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2 PAOLO D’A LESSANDRO

1. I NTRODUCTION

This paper is a continuation of [4], in which the same author has presented a generaliza-
tion to infinite dimension of the image space theory of polyhedra (as illustrated, in the finite
dimensional case, in [5], [3], [1] and [2]).

In such generalization, polyhedra are countable intersections of closed semispaces in a real
separable Hilbert spaceH. SinceH is separable, the study is carried out inl2. Both finite
dimension and finite number of intersecting semispaces are replaced by their countably infinite
counterparts (with finite dimension and / or finite intersection as a special case).

Therefore, as is well known, the unit ball (of the usual norm) inRn becomes a polyhedron
and the same is true for the unit ball inl2. Separability allows to include in this setting any
closed convex set, narrowing the gap between linear and convex programming.

We will keep here the assumption that the linear transformationsG (or Ĝ), defining the
inequality constraint (or the extended inequality constraint, for the case of optimization), be
continuous. This assumption has been shown in [4] to be a rather mild one.

For a first simpler foray in the infinite dimensional range space territory, in [4], we also
assumed that rangeR(G) (andR(Ĝ)) be closed (such ranges will be at times more simply
denoted byF , leaving to the context to specify which of the two subspaces we refer to). This
restriction has some interest in its own, and includes, for example, the case thatG (or Ĝ) is a
Fredholm operator. Naturally this special theory bears the maximum possible resemblance with
the finite dimensional case. In particular, we showed that the classification of seven possible
types of polyhedra goes through to infinite dimension.

There are two important set to consider in range space: the first is the slack set, which can
be considered to be the polyhedron as seen from the range space viewpoint and has the form
(v +F )∩P (wherev is the bound vector andP is the positive cone, which, incidentally, has no
interior in infinite dimensions). The second is the feasibility cone, which has the formF + P
and is the set of all bound vector that make the polyhedron non-void. Thus the motivation for
the cited restriction was to have closed slack sets and to facilitate closedness of the feasibility
cones.

Still the restriction is obviously a blanket hypothesis, which entails leaving out of the ensuing
class of polyhedra, for example, such an important cases as the weakly compact convex bodies,
as will be shown in the present paper.

In this respect however, intuition suggests that the radical dissymmetry between domain space
(where feasible sets are always closed) and range space, where various issues look intractable
whenR(G) (orR(Ĝ)) are not closed (and hence the feasibility cones are surely not closed in
turn) appear rather strange. Indeed one may suspect that, by some hidden and deep mechanisms,
this dissymmetry should vanish in some way.

Actually one of the major goals of this paper is to show that this intuition is correct and to
unveil the mechanisms, whereby the apparent inviability of range space techniques when the
relevant operator ranges are not closed, does dissolve. In the crucial case of strict tangency
(namely whenF− ∩ P = {0}) non closedness turns out to be irrelevant, in the sense that we
may solve optimization problems using the closure ofR(Ĝ) instead ofR(Ĝ) itself.

Thus range space techniques in infinite dimension are at no disadvantage with respect to
domain space techniques. Moreover, we show here, not only that finite dimensional range
space algorithms of optimization can be extended to infinite dimensions, but also that they can
be complemented by various finite dimensional approximation techniques.

In the case whereF meets the "quasi interior" (which is also called here intern - see the sequel
for its definition) of the positive coneP , the finite dimensional result (F +P is the whole space
whoever isF ) is weakened to a density result. This is not much of a concern in optimization

AJMAA, Vol. 12, No. 1, Art. 7, pp. 1-27, 2015 AJMAA

http://ajmaa.org


OPTIMIZATION AND APPROXIMATION FORPOLYHEDRA IN SEPARABLE HILBERT SPACES 3

because, as we will show, the case whereR(Ĝ) is intern is anyway of no practical use, just as
happens in the finite dimensional case.

But this fact is, at first sight, of much concern in the weakly tangent case (namely the case
whereF is neither strictly tangent nor intern toP ). In fact, in this case, there is an intern
relaxation and the density property for such relaxation apparently jeopardizes the extension to
infinite dimensions of the fundamental concept of strictly tangent relaxation (see e.g. [1] for the
finite dimensional case).

Despite these adverse circumstances, we will be able to show that the existence of the strictly
tangent relaxation goes through untouched in the infinite dimensional case, although this gen-
erates (as might be expected) a solution for the whole system, that satisfies the remaining block
of constraints either exactly or to an arbitrarily small degree of approximation.

Further comments on this topics are given in the conclusion, along to a guide for a few emen-
dations for the preceding paper [4] and a brief guide to the connections with the present paper.
For the moment we only add that the results of Section 4 (which studies the feasibility cone)
have been given minimizing the use of the relativized product topology in favor of standard
Hilbert spaces techniques. However it is possible to give, for some of the Theorems of Section
4, alternative (and much shorter) proofs, based on the results regarding the product topology
given in [4]. We did not include such alternative proofs for the sake of brevity.

Some of the optimization methods introduced in the papers cited at the beginning, were based
on the computation of extreme rays of certain polyhedral cones, in order to derive both enumer-
ative algorithms (which solve whole classes of problems) as well as on evolutive algorithms.
In infinite dimensions the approach based on internal generation of cones requires, of course,
the computation of infinite generating sets. This problem is left open here, as it seems initially
more convenient, and more promising on the practical side, to try to generalize an optimization
method based on tangency conditions rather than internal generation (introduced, for the finite
dimensional case in [3]).

Such method was called primal external linear programming method, as it reaches the opti-
mum, expressed as the condition of tangency of an affine space to the positive cone, starting
from an initial condition of void intersection (so that, so to speak, the affine lands on the cone).
This method enjoys exact finite convergence in finite dimension. Incidentally, the "dual" pos-
sibility of reaching the optimum from an initial condition in which the affine and the cone are
intersecting (so that, so to speak, the affine emerges on the boundary of the cone) is precisely
the evolutive method introduced in [2], which also enjoys exact finite convergence.

In the sections devoted to Optimization we will show that the primal external method goes
through in infinite dimension, naturally in terms of asymptotic convergence. Moreover, we
introduce various techniques that allow to find approximate solutions, solving suitable finite
dimensional problems.

2. A SPECIAL CASE OF M INIMUM DISTANCE OF CLOSED CONVEX SETS

The minimum distance problem for two closed convex sets is an important ingredient of the
optimization technique illustrated in the sequel. We need now to clarify a few facts that will be
of use later on.

In particular, we will be interested to the special case where the two sets are the positive cone
P of l2 and a closed affinev + F , whereF is a closed linear subspace andv is an arbitrary
vector.

Consider two closed convex disjoint setsC andD in l2. Assume that

d(C, D) = inf{‖z = w‖:z ∈ C, y ∈ D} > 0
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4 PAOLO D’A LESSANDRO

The minimum distance problem consists in verifying the existence of two pointsx ∈ C and
y ∈ D such that:

‖x− y‖ = inf{‖z = w‖:z ∈ C, y ∈ D}
and, in the positive case determining at least one such pair or, possibly and better yet, the set of
all the minimum distance pairs.

An immediate sufficient condition for existence of a solution is thatC−D (which is convex)
be closed. In fact, if this is the case, the Projection Theorem insures that there exists a (unique)
minimum norm vector inC − D, and this in turn implies that pairs of vectors that solve the
minimum distance problem forC andD do exist. Notice thatC andD are disjoint if and only
if 0 /∈ C − D. Since{0} is compact, ifC − D is closed, the Strong Separation Theorem ([6]
Corollary 14.4) impliesd({0}, C −D) > 0, which is equivalent tod(C, D) > 0.

The following Lemma is an important tool in the development of the Optimization techniques
introduced in the sequel. Assume that, for two closed convex setsC andD, the minimum dis-
tance problem has solution. Denote the projections onC and onD by PC andPD respectively.
Then we can state the following:

Lemma 2.1.LetCandD be closed, convex and disjoint sets withd(C, D) > 0. Then two points
x ∈ C andy ∈ D (with x 6= y) are a solution pair for the minimum distance problem if and
only if:

PDx = y andPCy = x

Proof. Necessity is obvious for, ifx and y make a solution pair, the two conditions hold a
fortiori by the very definition of projection. Sufficiency follows easily from the fact that, by
virtue of the projection Theorem, vectorsy − x andx − y are, respectively, normal toC at x
and normal toD aty.

3. CONVEX CONES AND L INEAR SUBSPACES

We gather in this Section some mathematical preliminaries on cones and subspaces, instru-
mental for the study of polyhedra and optimization over polyhedra. There is a lot more on this
topic, and a few results are also included for completeness only.

We are mainly interested inl2 and its positive coneP , but, at times, if it obvious that no
additional effort is required, we make more general statements. However, we do not strive for
maximum generality.

In the l2 environment we will sometimes have to consider three topologies. The native
(strong) topology, denoted byS, the weak topology, denoted byW and the (relative) prod-
uct topology, denoted byX .

We start with a few useful Lemmata:

Lemma 3.1. Suppose thatF andG are closed subspaces of Hilbert spaceH, that F ⊥ G,
and that, for two non-void subsetsC andD of H, C ⊂ F andD ⊂ G. ThenC + D is closed if
and only if bothC andD are closed. Moreover:

y = PF y + PGy ∈ C + D ⇐⇒ PF y ∈ C andPGy ∈ D

Proof. We can assume without restriction of generality thatG = F⊥ because, if this were not
the case we can take in lieu ofH the Hilbert spaceH1 = F + G, which is in fact a closed
subspace ofH. Suppose thatC andD be closed and consider a sequence{zi} in C + D with
{zi} → z. We can write in a unique way:

zi = PF zi + PGzi

with PF zi ∈ C andPGzi ∈ D. By continuity of projection and the assumption thatC andD
be closed,{PF zi} → PF z ∈ C and{PGzi} → PGz ∈ D, but sincePF z + PGz = z it follows
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z ∈ C +D and we are done. Conversely suppose that, for exampleD is not closed so that there
exists a sequence{di} in D, that converges tod /∈ D, but, of course,d ∈ G. Take a vector
c ∈ C. The sequence{c + di} converges toc + d. But c = PF (c + d) andd = PG(c + d), and
therefore, by uniqueness of the decomposition, it is not possible to expressc + d as a sum of a
vector inC plus a vector inD. It follows thatc + d /∈ C + D. The second statement follows
immediately from uniqueness of decomposition of a vectory in the sumPF y + PGy, and we so
are done.

In the sequel we will often write∀y ∈ H, PF y = yF andPGy = yG.

Remark 3.1. This Lemma has an obvious extension for a finite family of mutually orthogonal
closed subspace. we do not make a formal statement for the sake of brevity

In the following Lemma proper cone means "not equal to the whole space". Beware that
Phelps ([7]) calls proper cone what is for us a pointed cone (see the definition below).

Lemma 3.2. A closed cone in a Hilbert spaceH is proper if and only if it is contained in a
closed half-space.

Proof. Let C be a closed proper cone. Then there is a singleton{y} disjoint fromC. Singletons
are convex and compact and therefore the Strong Separation Corollary 14.4 in [6] applies. The
rest is immediate.

The following Lemma on inclusion of translated cones is valid in a very general setting.

Lemma 3.3. Given two closed conesC1 andC2 in a real linear topological spaceE and two
vectorsy1 andy2:

y1 + C1 ⊂ y2 + C2 ⇔ y1 − y2 ∈ C2 andC1 ⊂ C2

y1 + C1 = y2 + C2 ⇔ y1 − y2 ∈ lin(C2) andC1 = C2

Proof. The second statement is an immediate consequence of the first one. As to the first state-
ment, sufficiency is obvious. Next suppose that although

y1 − y2 + C1 = y + C1 ⊂ C2

there is a vectorz in C1 that does not belong toC2. Thuskz is inC1 but not inC2. By hypothesis
y + kz ∈ C2, for any positive integerk. Therefore{(y/k) + z} is in C2. But this sequence
converges toz and so, beingC2 closedz ∈ C2. This contradiction concludes the proof.

Next we recall the following definition:

Definition 3.1. Let C be a (convex) cone in a linear spaceE. The lineality spaceof a coneC,
denoted bylin(C), is the linear subspace:

lin(C) = C ∩ (−C)

The coneC is calledpointedif lin(C) = {0}.

The lineality space of a cone is the maximal linear subspace contained in the cone itself. If
E is a linear topological space then, ifC is closed,lin(C) is obviously closed too.

Lemma 3.3 has the following very intuitive consequence about lines and convex cones. A
line is a one dimensional affine space, that is, a set of the form{y : y = w+αz : α ∈ R} where
w, z ∈ E.

Lemma 3.4. No closed pointed cone in a linear topological spaceE can contain a whole line.
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Proof. Let C be the cone anl = {y : y = w + αz : α ∈ R} be the line, which is, evidently, a
translated closed cone. Thus:

l ⊂ C ⇐⇒ w ∈ C &{y : y = αz : α ∈ R} ⊂ C

The second of these conditions contradicts that the coneC be pointed. Thus we are done.

We note in passing that the image under a linear isomorphism of a cone is pointed if and only
if the cone is pointed, and that the origin is the only extreme point of a coneC if and only if C
is pointed. IfC is not pointed it has no extreme points. For brevity, we omit the proofs of these
statements.

In finite dimension, if a cone is not pointed, it can be decomposed in the sum of a pointed
cone plus its lineality space [8]. This decomposition can be generalized to infinite dimension,
under the assumption that the lineality space be closed. This fact was stated without proof in
[4]. It is convenient to restate this result here and include a proof.

Theorem 3.5. Consider a convex coneC in a Hilbert spaceH and assume that its lineality
space be closed. Then

(lin(C)⊥ ∩ C) = Plin(C)⊥C

where the conelin(C)⊥ ∩ C is pointed. Consequently, ifC is closed the conePlin(C)⊥C is
closed too. Moreover, the coneC can be expressed as:

C = lin(C) + (lin(C)⊥ ∩ C) = lin(C) + Plin(C)⊥C

Proof. First we prove that
C = lin(C) + (lin(C)⊥ ∩ C)

That the rhs is contained in the lhs is obvious. Consider any vectorx ∈ C and for brevity letΓ
= lin(C). Decomposex ∈ C:

(3.1) x = xΓ + xΓ⊥

wherexΓ ∈ Γ andxΓ⊥ ∈ Γ⊥. NextxΓ⊥ = x− xΓ as sum of two vectors inC is in C and hence
in Γ⊥ ∩ C. Thus we have proved that thelhs is contained in therhs. Next we show that the
conelin(C)⊥ ∩ C is pointed. Suppose that both a vectorx 6= 0 and its opposite−x belong to
lin(C)⊥ ∩ C and decomposex as above (3.1). Becauselin(C)⊥ ∩ C ⊂ lin(C)⊥, xΓ = 0, so
thatx = xΓ⊥ 6= 0. Do the same for−x, to conclude thatxΓ⊥ and−xΓ⊥ are inC (but obviously
not in lin(C)). Because this is a contradiction,lin(C)⊥ ∩ C is pointed. Finally we prove that:

lin(C)⊥ ∩ C = Plin(C)⊥C

In fact,
PΓ⊥(Γ⊥ ∩ C) = Γ⊥ ∩ C ⊂ PΓ⊥(C)

On the other hand ifz ∈ PΓ⊥(C), for somew ∈ C, z = PΓ⊥w = w − PΓw so thatz ∈ C.
Hencez ∈ Γ⊥ ∩ C.

Next we dwell a little on cone polarity.

Definition 3.2. Given a cone in a real Hilbert spaceH, thepolar coneof a coneC, denoted by
Cp is given by:

Cp = {n : (n, y) ≤ 0,∀y ∈ C}
ThatCp is a convex cone is immediate by direct computation. As usual, thanks to the continuity
of the inner product, it is also immediate to show that the coneCp is always closed.
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One can readily prove that the following formulas hold:

(−C)p = −Cp

(Cp)p = C−

C−p = Cp

The cone(Cp)p will be briefly denoted byCpp

Remark 3.2. The polar cone of a convex cone is the normal cone at the origin to the given
convex cone. Also, the polar cone of a closed convex cone is the set of all points in the space,
whose projection onto the cone, coincides with the origin.

Note that if the cone is a linear subspaceF then:

F p = F⊥

Notice also that polarity is anti-monotone in a way similar to orthogonal complementation.
In fact,

if C1 ⊂ C2 thenCp
1 ⊃ Cp

2

The analogy with orthogonal complementation goes on a long way. A first noteworthy ex-
ample arises looking at the polar of a sum of cones:

Proposition 3.6. LetC1 andC2 are two convex cones then:

(C1 + C2)
p = Cp

1 ∩ Cp
2

Proof. SinceC1 andC2 are convex cones,C1 + C2 ⊃ C1 andC1 + C2 ⊃ C2, so that (C1 +
C2)

p ⊂ Cp
1 and(C1 + C2)

p ⊂ Cp
2 and hence(C1 + C2)

p ⊂ Cp
1 ∩ Cp

2 . On the other hand if
z ∈ Cp

1 ∩ Cp
2 then∀y ∈ C1, w ∈ C2, (z, y) ≤ 0 and(z, w) ≤ 0 so that summing these two,

(z, y + w) ≤ 0 which shows that(C1 + C2)
p ⊃ Cp

1 ∩ Cp
2 . This completes the proof.

Theorem 3.7.LetT be an operatorH → H andC a cone inH. Then

(TC)p = T ∗−1Cp

Proof. In fact

(TC)p = {n : (n, Tx) ≤ 0 : ∀x ∈ C}

= {n : (T ∗n, x) ≤ 0 : ∀x ∈ C} = T ∗−1Cp

It is now in order to deal with the crucial notion ofstrict tangencyand with the positive cone
P of l2.

Definition 3.3. A non-dense (linear) subspaceF is said to be strictly tangent to a pointed closed
coneC if F− ∩ C = {0}.

Remark 3.3. It is important to notice that this property is hereditary under inclusion, in the
sense that ifF is strictly tangent to a pointed closed coneC then any linear subspace ofF is
also strictly tangent toP .

Definition 3.4. In H = l2, we define the positive coneP by:

P = {y : yi ≥ 0,∀i}
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8 PAOLO D’A LESSANDRO

The coneP is closed, pointed and with void interior. Moreover:

P p = −P

and:

P pp = P

Let N be the set of positive integers
Fory ∈ l2 we introduce the notation:

ip(y) = {i : yi > 0}

iz(y) = {i : yi = 0}

in(y) = {i : yi < 0}

It will useful in the sequel to bear in mind that the projection a vectorw onP is obtained from
w zeroing all its negative components. The projection of a vector on−P is instead obtained
zeroing all its positive components. When convenient, we will use the notation:

PP w = w+ andP−P w = w−

Note that

w = w+ + w− andw+⊥w−

It is possible to show that this decomposition in a vector inP plus a vector inP p = −P is
unique, under the requirement that the decomposition be orthogonal.

Actually a similar, but much more general, result can be stated, which provides another im-
portant example of the analogy with orthogonal complementation. However, for the sake of
brevity, and since we won’t need this generality in the sequel, we omit a proof of the following:

Theorem 3.8.LetH a real Hilbert space andC a proper convex cone inH. Then for any vector
x ∈ H there exists a unique decomposition of the formx = xC + xCp under the conditions that
xC ∈ C, xCp ∈ Cp andxC⊥xCp .

From the above computation about the polar of a sum of cones, the important formula below,
valid for an arbitrary subspaceF , follows:

(F + P )p = F⊥ ∩ −P

Although P has a void interior, one can surrogate interior and boundary by means of the
concepts of quasi-interior (more briefly intern) and quasi boundary (more briefly extern).

Definition 3.5. The set of all strictly positive vectors{y : yi > 0,∀i} is denoted byP∨ and
called the intern ofP . The setP\P∨ is denoted byP∧ and called the extern ofP .

Definition 3.6. We say that a linear subspaceF is intern toP if

F ∩ P∨ 6= φ

We say that a closed subspaceF is weakly tangent or extern toP if it is neither strictly tangent
nor intern.
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4. THE CONE F + P

In this Section we study the coneF + P in l2, establishing various important results, in
particular some main Theorems stating that, ifF is closed and strictly tangent toP , thenF is
contained in an closed hyperplane strictly tangent toP , the lineality space ofF + P is F , and
F + P is closed.

We start with the following:

Theorem 4.1. A closed hyperplaneL is strictly tangent toP if and only ifL⊥ is intern toP
(or, equivalently, there is a normaln to L with n ∈ P∨). Moreover, ifL is strictly tangent toP ,
L + P is a proper cone, more precisely, it is a closed semispace, and:

lin(L + P ) = L

Proof. First statement: one direction is straightforward because ifL⊥ is intern toP thenL
must clearly be strictly tangent in order not to violate orthogonality. Conversely supposeL is
strictly tangent toP and letL⊥ = L({n}) (with, of coursen⊥L). Clearlyn cannot have zero
components, for otherwise the fact thatL is strictly tangent would be easily falsified by a vector
with a single positive component in correspondence of the index for which the component ofw
is zero. By a similar simple argumentn cannot have pair of non-zero components of opposite
sign. Thus eithern ∈ P∨ or −n ∈ P∨ and so we are done with the first statement. Suppose,
without restriction of generality, thatn ∈ P∨. Then:

L + P ⊂ N (n, .) + P ⊂
⊂ {y : (n, y) ≥ 0}+ P = {y : (n, y) ≥ 0}

Hence we have proved thatL + P is a proper cone. Clearlylin(L + P ) ⊃ L. If this inclusion
were proper, we would havelin(L + P ) = H, which is a contradiction. Thuslin(L + P ) = L.
Finally note that, if we writey = yL + yL⊥, the condition(n, y) ≥ 0 yields yL⊥ = αn with
α ≥ 0. Thus:

{y : (n, y) ≥ 0} ⊂ L + P

ThereforeL + P = {y : (n, y) ≥ 0} as stated.

Next we cover the case in which a finite dimensional space is strictly tangent toP with the
following:

Theorem 4.2. If a finite dimensional) subspaceF is strictly tangent toP , then F is contained
in a closed hyperplaneL strictly tangent toP (or, equivalently there exists a vectorn⊥F with
n ∈ P∨). Consequently,F + P is a proper cone. Moreover:

lin(F + P ) = F

Proof. Consider the sequence of coordinate subspacesΓk = L({ei : i = 1, ..k}) for k = 1, 2, ...
For sufficiently largek, F ⊂ Γk in order not to contradict thatF is finite dimensional. Fix such
ak and inΓk, which for simplicity we denote byΓ, apply the finite dimensional theory (see [1])
to conclude that inΓ our statement hold good, so that there is a vectorµ in the interior of the
positive cone ofΓ with µ⊥F . Next take anye ∈ P∨ and consider the vectorn = µ + PΓ⊥e. It
is obvious by construction that such vector has the properties specified in the statement and so
we are done for this part of the Theorem. Next LetL = {n}⊥. Then fory ∈ F + P ⊂ L + P ,
write y = w + z with w ∈ F andz ∈ P and then, with obvious meaning of symbols, we can
also writey = w + zL + αn with α ≥ 0. If we also want−y ∈ F + P thenα ≤ 0. Hence
α = 0. But theny − w = zL ∈ P implieszL = 0 and soy = w. Thuslin(F + P ) = F . This
completes the proof.

The following Theorem extends this result to the infinite dimensional case.
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Theorem 4.3. If a closed (infinite dimensional) subspaceF is strictly tangent toP , then F is
contained in a closed hyperplaneL strictly tangent toP (or, equivalently, there exists a vector
n⊥F with n ∈ P∨). Consequently,F + P is a proper cone. Moreover:

lin(F + P ) = F

Proof. The proof is based on two separation exercises, arguing on which we will deduce our
thesis. The weakly compact convex setΥ = C−({ei}} ⊂ P clearly contains the origin. Thus
we consider a vectorζ ∈ P∨ with, to fix ideas‖ζ‖ < 1, and the weakly compact convex
setΨ = C−({ei + ζ}) = ζ + Υ ⊂ P . ClearlyΨ is disjoint from{0}. Next we can apply
to Ψ andF the strong separation principle ([6]) and consequently affirm that there exists a
weakly continuous (and hence strongly continuous) functional(n, .) (with n 6= 0) that strongly
separatesΨ andF . Clearly it must be(n, F ) = 0 andinf{(n, y) : y ∈ Ψ} = (n, ζ) = m > 0.
Moreover,∀i,

(n, ei + ζ) = ni + (n, ζ) ≥ m ⇒ ni ≥ 0

Thusn ∈ P , n 6= 0 (and so(n, P ) = [0, +∞)), n⊥F , and so(n, .) weakly separatesF andP .
We don’t know aboutiz(n). It might well beip(n) = N, in which case we were done, but
also it might beip(n) ⊂ N properly, and so, to begin with, we go on with another separation
exercise. For each positive integerk let K = {1, .., k}. Consider the setΠ = C−({ei : i ∈
K, ei + ζ : i /∈ K}). DefineΘ = C({ei : i ∈ K}) andΛ = C−({ei + ζ : i /∈ K}) so
thatΠ = C−(Θ ∪ Λ) = (∪[x : y] : x ∈ Θ,y ∈ Λ)−. Then use the same separation principle
arguing in a similar manner as before, but taking care of using, for vectors inΛ, the minimum
of the functional onΛ itself. In this way we find a functional(ν, .), with ν ∈ P , ν 6= 0 (and so
(n, P ) = [0, +∞)), ν⊥F strongly separatingΠ andF , Moreover this time we can claim that
ip(ν) ⊃ K. At this point consider the setΩ = {w, ‖w‖ = 1, w ∈ P, w⊥F}. We have just
shown thatΩ is non-void, and in fact that it is an infinite set. In what follows bear in mind that
making finite sums of elements ofΩ (and renormalizing the sum), we obtain another element
of Ω, with an index set of positive components containing those of each addend vector. Next
order the elements ofΩ with the order� defined by:

w1 � w1 if ip(w1) ⊃ ip(w2) properly

Clearly there are towers with respect to this order inΩ. By the maximal principle there is a
maximum towerT in Ω. Note thatT is countable and so we can writeT = {n1, n2, ..}.
Finally take a vectorf ∈ P∨ and define:

n =
∞∑
i=1

fin
i

It is readily verified that, by construction, we have thereby defined a non-zero vector inl2, such
thatn ∈ P∨ andn⊥F (and of course we might renormalizen without changing this properties).
Next letL = {n}⊥. Then fory ∈ F + P ⊂ L + P , write y = w + z with w ∈ F andz ∈ P
and then, with obvious meaning of symbols, we can also writey = w + zL + αn with α ≥ 0. If
we also want−y ∈ F + P thenα ≤ 0. Henceα = 0. But theny−w = zL ∈ P implieszL = 0
and soy = w. Thuslin(F + P ) = F . This concludes the proof.

It is now in order to cover the intern subspace case. Notice that we do not assume, in the first
part of next Theorem, that the subspace to be closed.

Theorem 4.4.Suppose that a subspaceF is intern toP . Then:

(F + P )− = H
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A closed subspaceF is intern toP if and only ifF⊥ is strictly tangent toP . Obviously the role
of F andF⊥ can be interchanged. Consequently a closed subspaceF is extern toP if and only
if F⊥ is also extern toP .

Proof. Consider a vectorz ∈ F ∩ P∨. For any integeri > 0, we can add to−z ∈ F + P the
vectorw ∈ P , which has all the component equal to minus the corresponding component of−z
except theith, which is equal to zero. The resulting vector−z + w is such that(−z + w)i < 0
and all the other components are zero. It follows from this that the coneF + P contains both
the base{ei} and the base{−ei}. HenceF +P contains the dense linear subspaceL({ei}) and
thereforeF + P itself is dense. Now, if isF + P is dense, then:

(F + P )p = F⊥ ∩ −P = {0}
and this means thatF⊥ is strictly tangent toP . If F⊥ is strictly tangent toP , by the preceding
Theorem, it is contained in a closed hyperplaneL also strictly tangent toP , and with the unit
normaln ∈ P∨. Thus:

F⊥ ⊂ L =⇒ F⊥⊥ = F ⊃ L({n})
and, becauseL({n}) is intern toP , we are done.

At this point we know that, if the closed subspaceF is strictly tangent toP , thenF is the
lineality space ofF + P and thatF⊥ is intern toP . The next natural step is to apply toF + P
the decomposition Theorem 3.5. In view of such a Theorem, we get:

F + P = F + PF⊥(F + P ) = F + PF⊥P

This formula motivates us to take a close look at the conePF⊥P , under the assumption that
F⊥ is intern toP . In the next Theorem we will use a basic capping technique for pointed
cones, compared to the theory in e.g. [7]. In fact our capping method uses continuous linear
functionals, and the right topology for obtaining compactness of the capped cone is theX
topology. Incidentally, this is also the right topology to introduce the the infinite dimensional
counterpart of polytope (see [4]).

Regarding the following proof, we will work with sequential compactness. This is legal
because the underlying topological space (l2 with the relative product topology) is metrizable
(see Theorem 6.10 in [6]), and a metrizable space is sequentially compact if and only if it is
compact. We exploit this fact to simplify notations and exposition, although a proof using nets
would be possible.

Theorem 4.5. If a closed subspacez is internP , then the (pointed) conePzP is closed.

Proof. Consider a unit vectorf ∈ z ∩ P∨. We use the functional(f, .) to cap the coneP . Let
for α > 0:

Σα = {y : (f, y) ≤ α}
Then we represent the cone as the union of what we call caps of integer levelα = r:

P = ∪{Σr ∩ P : r = 1, 2, ...}
To simplify notations we use a short symbol for the cap of levelr:

Ωr = Σr ∩ P

Thus
P = ∪{Ωr} andPzP = ∪{PzΩr}

(we omitr = 1, 2, ... for brevity). Now we know from [4] that each capΩr is (convex and)X
- compact. Becausef ∈ z ∩ P it follows thatPzf = f . We now claim that:

y ∈ PzΩr ⇔ y ∈ PzP and(f, y) ≤ r
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which will be used in the equivalent form:

y ∈ PzP\PzΩr ⇔ y ∈ PzP and(f, y) > r

In fact suppose thaty ∈ PzΩr so thaty = Pzw with w ∈ Ωr. Then

(f, y) = (f, Pzw) = (Pzf, w) = (f, w) ≤ r

Conversely suppose that fory ∈ PzP it is true that(f, y) ≤ r. Theny = Pzw with w ∈ P and

(f, y) = (f, Pzw) = (Pzf, w) = (f, w) ≤ r

so thaty ∈ PzΩr. Now consider a (strongly) convergent sequence{yi} → y in PzP . We
claim that for sufficiently larger, {yi} is eventually inPzΩr (For simplicity we will denote
PzΩr by Ψr). For if this were not true, so that∀r, {yi} would be repeatedly inPzP\Ψr, then,
in view of what we have just proved, the sequence{(f, yi)} could not converge. But this is a
contradiction, because(f, .) is continuous. It follows that we can assume (and neither we do
change symbols) that the sequence{yi} is in Ψr, and writing∀i, yi = Pzzi, we have that{zi}
is in Ωr. BecauseΩr is (sequentially)X - compact, there is a subsequence of{zi}, which we
will denote with the same symbol{zi}, which converges, in theX -topology to a (unique) limit
z ∈ Ωr. Using the properties of theX -topology as well as basic Hilbert space facts, ifXk is
the coordinate subspace ofl2 generated by{e1, .., ek}, then we can write:

∀k, lim
i
{PXk

zi} →s PXk
z

∀i, lim
k
{PXk

zi} →s zi

lim
k
{PXk

z} →s z

where→smeans: converges strongly. Therefore,using the last, for anyε > 0, there existk(ε)
such that:

∀k ≥ k, ‖PXk
z − z‖ ≤ ε

2
and,using the first, for anyk, ε > 0,there exists ani(k) such that:

∀i ≥ i(k), ‖PXk
zi − PXk

z‖ ≤ ε

2
Notice, incidentally, thati(k) can be taken to be an increasing function and thus it is invertible.
From the last two inequalities, we have that∀k ≥ k, ∀i ≥ i(k):

‖PXk
zi − z‖ ≤ ‖PXk

zi − PXk
z‖+ ‖PXk

z − z‖ ≤ ε

Now we can extract from the double sequence a diagonalized sequence. Takeε = 1/3j,
k(1/3j), i(k(1/3j)) and define{wj} = {PXk(1/3j)

zi(k(1/3j))}, which is evidently inΩr and con-
verges strongly toz ∈ Ωr. We slight modify the subsequence taking a functionk(j) ≥ k(1/3j)
in such a way thatk(.) is strictly increasing withj. We substitute the functioni(k(.)) accord-
ingly and end up with a subsequence (denoted by the same symbol){wj} = {PXk(j)

zi(k)}.
Using the second limit we can say:

∀i, j, ∃h(i, j) s.t.∀h ≥ h(i, j), ‖PXh
zi − zi‖ ≤ 1/3j

Next we extract a subsequence from{zi} and a corresponding subsequence from{wj} accord-
ing to the following procedure. Forr = 1 takezr = z1 and takew1 = wh(1) in such a way
that h = min{j s.t. k(j) ≥ h(r, 1)}. The subsequent steps are similar. Givenzr = zγ,
zr+1 is chosen in{zγ+1, zγ+2, ..} in such a way as to minimizeh(i, r), andwr+1 is chosen in
{wh(r)+1, wh(r)+2, ..} taking the minimum indexδ for whichk(δ) ≥ h(r, 1/3r). By construction
we can write:

∀r,∀ρ ≥ r ‖zρ − wρ‖ ≤ ‖wρ − PXρz‖+ ‖PXρz
ρ − PXρz‖+ ‖PXρz

ρ − zρ‖ ≤ 1/r
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Therefore both{wr} and{zr} converges strongly to the same limitz. But {Pzzr} is a subse-
quence of{yi} and hence converge strongly toy, as well as, by continuity ofPz, to Pzz. By
uniqueness of limitsy = Pzz. Thusy ∈ Ψr = PzΩr ⊂ PzP . It follows thatPzP is closed
and the proof is finished.

We are now in a position to quickly prove the following main

Theorem 4.6. If a linear subspaceF of l2 is closed and strictly tangent toP , thenF + P is
closed. Consequently, ifF is not closed:

(F + P )− = F− + P

Proof. As to the first statement supposeF is closed and strictly tangent toP . Then, as we have
proved:

F + P = F + PF⊥P

where the cone pointedPF⊥P ⊂ F⊥ is closed. Thus by an application of Lemma 3.1 the first
statement is proved. Next, by what we have just proved:

(F + P )− ⊂ F− + P

On the other hand

F− + P ⊂ (F + P )−

comes from an elementary topological computation, and hence the proof is finished.

The generalization to non-closed subspaces of this result goes through only half the way.
Nevertheless, in Section 8, we will manage to achieve a full generalization, under strict tan-
gency, of Optimization Theory for non closed range operators.

But for now here is our result for strictly tangent non closed subspaces.

Theorem 4.7.Suppose the subspaceF is non-closed and strictly tangent toP . Then inF + P ,
and a fortiori in lin(F + P ), there are no vectors ofB = F−\F . Moreover:

lin(F + P ) = F

Proof. We start observing that if for two vectorsγ ∈ F−\F andδ ∈ F thenη = (γ − δ) /∈ F .
In fact if it wereη ∈ F it would also beγ = η+δ ∈ F , which is a contradiction. Letz ∈ F +P
so thatz = y + w with y ∈ F andw ∈ P . Suppose thatz ∈ F−\F . Thenw = z − y ∈ F−\F .
SinceF− ∩P = {0}, w = 0. But thenz = y ∈ F , which is a contradiction. Hence inF + P ,
and a fortiori inlin(F + P ), there are no vectors ofF−\F . At this point we obviously know:

F ⊂ lin(F + P ) ⊂ lin(F− + P ) = F−

where we have applied Theorem 4.3. Combining this with the first part of the present Theorem,
which insures:

lin(F + P ) ∩ (F−\F ) = φ

the reverse inclusion follows:

lin(F + P ) ⊂ F

and hence:

lin(F + P ) = F

as we wanted to show.
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5. POLYHEDRA

We first provide an overview of the setting for infinite dimensional polyhedra inl2. Then we
will connect weakly compact convex bodies, which are always polyhedra, to non-closed range
operators and strict tangency.

We define polyhedra as follows:

Definition 5.1. A polyhedronG (in l2) is a countable intersection of closed semispaces:

G = ∩ {x : (gi, x) ≤ vi, i = 1, 2, ...}
wheregi ∈ l2 andgi 6= 0, ∀i. If vi = 0, ∀i thenG is a cone and is called polyhedral cone.

Without restriction of generality, we can divide each inequality by‖gi‖, and hence we can
assume, whenever convenient, that‖gi‖ = 1.

We may also express a polyhedron by:

G = G(G, v)={x : Gx ≤ v}
whereG is an infinite matrix whose rows are the vectorsgi, the order≤ denotes the product
vector ordering inRN, andv ∈ RN (called the bound vector) has componentsvi. Note thatG is
continuous(l2,S) → (RN,X ). However the matrixG does not represent in general an operator
(l2,S) → (l2,S).

Once polyhedra are defined in this way, well known properties of separable Hilbert spaces
allow us to state that any closed convex set is a polyhedron (see e.g. [4]):

Theorem 5.1.Consider a non-void strongly closed convex subsetC 6= H in a separable Hilbert
spaceH and letD be a countable dense subset ofH. Then,∀ζ ∈ B(C) (the boundary ofC),
there exists a sequence of support points{zi} of C, such that{zi} → ζ strongly, where{zi}
is in the countable setPC(D\C). Thus there exists a countable set of support points dense in
B(C). Moreover, the countable intersection of supporting semispaces defined by the points of
the countable setPC(D\C) and the corresponding normals (i.e. ify ∈ D\C the normal is
y − PCy) coincides withC. Hence any non-void closed convex setC is a polyhedron and any
non-void closed cone is a polyhedral cone.

Regarding translations of polyhedra we can state:

Lemma 5.2. The translate of a polyhedron is a polyhedron. In particular, if we translate a
polyhedronG by the opposite one of its points−t (so that0 ∈ G− t) then, in the representation
of G − t, the bound vector is non-negative.

Proof. Just note that
−t + G(G, v) = G(G, v −Gt)

We are especially interested to the case whereG is an(l2,S) → (l2,S)) operator and the
bound vector is inl2. This restriction is milder than one may expect.

In fact we can state (after [4]):

Theorem 5.3. Consider a polyhedronG(G, v) and assume that the bound vectorv ∈ l∞, then
the same polyhedron is representable as

G = {x : Γx ≤ γ}
whereγ ∈ l2 andΓ is an operator (i.e. continuous linear transformation)(l2,S) → (l2,S). All
polyhedral cones (and all closed subspaces), all bounded polyhedra and all convex and weakly
compact set can be (and will be) represented in this way. In the case of cones we can always
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assume thatγ = 0. Moreover, by the preceding Lemma, this class of polyhedra is closed under
translation.

Remark 5.1. As to convex and weakly compact sets, there might well be in their definition
some redundant constraints that prevent the bound to stay inl∞. However, because the set is
contained in a closed sphere, it is obvious that they may be replaced by new constraints in such
way that the bound stay inl∞. We underline that the method of giving and taking redundant
constraints could be used to achieve more favorable features in various cases. An example in
point is the Theorem for weakly compact convex bodies below.

Throughout the rest of the paper the assumption thatG is an operator andγ ∈ l2 will be in
force.

Note that the positive coneP of l2 is a polyhedral cone withG = −I.
The feasibility problem for a polyhedronG(G, v) is that of determining whether or not

G(G, v) 6= φ.
We now state some general necessary and sufficient range space conditions for the polyhe-

dronG(G, v) to be non-void, which are formally identical to their finite dimensional counterpart
(e.g. [1]), and are readily proved much in the same way. They are given by:

G(G, v) 6= φ ⇔ v ∈ R(G) + P ⇔
(v +R(G)) ∩ P 6= φ ⇔ (v − P ) ∩R(G) 6= φ

The set
S = (v +R(G)) ∩ P

is called theslack set(essentially the slack set can be considered as the polyhedron, as viewed
from the Range Space side). The slack set is of course closed, ifR(G) is closed.

Another important set, which determines a polyhedron by a suitable inverse image is

Σ = (v − P ) ∩R(G) = v − S

In fact we can write:

G(G, v) = G−1(Σ)

Using a suitable form of the Induced Map Theorem (as in [4]) we can write

G = G|N (G)⊥PN (G)⊥

where both map are continuous,G|N (G)⊥ is one to one fromN (G)⊥ ontoR(G) and, also, it is
a topological isomorphism if and only ifR(G) is closed. From this it follows:

G(G, v) = (G|N (G)⊥)−1Σ +N (G)

Note that ifN (G) = {0} andR(G) is closed, this formula implies thatGi = φ (becauseP has
void interior).

The next Theorem characterizes polyhedra that are weakly compact convex bodies.

Theorem 5.4.Assume thatG is bounded and has non-void interior. ThenG admits a represen-
tation whereR(G) is strictly tangent toP . Moreover,R(G) cannot be closed andG must be
one to one.

Proof. Without restriction of generality we can assume that0 ∈ Gi (for otherwise we can
translateG by−t wheret ∈ Gi). Let D be a countable dense subset ofl2. Applying the usual
argument based on projecting the setD ∩ G onG and exploiting the fact that the projection is
continuous and contractive, we can affirm that in the boundaryB(G) of G there is a countable
dense subset of support points. Notice that in view of radiality at0 the origin itself cannot be a
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support point. Let{ζj} be the set of such support points and{nj} the set of their (normalized)
normals. If not already present (but from Theorem 5.1, this is exactly how the inequality system
may be built), add to the inequalities describing the polyhedron, each inequality:

(nj, x) ≤ (nj, ζj)

as well as the constraint:

(−nj, x) ≤ −min{(nj, x) : x ∈ G}
where we have of course exploited the fact thatG is weakly compact. The polyhedron stays the
same in the new representation. In what follows recall that in the new representation the bound
vector is non-negative. BecauseG is radial at0, it suffices to prove that for eachx, x 6= 0,
x ∈ G there are two functionals, in the system of inequalities, that assume opposite sign onx.
Notice that(nj, ζj) > 0, because we know thatζj 6= 0 and if it were(nj, ζj) = 0, given that
the above constraint can be read as:

(nj, x) ≤ (nj, ζj) = max{(nj, x) : x ∈ G}
we would qualify the origin as a support point, which is a contradiction. It follows that the func-
tional (−nj, .) assumes a negative value atζj and so we are done for any vector proportional
to some ζj. Next consider any otherx 6= 0, x ∈ G, and notice that, clearly, there must be an
α ≥ 1 such thatαx ∈ B(G). It suffices to argue on the vectorαx which, for simplicity, we call
againx. At this point note that there is a closed sphereSr around the origin of radiusr > 0
such thatSr ⊂ G. By the way we expressed the constraints defined by the functionals(nj, .)
and this inclusion relations we can write∀j:

(nj, x) ≤ (nj, ζj) = max{(nj, x) : x ∈ G} ≥ r

Now we know that there exists a sequence{ζk} in B(G) converging tox strongly. Take an
integerµ >> 1 andk such that:

‖x− ζk‖ ≤ r/µ

and write:
(nk, x) = (nk, x− ζk) + (nk, ζk)

and notice that(nk, ζk) ≥ r and (by CBS inequality):

|(nk, x− ζk)| ≤ r/µ

which evidently implies(nk, x) > 0. It follows, as before that the functional(−nk, .) assumes
a negative value atx, and so we are also done with any other point ofB(G). It remains one last
observation to complete the proof of the first statement. We have now, in our inequality systems,
new rows, so that the ensuing extended matrix, that we still callG, might not represent an
operator anymore. However the new bound vector, which we still callv, is, by construction, in
l∞. Therefore, if we finally transform our polyhedron according to the proof of Theorem 5.3, we
obtain a new matrix, still calledG, (along with a new bound vector still calledv ∈ l2), which
now represents an operator, while clearly the property of strict tangency remains invariant.
Finally we turn to the last statement and observe that in the expression:

G(G, v) = (G|N (G)⊥)−1Σ +N (G)

it must beN (G) = {0} in order to not contradict boundedness. ThereforeG must be one to
one (in other words a linear isomorphism). Next ifR(G) were closed,G|N (G)⊥ would be a
topological isomorphism. But then, sinceΣ is a subset ofP and therefore cannot have interior,
it would follow thatG(G, v) has no interior. But this is a contradiction and, consequently,R(G)
cannot be closed. This concludes the proof.
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Remark 5.2. This Theorem could be generalized using the spaceL−(G(G, v)) in place ofH.
But we do not pursue this here.

6. OPTIMIZATION , THE STRICTLY TANGENT AND THE I NTERNAL CASE

The linear optimization problem (LP) consists in determining whether a (non-zero) continu-
ous linear functionalf has a maximum on a (non void) polyhedronG(G, v) and, in the positive
case, in determining both the maximum and the subset ofG (or, at least, one point ofG) where
the maximum is attained. We indicate this problem writing:

max(f, x) : x ∈ G(G, v) = {x : Gx ≤ v}
The problem isfeasibleif G(G, v) 6= φ. Assuming feasibility, we look for, if it exists at all,
the maximum of the set of realsf(G), which is convex and hence is a non-void interval. If and
only if the interval has finite right extremum and is right closed, the problem admits (exact)
solutions.

In [4] three cases were considered, the last of which is divided in two subcases. Here we
prefer to classify directly four possible cases.

First, the polyhedron is void (unfeasible problem). Of course in this case the problem van-
ishes.

Second, the polyhedron is non-void, butsup(f(G)) = ∞ (feasible unbounded problem).
Third, the polyhedron is non-void, andsup(f(G)) < ∞, butf(G) is right open. In this case

we can compute the supremumm of the functional on the polyhedronG, but this supremum is
not attained in any pointx ∈ G (feasible bounded indefinite problem). However, one should
consider in this case approximate solutions, that is points in the domain space, on which the
functional takes on the valuem− ε, for some arbitraryε > 0.

Fourth, the polyhedron is non-void,sup(f(G)) < ∞ andf(G) is right closed, so that the
supremum of the functional is attained on some pointx of G (feasible bounded definite problem).
In this case we definema = max{f(x) : x ∈ G(G, v)}.

An important special case in which the problem is feasible bounded and definite, whateverf
might be, is whenG is bounded and hence a weakly compact set. In this case, sincef is weakly
continuous,f(G) must be compact too and hence it must be a closed bounded interval.

Next, we define:

Ĝ =

(
−f
G

)
; v̂(h) =

(
−h
v

)
where clearly−f is disposed as a row andh is a real parameter. The matrix̂G represents again
an operatorH → Ĥ, whereĤ is an extended Hilbert space of whichH is a closed subspace of
codimension1. Note that, in the case of infinite dimensions, spacesH andĤ are isomorphic.
Also we leave to the context to distinguish between the positive conesP andP̂ , using for both
the same symbolP .

It seems reasonable to exclude thatR(Ĝ) be dense inH. Throughout the rest of the paper
this assumption will be in force. It will appear justified on formal ground in the sequel.

In this setting problem LP is recasted in the form:

max{h : Ĝ(Ĝ, v̂(h)) 6= φ}

(notationwise, we should write more correctlyG(Ĝ, v̂(h)), howeverĜ(Ĝ, v̂(h)) is more sug-
gestive, especially if, for brevity, we drop the arguments).

To determine if a maximum exists, we have to look for anh (that will be the maximum value
of the functional onG(G, v)) such that, ifh ≤ h, thenĜ(Ĝ, v̂(h)) is non-void, whereas, for all
h > h, Ĝ(Ĝ, v̂(h)) is void, We will use two of the previously recalled feasibility conditions, to
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state two equivalent optimality conditions. The first is formulated saying that it must exist anh
(which, in the positive case will be the maximum of the problem) such that

(v̂(h) +R(Ĝ)) ∩ P 6= φ for h ≤ h

and
(v̂(h) +R(Ĝ)) ∩ P = φ for h > h

In this way the optimality condition has the form of a tangency condition.
In the second formulation,h must be such that:

v̂(h) ∈ R(Ĝ)) + P for h ≤ h

and
v̂(h) /∈ R(Ĝ)) + P for h > h

In presence of strict tangency, feasibility may or may not occur. For the finite dimensional
case this is stated in [1]. Lets make an infinite dimensional example. Suppose thatR(Ĝ) is
closed. Then we know from [4] thatR(G) is closed too. Next supposeR(G) is strictly tangent
to P . ThenR(Ĝ) is strictly tangent too. Now we know from Theorems 4.3 and 4.6 that the
feasibility coneR(G) + P is a proper closed cone. Thus the bound vectorv may or may not be
in such a cone and thus the problem may or may not be feasible.

In the next Theorem we assess the situation for strict tangency (for the moment assuming
R(Ĝ) is closed) and for the intern case, both in the case of closedR(Ĝ) and in that of non-
closedR(Ĝ).

Theorem 6.1. If R(Ĝ) is closed and strictly tangent toP then feasibility of the optimization
problem implies that the same problem is also bounded and definite. IfR(Ĝ) (closed or not) is
intern toP and the optimization problem is feasible, then it is also unbounded.

Proof. We know from the previous analysis thatR(Ĝ) + P is a proper closed cone. And also
that :

R(Ĝ) + P ⊂ L + P

whereL is a closed hyperplane strictly tangent toP and finally that thatL + P is a closed
semispace. Letn be the external normal to the closed semispaceL + P , so that:

L + P = {y : (n, y) ≤ 0}
We also know thatn ∈ −P∨. Next we claim that the line

l = {v̂(h) : h ∈ R}
cannot be contained inL. In fact, if it were so, take a difference of two vectors in this line to
obtain a vector of the form:

z =

(
η
0

)
with η > 0. Becausez ∈ L, it follows thatL cannot be strictly tangent. This is a contradiction
and thereforel is not contained inL. On the other hand if we take an arbitrary vectory ∈ l and
denote the first coordinate axisL({e1}) by X1 we can write:

l = y + X1

But then(n, l) = R and this implies that a whole halfline is inL + P (corresponding toh > h̃

for a certain real̃h) and all the more such a halfline is outside the closed coneR(Ĝ) + P .
Thus, because the problem is feasible,l ∩ (R(Ĝ) + P ) is a closed half line. This means that
the LP problem is bounded and definite. As to the intern case, we know from Theorem 4.4 that,
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whether or notR(Ĝ) be closed,R(Ĝ)+P is dense. Since we assume feasibility, there is at least
a pointw ∈ l ∩ (R(Ĝ) + P ). We have seen in the proof of Theorem 4.4 thatX1 ⊂ R(Ĝ) + P .
But then, sincel = w + X1 andR(Ĝ) + P is a cone, it follows:

l ⊂ R(Ĝ) + P

and this means that the LP problem is unbounded.

The line l = {v̂(h) : h ∈ R}, mentioned in the proof, will be called feasibility line, for
obvious reasons connected with the previously recalled feasibility conditions.

7. OPTIMIZATION , THE WEAKLY TANGENT CASE

We now study the extern case. We assume thatF = R(Ĝ) be closed.
We will show that the system can be partitioned in two blocks in such a way that the first

"subsystem" is internal, whereas the second is strictly tangent. If the functional falls in the first
block, then the whole system, if feasible, is also unbounded. If the functional falls in the second
subsystem then if the whole system is feasible, the strictly tangent relaxation is obviously also
feasible and therefore, as we know, it is bounded definite.

Recall from [4] that there exists a maximal faceM of P (corresponding to an index set
denoted byΥ) whose relative intern (the term is self-explanatory) is met byF . Reasoning in
the same way as the intern case, we may affirm thatF + P ⊃ L(M). It might well happen
thatF + P ⊃ L(M)−, in which case the argument in [4] allow us to define a strictly tangent
relaxation.

But, whenF + P ⊃ L(M)− is false, the argument in [4] cannot be applied. However, we
prove here that, surprisingly enough, the definition of a strictly tangent relaxation goes through
formally identical to that of the finite dimensional case, even in this general case.

Naturally, the technique of proof is quite different. It is based on the idea of altering the intern
relaxation and leaving unchanged the rest of the system. This will allows us to exploit a finite
dimensional argument to reach the desired conclusion.

Once we show that we are able to define a strictly tangent relaxation we use the same ar-
gument as in Theorem 8.1.1 in [1] to infer from an optimal the solution of the relaxation, an
optimal solution of the whole problem (a process that was called "backtracking" in such ref-
erence). However, we face the hurdle that the intern block has a feasibility cone that is only
dense. For this reason we can derive from the solution of the strictly tangent relaxation a solu-
tion for the whole system, which, at least in general, satisfies the constraint given by the internal
subsystem to an arbitrary degree of approximation.

Theorem 7.1. Assume thatR(Ĝ) is closed and extern toP and that the problem is feasible.
Deleting the rows of̂G in Υ (and doing the same on the components ofv̂) we obtain a block
G2 out of Ĝ. This corresponds to rewriting the extended inequality system as (a reshuffling of
the order of inequalities might be required):

Gx ≤ v 


(
G1

G2

)
x ≤

(
v1

v2

)
where, according to the cases, the first row of either block1 or block 2 corresponds to the
functional. Recall that, as proved in[4] R(G1) andR(G2) are closed. The second block makes
up a strictly tangent (feasible) system, (called the strictly tangent relaxation) no matter what
block the row corresponding to functional happen to belong. If the inequality corresponding
to the functional is in the first block then the LP problem is unbounded whatever may be the
constant components (from the second component on) of the bound vector blockv1. If the
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inequality corresponding to the functional is in the second block, then the second block defines
a strictly tangent, and hence bounded and definite, LP problem with maximumma. In this
latter case either of the following two cases are possible. First case: the whole LP problem is
bounded definite, its maximum is equal to that of the strictly tangent relaxationG2x ≤ v2 and
is independent ofv1. Second case: for anyε > 0 it is possible to find an vectorχ such that it is
an optimum solution for the strictly tangent relaxation and‖G1χ− v1‖ ≤ ε.

Proof. We first of all prove that the systemG2x ≤ v2 is strictly tangent. Indeed note that this
property (or the lack thereof) is intrinsic to the second block, the first one being used only as
an mean to reach the desired conclusion. At this point, without changing symbols, we relax
the first system leaving only a finite number of inequalities. The new system is intern as well,
the difference being that now the maximal face whose relative intern is met byR(Ĝ) is finite
dimensional. At this point the proof that system2 is strictly tangent is identical to that that was
given in the finite dimensional case (see [1]), whereL(M) is obviously closed. Next suppose
that the functional happen to be in the first block. SinceR(Ĝ) + P ⊃ L(M), the feasibility
line, which has the form:

l =

−h
ṽ1

v2


is contained inR(Ĝ) + P whatever is̃v1 and so the problem is unbounded whatever isṽ1.
Finally, assuming that the functional is in the second block (placed in the first position of the
second block, in this case), the feasibility line has as parallel linear subspace the first axis of
the second block, so that the first block of inequalities do not influence feasibility dependence
on h, whatever be the block vectorv1 may be. And solving the strictly tangent relaxation, that
we know know to be feasible and hence also bounded and definite, yields the maximum of
the relaxed LP problem. Letx be the optimal solution of the strictly tangent relaxation,ma
its maximum, and consider then a vectorw such thatGw belongs to the relative intern ofM .
Then, by construction, it is clear that, according to the cases, either there exists anα > 0 such
thatx + αw is the optimal solution of the whole system, or for anyε > 0 there exits andα(ε)
such thatx + α(ε)w is an optimum solution of the strictly tangent relaxation withh = ma, and
‖G1(x + α(ε)w)− v1‖ ≤ ε.

For the sake of brevity we do not pursue any generalization to the case of non closed ranges
of the theory of the strictly tangent relaxation.

8. REMOVING THE HYPOTHESIS THAT R(Ĝ) BE CLOSED UNDER STRICT TANGENCY

In this Section we remove, under strict the tangency hypothesis, the restriction thatR(Ĝ) be
closed In practice the lack of closedness ofR(Ĝ) turns out to be inconsequential, as precisely
stated in the next two Theorems.

Theorem 8.1.Suppose that the LP problem be feasible and thatR(Ĝ) be not closed but strictly
tangent toP . Then the LP problem is bounded.

Proof. By definition,R(Ĝ)− is strictly tangent toP . From the assumption of feasibility we
can assert that there exists a point in the feasibility liney ∈ l such that

y ∈ R(Ĝ) + P

But from the theory we have developed so far:

R(Ĝ) + P ⊂ R(Ĝ)− + P = (R(Ĝ) + P )−
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Now from the previous proof we know thatl ∩ R(Ĝ)− + P is a closed half-line. Hencel ∩
R(Ĝ) + P is an halfline (closed or not we don’t know yet) and this means that the LP problem
is bounded.

Naturally the next question is: is the problem definite? And, if it is definite, what is the
maximum?

The following Theorem answers these questions.

Theorem 8.2.Suppose that the LP problem be feasible and thatR(Ĝ) be not closed but strictly
tangent toP . Then the LP problem is bounded and definite so that there exists the maximum:

ma = max{h : v̂(h) ∈ R(Ĝ) + P}
which is the maximum off onG. Moreover:

max{h : v̂(h) ∈ R(Ĝ)− + P} = max{h : v̂(h) ∈ R(Ĝ) + P}

Proof. For brevity we will use, whenever convenient, the notationR(Ĝ) = F . We look at the
intersection of the feasibility line with the feasibility cone:l∩ (R(Ĝ) + P ). We have proved
that since the problem is feasible and:

R(Ĝ) + P ⊂ R(Ĝ)− + P = (R(Ĝ) + P )−

this intersection must be and half line. We will show that such halfline is closed. For the
moment we may assume that the interval of feasibility in terms of the parameterh has the form
I = (−∞, m〉 where〉 may either be) or ], we still don’t know. Sôv(h) ∈ R(Ĝ) + P for
h ∈ I. Forh ∈ I we can write:

v̂(h) = v̂F (h) + v̂P (h)

with v̂F (h) ∈ F andv̂P (h) ∈ P . These decomposition may well be non-unique, but we will fix
this later. For two distinct valuesh1, h2 ∈ I with h2 > h1we can write:

v̂(h1) = v̂F (h1) + v̂P (h1)

and
v̂(h2) = v̂F (h2) + v̂P (h2)

By convexity we can write:
[v̂F (h2) : v̂F (h1)] ⊂ F

and:
[v̂P (h2) : v̂P (h1)] ⊂ P

Clearly for anyh ∈ [h1, h2] we have:

v̂(h) = v̂F (h) + v̂P (h)

Consider the linelF generated by the segment[v̂F (h2) : v̂F (h1)]. Clearly

lF = {v̂F (h) : h ∈ R} ⊂ F

Forh ∈ [h1, h2]
v̂P (h) = v̂(h)− v̂F (h)

But for anyh ∈ R this defines another linelP generated by the segment[v̂P (h2) : v̂P (h1)], and
this latter formula holds good for anyh. In other words:

l = lF + lP

Note that the symbol of the residual linelP does not mean that all of it be contained inP . Instead
the linelF has a segment insideF and thus is entirely contained inF . Now we consider the
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orthogonal decomposition of the space into the parallel (and closed) subspace to the linelF ,
and the closed subspacel⊥F , and projectl (and hence bothlF andlP ) on these two orthogonal
subspaces. We now have an univocal decomposition ofl as:

l = λF + l
λ⊥

F

= λF + Pλ⊥F
lP

with the lineλF ⊂ F . Now,

λF + P = λF + Pλ⊥F
P ⊂ F + P

where we have applied Theorem 4.6 bearing in mind thatλF is strictly tangent and closed and
thus the conePλ⊥F

P is pointed and closed. Thus we have clearly reached the conclusion that
l(h) is in F + P if and only if λF + l

λ⊥
F

is in λF + Pλ⊥F
P , and this is in turn true if and only if

l
λ⊥

F

(h) is in the pointed closed conePλ⊥F
P . But just because this latter cone is closed, we have

in this way proved that the maximum exists, that is, that the problem is (feasible) bounded and
definite. Next we introduce the notation:

µ = max{h : v̂(h) ∈ R(Ĝ)− + P}

thusv̂(µ) +R(Ĝ)− is tangent toP . Let y ∈ ( v̂(µ) +R(Ĝ)−) ∩ P . Since (̂v(µ) +R(Ĝ))− =

v̂(µ)+R(Ĝ)−, there is a sequence{yi} →s y in v̂(µ)+R(Ĝ). Therefored(v̂(µ)+R(Ĝ), P ) < ε
for anyε > 0, But we know that the maximum exists and thus this can only happen forµ = ma
and so the proof is finished.

9. OPTIMIZATION M ETHOD

In this Section we present a generalization to infinite dimension of the algorithm for solving
LP problems, introduced in [3]. Of course the optimization problem in question must be feasible
(this can be ascertained beforehand using the feasibility conditions discussed in Section 5, using
an obvious variant of the optimization method discussed below).

On the base of the developments presented so far, we may assume, without much harm for
generality, thatR(Ĝ) be closed and strictly tangent toP (and thus also bounded definite, as we
know).

We initiate drawing some consequences, for certain minimum distance problems, of the re-
sults given in Section 5. We have shown that if a linear subspaceF is closed and strictly
tangent toP , thenF + P is closed and, if insteadF is strictly tangent but not closed, then
(F + P )− = F− + P .

Consider now the set(v + F ) + P . We can write:

(v + F ) + P = v + (F + P )

Therefore, ifF is closed, then(v + F ) + P is closed too. It also follows that the difference
P − (v + F ), which has the same form, is, again, closed. We register now some consequences
of what we established so far, in connection with the minimum distance problem.

Proposition 9.1. If the linear subspaceF is closed and strictly tangent toP , then∀v, the sets
(v + F ) + P andP − (v + F ) are closed. Thus in particular if(v + F ) andP are disjoint,
their distance is positive, and there exist pairs of pointsx ∈ (v + F ) andy ∈ P , that solve the
minimum distance problem.

The method is based on the repeated solution of the minimum distance problem for the sets
v̂(h)+R(Ĝ) (also denoted byA(h)) andP , for a sequence of values ofh, which will converge
to the maximum of the functional.
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Let the maximum of the LP problem bema. Fix h = h0 > ma, so that the two sets
v̂(h0) +R(Ĝ) andP are disjoint. Repeat the following two steps fori = 0, 1, ...

STEP A: find the minimum distance problem solution forv̂(hi) + R(Ĝ) = A(hi) andP .
Call the solution pointsxi ∈ v̂(hi) +R(Ĝ) andyi ∈ P . If xi = yi, then stop and puthi = ma.
Otherwise go to STEP B.

STEP B: Adjournhi as follows:

hi+1 = hi −
‖yi − xi‖2

(yi − xi)1

= hi −∆hi

We putni = xi − yi andδi = ‖xi − yi‖.
We will prove that the method is consistent (in particular in the above formula the denomi-

nator is never zero) and that it enjoys asymptotic convergence in the sense that{hi} → ma and
{yi − xi} → 0.

Albeit P has no interior, the above quasi-topological concepts of intern and extern play the
expected role:

Lemma 9.2. If w /∈ P thenw+ ∈ P∧ andn = w − w+ = w− ∈ −P∧.

Proof. Immediate bearing in mind that projection zeroes the negative part ofw.

Lemma 9.3. All pointsz of the set:

Cp = (v̂(ma) +R(Ĝ)) ∩ P

have the first componentP1z = z1 = 0 and the residual vector(I − P1)z ≥ 0.

Proof. In fact all such points ofCp must get out ofP when their first component is decreased.

Lemma 9.4. Consider two arbitraryhb > ha > ma, two corresponding pairs of minimum
distance pointsxb ∈ A(hb), yb ∈ P and xa ∈ A(ha), ya ∈ P and letnb = xb − yb, δb =
‖xb − yb‖ andna = xa − ya, δa = ‖xa − ya‖. Then the following is true:nb andna (which are
both in−P∧) have a negative first component andδb ≥ δa. In other words, the functionδ(h)
is monotone decreasing.

Proof. First we show that for anyh > ma (so that(v̂(h)+R(Ĝ))∩P = φ) if x ∈ A(h), y ∈ P
are a pair of minimum distance points it cannot happen(y − x)|1 = 0. For, otherwise,∀δ > 0
it would be

v̂(h− δ)− v̂(h)⊥((y − x) = n

and this would imply that the affine(v̂(h − η) +R(Ĝ)) would not intersectP for anyη > 0,
contrary to the fact that the maximum of the optimization problem exists. It follows by the
preceding Lemmas that(y − x)1 > 0. Next notice that, in passing fromhb to ha, all vectors
in A(hb) have their first component incremented by a positive number and hence their distance
from P either decreases or stays the same. It follows that

d(A(hb), P ) = δb ≥ d(A(ha), P ) = δa

as we wanted to show.

Now we can state the following main:

Theorem 9.5. The sequence{hi} converges toma and the sequence{yi − xi} converges to
zero.
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Proof. As long ashi > ma, (v̂(hi) + R(Ĝ)) ∩ P = φ and (yi − xi)1 > 0, by virtue of
the last Lemma. If, instead,hi = ma the sequences of cycles is arrested. Thus not only the
formula to adjournhi is consistent, but also∆hi > 0. This means that the sequence{hi} is
strictly decreasing. Next we show that, unlessxi = yi, hi > ma implies hi+1 ≥ ma. In
fact when we changehi to hi+1, the affine space translates by a vector∆hie

1. Projecting this
translation on the subspace generated byyi − xi we obtain exactlyyi − xi. The projection on
the orthogonal complement tell us that the affine space translates within the support hyperplane
to yi + (yi − xi)

⊥. The first translation makes the two disjoint sets set intersect. The second
either leaves the intersection still non-void, and hence the two sets at stepi + 1 are in tangency
position and the procedure is arrested, or it detaches the affineA(hi+1) from the coneP . In the
first case we havehi+1 = ma and the algorithm stops because the minimum distance is zero. In
the second casehi+1 > ma. Thus we can say that, unless the algorithm stops in a finite number
of cycles,{hi} converges to someht ≥ ma and{∆hi} converges to zero. Notice that because
projection is a contraction we have:

∆hi = ‖∆hie
1‖ ≥ ‖yi − xi‖ ≥ (yi − xi)1 > 0

Hence{δi = ‖yi − xi‖} and{(yi − xi)|1} all converge to zero. Supposeht > ma. Then, by
the last Lemmaδi ≥ δ(ht) > 0. But this is a contradiction because we know that{δi} → 0.
Henceht = ma and the proof is finished.

Once one has computed the maximum, the next step to complete the computations is to
determine the feasible slack vector. For sufficiently highi the vectoryi approximates, to any
degree of accuracy a feasible slack vector. Finally, via a pullback to the solution space ([4]) one
can find a solution of the LP problem.

10. FINITE DIMENSIONAL APPROXIMATIONS

To move closer to numericall applications, we now investigate, in the first place, finite di-
mensional approximations for feasible bounded and definite LP problems.

We need in the first place to establish some notations. We are interested to certain finite
dimensional relaxations of the original optimization problem.

Definition 10.1. The problem of maximizing the functional(f, .) under the constraints system
given by the firstn inequalities is called then− th (finite) relaxation of the given problem.

In this case the range space isRn+1, but we keep using the same symbolP for all positive
cones. We callzn the feasible region (a polyhedron of course) in the domain space, necessarily
non-void, of then− th relaxation andz the feasible region of the original problem. Obviously
zn ⊃ z andzn ⊃ zn+1. We callmn the maximum of then − th relaxation, where+∞
maxima are used to indicate that the relaxation is unbounded.

Now we can state the following:

Theorem 10.1.Suppose that the optimization problem is feasible bounded and definite with
maximumma. Then there exists an integerk such that, forn > k, thenth relaxation is bounded.
Moreover, the sequence of maxima{mn} of the finite dimensional relaxations converges toma.

Proof. We claim∩{zn} = z. In fact∩{zn} ⊃ z is obvious. On the other hand ifx ∈ ∩{zn}
then∀i, (gi, x) ≤ vi and sox ∈ z. Next suppose that∀n, mn = ∞. This would mean that if
we takeµ > ma

zn ∩ {x : (f, x) ≥ µ} 6= φ

which implies, since{zn} is decreasing and∩{zn} = z,

z ∩ {x : (f, x) ≥ µ} 6= φ
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which is a contradiction. Thus there exists an integerk such that, forn > k, thenth relaxation
is bounded. At this point we can say that the non increasing sequence of maxima of finite
relaxations{mk} converges to somem with ∞ > m ≥ ma. If m = ma we are done.
Suppose instead thatm > ma. Denote byxma a solution of the problem and note thatxma is
a support point forz with supporting functional(f, .). Considerη with m > η > ma and the
hyperplane:

Hη = {x : (f, x) = η}
Now notice that:

Hη ∩zk 6= φ, ∀k ⇔ Hη ∩ (∩{zk}) 6= φ ⇔
Hη ∩z 6= φ

Because this latter is false, it follows that∃j such that fork > j, Hη ∩zk = φ. But this implies
lim{mk} < η < m. Since this is a contradiction we can conclude thatm = ma and the proof
is finished.

In the final part of this Section we investigate finite dimensional approximations for the min-
imum distance problem. We considerv ∈ l2, a closed linear subspaceF and assume that
(v + F ) ∩ P = φ. We also consider the subcones ofP :

Πi = Co({ei : i = 1, .., n + 1})
The linear spacesFi = PF (L(Πi)) are a finite dimensional subspaces ofF (and thus they are
closed). Clearly(v + Fi) ∩ Πi = φ, and minimum distance pairs for this two sets surely exists
just in view of their finite dimensionality.

Now we can state the following:

Lemma 10.2. Assume(v + F ) ∩ Πi = φ, ∀i. For anyi, (v + F ) − Πi is closed, and thus the
problem of minimum distance between the setsv + F andΠi admits solution. Moreover, a pair
of pointsxi andyi solve the minimum distance problem for(v + F ) andΠi if and only if they
solve the minimum distance problem forv + Fi andΠi.

Proof. First we prove thatF + Πi is closed. For this purpose the indexi is irrelevant and so
we fix an arbitraryi and omit the corresponding subfix. It is easy to verify that:

F + Π = F + PF⊥Π

Now notice thatPF⊥Π is a finite dimensional polyhedron and therefore is closed. Thus, apply-
ing the Lemma 3.1, it follows thatF + Π is closed and so the first statement is proved. Next
note that the projectionx on v + F of a pointy ∈ Πi must stay inv + Fi and is a fortiori the
unique point ofFi, that has minimum distance fromy. Thus the projection ofy onF andFi are
the same. Now an application of Lemma 2.1 leads to the desired conclusion.

Our last Theorem give the finite dimensional approximations for the minimum distance prob-
lem relative to the setsv + F andP .

Theorem 10.3.Given a closed subspaceF , strictly tangent toP , and v ∈ l2, consider the
sets(v + F ) and P , assuming(v + F ) ∩ P = φ. Let δ = ‖w − y‖, where w andy are a
pair of points solving the minimum distance problem relative to the sets(v + F ) andP . Let
δi = ‖wi − yi‖ wherewi andyi solve the minimum distance problems for the sets(v + F ) and
Πi (or, equivalently,(v + Fi) andΠi in view of the preceding Lemma). Then{δi} → δ.

Proof. Clearlyδi ≥ δ and the sequence{δi} is non-increasing since the sequence of sets{Πi}
is increasing. Thus{δi} → δf ≥ δ. Now let γi = PΠi

(w), and notice that, as it is readily
verified,{γi} → y. On the other hand it is evident that:

‖w − γi‖ ≥ δi ≥ δf
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Passing to the limit{‖w − γi‖} → δ and therefore:

δ ≥ δf

It follows thatδ = δf and we are done.

Let’ give an example of how these finite dimensional approximation results might be applied
(under the same assumptions made at the beginning of the preceding Section). One can first
approximate the maximumma to an arbitrary degree of precision using Theorem 10.1. In
fact we proved that the sequence of maxima of finite dimensional relaxations is monotone and
converges toma. Thus we can define a stopping criterion requiring that the increment become
sufficiently small. Letµ be such an approximation. Once we are done with this first phase, we
can exploit Theorem 10.3 to estimate the distance

∆ = d((v̂(µ) +R(Ĝ)), P )

In this case too we have a monotone non increasing sequence{δi} converging to∆ and we can
proceed in a similar fashion. Note that the estimate of∆ can give us a better idea of how good
was the estimateµ of ma (since of course if it wereµ = ma then it would follow∆ = 0). If we
are unsatisfied because we regard∆ as being too large, we might go back to the first phase and
improve the approximation ofma. Once we are done with both phases, we will have at hand
also two vectors, saywl andyl coming from the final step of the second phase. Now we can
takewl ∈ (v̂(µ) +R(Ĝ) as the approximate slack vector solution (in the range space) for the
LP problem. A pull back to domain space will yield the corresponding approximate solution in
the domain space.

11. PREVIOUS RESULTS AND THE PRESENT GENERALIZATIONS

The preceding paper [4], was devoted to the theory of polyhedra generated by operators with
closed range.

The bulk of this paper deals with the study of the slack set(v + R(G)) ∩ P . Because the
two intersected sets are closed, the slack set is closed too, and no technical problem about
non-closed sets arises.

In a few places we did use the feasibility coneR(G) + P . In this respect there was an error:
the feasibility cone was stated to be closed whenR(G) is closed, but this is not true in general.
The correct result is given in the present paper: the feasibility cone is closed whenR(G) is
closedandstrictly tangent toP . Thus a few additional corrections must be made, in the places
where the erroneous result was applied. Corrections which, luckily, lead only to either slight
variants or no modification at all according to the cases.

In the intern case, we have proved here that the feasibility cone is dense and hence it is not
the whole space in general. However, this changes very little: instead of feasibility we have
an "almost feasibility" property (that is, a non feasible problem can be made feasible by an
infinitesimal perturbation of bounds) and, furthermore, when feasibility stands, it gives rise to
an unbounded problem, just as it was stated in the previous paper. Therefore it is confirmed that
the intern case has no practical relevance for optimization purposes.

As to the weakly tangent case, we have shown in the present paper that, despite the fact
that the intern relaxation enjoys only a weaker density property, the existence of the strictly
tangent relaxation goes through in infinite dimension. However, the extension of the optimal
solution of the strictly tangent relaxation to the original system is weakened, in general, to
approximate solution. The correct proofs are given here only, but the existence of the strictly
tangent relaxation was also stated in the previous paper, and all its consequences drawn therein
are anyway correct.
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It is also useful to relate to the previous paper the generalizations obtained in the present
paper. Regarding the relative position of a subspace and the positive cone, one has to bear in
mind that, to allow a more general setting, where ranges may well be non-closed, the definition
of strict tangency and internality have been changed accordingly (in Section 3 here).

We also stress that among the three cases (strict tangency, internality and weak tangency)
strict tangency is by far the most important case. This is because the case of intern range has
no practical relevance, and the technique for dealing with weakly tangent cases is to report the
problem to the strictly tangent case, via the strictly tangent relaxation.

We give here not only a new proof that ifF is closed and strictly tangent toP , thenF + P
is closed, but also provide generalizations regarding the strictly tangent case with non closed
subspaceF in Section 3 and Section 7. The results in Section 7 here are of particular importance
as explained in the Introduction. Indeed they demonstrate that the range space approach to LP
as powerful in infinite dimension as it is in finite dimensions, despite the technical hurdle of
non-closed ranges.

In the intern case too we have generalized here our analysis to both closed and non-closed
ranges. The results turn out to be practically the similar in both cases.

Finally we stress that in [4] there were, outside of the main expository line, a few glimpses
on possible generalizations for the case of non-closed ranges. These were base on a erroneously
cited elementary computation of general topology, and were therefore wrong. The only gener-
alizations of this kind are those given here, and so reference for this specific issue must be made
to the present paper exclusively.
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