that syst@ns strictly tangent is identical to that that was
given in the finite dimensional case (see [1]), wh&(@/) is obviously closed. Next suppose
that the functional happen to be in the first block. Sifg?) + P > £(M), the feasibility
line, which has the form:

—h

l = 51
V2

~

is contained iNR(G) + P whatever isv; and so the problem is unbounded whatever, is
Finally, assuming that the functional is in the second block (placed in the first position of the
second block, in this case), the feasibility line has as parallel linear subspace the first axis of
the second block, so that the first block of inequalities do not influence feasibility dependence
on h, whatever be the block vector may be. And solving the strictly tangent relaxation, that
we know know to be feasible and hence also bounded and definite, yields the maximum of
the relaxed LP problem. Let be the optimal solution of the strictly tangent relaxatiom

its maximum, and consider then a vectoisuch thatGw belongs to the relative intern aff.

Then, by construction, it is clear that, according to the cases, either there exists @rsuch

thatz + aw is the optimal solution of the whole system, or for any 0 there exits andx(¢)

such thatr + a(¢)w is an optimum solution of the strictly tangent relaxation with- ma, and

|G1(z + a(e)w) —v]| <e.n

For the sake of brevity we do not pursue any generalization to the case of non closed ranges
of the theory of the strictly tangent relaxation.

~

8. REMOVING THE HYPOTHESIS THAT R(G) BE CLOSED UNDER STRICT TANGENCY

In this Section we remove, under strict the tangency hypothesis, the restrictidh(tﬁabe

closed In practice the lack of closednesﬂ(@) turns out to be inconsequential, as precisely
stated in the next two Theorems.

Theorem 8.1. Suppose that the LP problem be feasible and Thé@) be not closed but strictly
tangent toP. Then the LP problem is bounded.

~

Proof. By definition, R(G)~ is strictly tangent taP. From the assumption of feasibility we
can assert that there exists a point in the feasibility irel such that

o~

y € R(G)+ P
But from the theory we have developed so far:

~ ~ ~

R(G)+ P C R(G)” + P = (R(G) + P)~
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~

Now from the previous proof we know thath R(G)~ + P is a closed half-line. Hencken

R(G) + P is an halfline (closed or not we don’t know yet) and this means that the LP problem
is boundeda

Naturally the next question is: is the problem definite? And, if it is definite, what is the
maximum?
The following Theorem answers these questions.

Theorem 8.2. Suppose that the LP problem be feasible and m@@) be not closed but strictly
tangent toP. Then the LP problem is bounded and definite so that there exists the maximum:

o~

ma = max{h : v(h) € R(G) + P}
which is the maximum gf onG. Moreover:

~ ~

max{h : v(h) € R(G)” + P} = max{h : v(h) € R(G) + P}

Proof. For brevity we will use, whenever convenient, the notaﬂb(r@) = F. We look at the

~

intersection of the feasibility line with the feasibility con& (R(G) + P). We have proved
that since the problem is feasible and:

~ ~ ~

R(G)+P CR(G)”+P=(R(G)+P)”

this intersection must be and half line. We will show that such halfline is closed. For the
moment we may assume that the interval of feasibility in terms of the parambger the form

~

T = (—oo,m) where) may either be) or |, we still don’t know. Sov(h) € R(G) + P for
h € Z. Forh € Z we can write:

v(h) = vp(h) +vp(h)

with v(h) € F andvp(h) € P. These decomposition may well be non-unique, but we will fix
this later. For two distinct valuds,, h, € Z with h, > h;we can write:

v(h1) = Vp(h1) +0p(hy)
and
v(hy) = Vp(ha) + Up(hsg)
By convexity we can write:
[Up(h2) : Up(hy)] C F
and:
[0p(h2) : Up(hy)] C P
Clearly for anyh € [hy, hs] we have:
v(h) =vF(h) + vp(h)
Consider the liné;, generated by the segmeit (h,) : vr(hy)]. Clearly
lp ={vr(h) :he€ R} CF
Forh € [hq, ho]
Op(h) = 0(h) — T (h)
But for anyh € R this defines another link generated by the segmént(h2) : vp(hy)], and
this latter formula holds good for ariy In other words:

l=Ilp+Ip

Note that the symbol of the residual lihedoes not mean that all of it be containedininstead
the linelr has a segment insid€ and thus is entirely contained . Now we consider the
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orthogonal decomposition of the space into the parallel (and closed) subspace to thg, line
and the closed subspate and project (and hence both- andir) on these two orthogonal
subspaces. We now have an univocal decompositidrasf

I=Ar+1, =Ar+ Pyle

with the lineAr C F'. Now,
>\F+P:>\F+P)\#PCF+P

where we have applied Theor¢m]4.6 bearing in mind k& strictly tangent and closed and
thus the cone’,L P is pointed and closed. Thus we have clearly reached the conclusion that

I(h)isin F + P ifand only if \p + lAL isin A\p + PA#P, and this is in turn true if and only if
F
L., (h)isin the pointed closed con,. P. But just because this latter cone is closed, we have
F

in this way proved that the maximum exists, that is, that the problem is (feasible) bounded and
definite. Next we introduce the notation:

o =max{h:o(h) € R(G)” + P}
thusd(y) + R(G)~ is tangent taP. Lety € (5(u) + R(G)) N P. Since §(p) + R(G))~ =
U(u)+R(G)~, thereisasequende;} —; yinv(u)+R(G). Thereforel(v(u)+R(G), P) < €
for anye > 0, But we know that the maximum exists and thus this can only happen#$oma

and so the proof is finisheq.

9. OPTIMIZATION METHOD

In this Section we present a generalization to infinite dimension of the algorithm for solving
LP problems, introduced in[3]. Of course the optimization problem in question must be feasible
(this can be ascertained beforehand using the feasibility conditions discussed in[Section 5, using
an obvious variant of the optimization method discussed below).

On the base of the developments presented so far, we may assume, without much harm for
generality, thaR(@) be closed and strictly tangent to(and thus also bounded definite, as we
know).

We initiate drawing some consequences, for certain minimum distance problems, of the re-
sults given in Section]5. We have shown that if a linear subspaé® closed and strictly
tangent toP, thenF' + P is closed and, if instead’ is strictly tangent but not closed, then
(F+P)-=F +P.

Consider now the s¢b + F') + P. We can write:

(v+F)+ P=v+ (F+P)

Therefore, if 7 is closed, therfv + F') + P is closed too. It also follows that the difference
P — (v + F), which has the same form, is, again, closed. We register now some consequences
of what we established so far, in connection with the minimum distance problem.

Proposition 9.1. If the linear subspacé’ is closed and strictly tangent tB, thenVv, the sets
(v+ F)+ PandP — (v + F) are closed. Thus in particular ifv + F') and P are disjoint,
their distance is positive, and there exist pairs of points (v + F') andy € P, that solve the
minimum distance problem.

The metAhod is based on the repeated solution of the minimum distance problem for the sets
v(h) 4+ R(G) (also denoted byl(h)) and P, for a sequence of values bf which will converge
to the maximum of the functional.
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Let the maximum of the LP problem bea. Fix h = hy > ma, So that the two sets

~

v(ho) + R(G) and P are disjoint. Repeat the following two steps fof 0, 1, ...

~

STEP A: find the minimum distance problem solution f¢h;) + R(G) = A(h;) and P.
Call the solution points’ € 5(h;) + R(G) andy’ € P. If 2* = 4, then stop and put; = ma.
Otherwise go to STEP B.

STEP B: Adjournh; as follows:

hit1 = h; — = h; — AR,

We putn’ = z* — y* andd; = ||z° — o'

We will prove that the method is consistent (in particular in the above formula the denomi-
nator is never zero) and that it enjoys asymptotic convergence in the senék;that ma and
{y' —2'} — 0.

Albeit P has no interior, the above quasi-topological concepts of intern and extern play the
expected role:

Lemma9.2.If w ¢ Pthenwt € P*andn =w —w" =w™ € —P".
Proof. Immediate bearing in mind that projection zeroes the negative part pf

Lemma 9.3. All points z of the set:

~

Cp = (v(ma) +R(G))NP
have the first compone®t z = z; = 0 and the residual vectof/ — P;)z > 0.
Proof. In fact all such points ofp must get out of” when their first component is decreasegd.

Lemma 9.4. Consider two arbitraryh, > h, > ma, two corresponding pairs of minimum
distance points® € A(hy), yv* € P andz® € A(h,), y* € P and letn® = 2b —¢*, §, =
|2° — 4°|| andn® = 2% — y¢, 6, = ||z* — y?||. Then the following is truen® andn® (which are
both in—P") have a negative first component afd> 4,. In other words, the functiofi(’)

is monotone decreasing.

~

Proof. First we show that for ang > ma (so that(v(h) + R(G))NP = ¢)if v € A(h),y € P
are a pair of minimum distance points it cannot hapgen z)|; = 0. For, otherwiseys > 0
it would be

5(h —68) —(h) L((y — =) = n

~

and this would imply that the affin@(h — n) + R(G)) would not intersect’ for anyn > 0,
contrary to the fact that the maximum of the optimization problem exists. It follows by the
preceding Lemmas thay — x); > 0. Next notice that, in passing from, to ,, all vectors

in A(h,) have their first component incremented by a positive number and hence their distance
from P either decreases or stays the same. It follows that

d(“A(hb)a P) = 5b > d(A(ha)a P) = 5(1
as we wanted to show.
Now we can state the following main:

Theorem 9.5. The sequencéh;} converges tona and the sequencgy’ — z'} converges to
zero.
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~

Proof. As long ash; > ma, (0(h;) + R(G)) N P = ¢ and (y* — z%); > 0, by virtue of

the last Lemma. If, insteady, = ma the sequences of cycles is arrested. Thus not only the
formula to adjourm; is consistent, but als&h; > 0. This means that the sequene} is
strictly decreasing. Next we show that, unlass= vy;, h; > ma impliesh; ;1 > ma. In

fact when we changg; to h;, ., the affine space translates by a veaidr;c!. Projecting this
translation on the subspace generated,by x; we obtain exactly; — x;. The projection on

the orthogonal complement tell us that the affine space translates within the support hyperplane
toy; + (y; — x;)*. The first translation makes the two disjoint sets set intersect. The second
either leaves the intersection still non-void, and hence the two sets at-stepre in tangency
position and the procedure is arrested, or it detaches the affihg ) from the coneP. In the

first case we havk;,; = ma and the algorithm stops because the minimum distance is zero. In
the second cade . ; > ma. Thus we can say that, unless the algorithm stops in a finite number
of cycles,{h;} converges to somk, > ma and{Ah;} converges to zero. Notice that because
projection is a contraction we have:

Ah; = ||Ahie!|| = [ly' = 2'[| = (y' — ') > 0
Hence{s; = ||y* — 2*||} and{(y" — z%)|,} all converge to zero. Suppose > ma. Then, by

the last Lemma,; > d(h:) > 0. But this is a contradiction because we know that — 0.
Henceh; = ma and the proof is finisheds

Once one has computed the maximum, the next step to complete the computations is to
determine the feasible slack vector. For sufficiently highe vectory® approximates, to any
degree of accuracy a feasible slack vector. Finally, via a pullback to the solution space ([4]) one
can find a solution of the LP problem.

10. FINITE DIMENSIONAL APPROXIMATIONS

To move closer to numericall applications, we now investigate, in the first place, finite di-
mensional approximations for feasible bounded and definite LP problems.

We need in the first place to establish some notations. We are interested to certain finite
dimensional relaxations of the original optimization problem.

Definition 10.1. The problem of maximizing the functionéf, .) under the constraints system
given by the first: inequalities is called the — th (finite) relaxation of the given problem.

In this case the range spacef8*!, but we keep using the same symigofor all positive
cones. We call ,, the feasible region (a polyhedron of course) in the domain space, necessarily
non-void, of then — th relaxation andg- the feasible region of the original problem. Obviously
F, D> F andfF, D F,y1. We callm, the maximum of thex — th relaxation, whereroo
maxima are used to indicate that the relaxation is unbounded.

Now we can state the following:

Theorem 10.1. Suppose that the optimization problem is feasible bounded and definite with
maximumna. Then there exists an integesuch that, fom > £, thenth relaxation is bounded.
Moreover, the sequence of maxiga,, } of the finite dimensional relaxations convergesio.

Proof. We claimn{F ,} = F. Infactn{F .} D F is obvious. On the other handife N{F ,,}
thenVi, (¢°,x) < v; and sor € F. Next suppose thatn, m,, = co. This would mean that if
we takeu > ma

Fo{z: (fix) 2 pp #¢

which implies, sincg F ,, } is decreasing and{F ,} = F,

Fofe:(f,2) 2 py #¢
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which is a contradiction. Thus there exists an intégsuch that, for > k, thenth relaxation
is bounded. At this point we can say that the non increasing sequence of maxima of finite
relaxations{m;} converges to some: with co > m > ma. If m = ma we are done.
Suppose instead that > ma. Denote byz,,, a solution of the problem and note thaf, is
a support point for with supporting functiona(f,.). Considem with m > 1 > ma and the
hyperplane:
Hy =A{x: (f,z) =n}
Now notice that:
HNFp#o,Vk < H N (N{Fi}) #0 &
H,NF #¢
Because this latter is false, it follows thét such that fore > j, H, N f, = ¢. But this implies
lim{ms} < n < m. Since this is a contradiction we can conclude that ma and the proof
is finished.n

In the final part of this Section we investigate finite dimensional approximations for the min-
imum distance problem. We considerc [,, a closed linear subspade and assume that
(v+ F)N P = ¢. We also consider the subcones Bf

II; =Co({e;:i=1,.,n+1})

The linear spacesB; = Pr(L(11;)) are a finite dimensional subspacesofand thus they are
closed). Clearlyv + F;) N 1I; = ¢, and minimum distance pairs for this two sets surely exists
just in view of their finite dimensionality.

Now we can state the following:

Lemma 10.2. Assum€v + F') N1I; = ¢, Vi. For anyi, (v + F') — 11, is closed, and thus the
problem of minimum distance between the setsF’ andIl; admits solution. Moreover, a pair
of pointsz® andy* solve the minimum distance problem for+ F') andTl; if and only if they
solve the minimum distance problem fo# F; andIl,.

Proof. First we prove that' + II; is closed. For this purpose the indéjs irrelevant and so
we fix an arbitraryi and omit the corresponding subfix. It is easy to verify that:

F+Il=F+ Pp.l

Now notice thatP.II is a finite dimensional polyhedron and therefore is closed. Thus, apply-
ing the Lemma 3]1, it follows that’ + IT is closed and so the first statement is proved. Next
note that the projectiom onv + F' of a pointy € II; must stay inv + F; and is a fortiori the
unique point ofF;, that has minimum distance frogn Thus the projection aof on F' andF; are

the same. Now an application of Leminal2.1 leads to the desired conclusion.

Our last Theorem give the finite dimensional approximations for the minimum distance prob-
lem relative to the sets+ F andP.

Theorem 10.3. Given a closed subspadg, strictly tangent toP, andv € [,, consider the
sets(v + F) and P, assumingv + F) N P = ¢. Letd = ||w — y||, where w andy are a
pair of points solving the minimum distance problem relative to the (sets F') and P. Let
§; = ||lw® — y'|| wherew® andy’ solve the minimum distance problems for the éets F') and
I1; (or, equivalently(v + F;) andIl; in view of the preceding Lemma). Thégn} — 0.

Proof. Clearlyd; > ¢ and the sequendg; } is non-increasing since the sequence of §&ig
is increasing. Thugd;} — & > 4. Now lety" = Py, (w), and notice that, as it is readily
verified,{~'} — y. On the other hand it is evident that:

lw =+l > 6 > &y

AJMAA Vol. 12, No. 1, Art. 7, pp. 1-27, 2015 AJMAA


http://ajmaa.org

26 PAOLO D’A LESSANDRO

Passing to the limif||w — ~/||} — ¢ and therefore:
§ >y
It follows thaté = 6, and we are dona

Let’ give an example of how these finite dimensional approximation results might be applied
(under the same assumptions made at the beginning of the preceding Section). One can first
approximate the maximurmma to an arbitrary degree of precision using Theofem]10.1. In
fact we proved that the sequence of maxima of finite dimensional relaxations is monotone and
converges tona. Thus we can define a stopping criterion requiring that the increment become
sufficiently small. Letu be such an approximation. Once we are done with this first phase, we
can exploit Theorern 10.3 to estimate the distance

A =d((v(p) + R(G)), P)
In this case too we have a monotone non increasing seqyérijceonverging toA and we can
proceed in a similar fashion. Note that the estimaté&afan give us a better idea of how good
was the estimatg of ma (since of course if it werg = ma then it would followA = 0). If we
are unsatisfied because we regards being too large, we might go back to the first phase and
improve the approximation ofia. Once we are done with both phases, we will have at hand
also two vectors, say' andy' coming from the final step of the second phase. Now we can
takew! € (D(u) + R(@) as the approximate slack vector solution (in the range space) for the
LP problem. A pull back to domain space will yield the corresponding approximate solution in
the domain space.

11. PREVIOUS RESULTS AND THE PRESENT GENERALIZATIONS

The preceding paper/[4], was devoted to the theory of polyhedra generated by operators with
closed range.

The bulk of this paper deals with the study of the slack(set R(G)) N P. Because the
two intersected sets are closed, the slack set is closed too, and no technical problem about
non-closed sets arises.

In a few places we did use the feasibility cdR€G) + P. In this respect there was an error:
the feasibility cone was stated to be closed wiReKy) is closed, but this is not true in general.

The correct result is given in the present paper: the feasibility cone is closedMtenis
closedand strictly tangent taP. Thus a few additional corrections must be made, in the places
where the erroneous result was applied. Corrections which, luckily, lead only to either slight
variants or no modification at all according to the cases.

In the intern case, we have proved here that the feasibility cone is dense and hence it is not
the whole space in general. However, this changes very little: instead of feasibility we have
an "almost feasibility" property (that is, a non feasible problem can be made feasible by an
infinitesimal perturbation of bounds) and, furthermore, when feasibility stands, it gives rise to
an unbounded problem, just as it was stated in the previous paper. Therefore it is confirmed that
the intern case has no practical relevance for optimization purposes.

As to the weakly tangent case, we have shown in the present paper that, despite the fact
that the intern relaxation enjoys only a weaker density property, the existence of the strictly
tangent relaxation goes through in infinite dimension. However, the extension of the optimal
solution of the strictly tangent relaxation to the original system is weakened, in general, to
approximate solution. The correct proofs are given here only, but the existence of the strictly
tangent relaxation was also stated in the previous paper, and all its consequences drawn therein
are anyway correct.
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It is also useful to relate to the previous paper the generalizations obtained in the present
paper. Regarding the relative position of a subspace and the positive cone, one has to bear in
mind that, to allow a more general setting, where ranges may well be non-closed, the definition
of strict tangency and internality have been changed accordingly (in Sgttion 3 here).

We also stress that among the three cases (strict tangency, internality and weak tangency)
strict tangency is by far the most important case. This is because the case of intern range has
no practical relevance, and the technique for dealing with weakly tangent cases is to report the
problem to the strictly tangent case, via the strictly tangent relaxation.

We give here not only a new proof that/f is closed and strictly tangent #, thenF + P
is closed, but also provide generalizations regarding the strictly tangent case with non closed
subspacé” in Sectiorj B and Secti¢n 7. The results in Sedtjon 7 here are of particular importance
as explained in the Introduction. Indeed they demonstrate that the range space approach to LP
as powerful in infinite dimension as it is in finite dimensions, despite the technical hurdle of
non-closed ranges.

In the intern case too we have generalized here our analysis to both closed and non-closed
ranges. The results turn out to be practically the similar in both cases.

Finally we stress that in_[4] there were, outside of the main expository line, a few glimpses
on possible generalizations for the case of non-closed ranges. These were base on a erroneously
cited elementary computation of general topology, and were therefore wrong. The only gener-
alizations of this kind are those given here, and so reference for this specific issue must be made
to the present paper exclusively.
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