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2 PREM NATH AND DHIRAJ KUMAR SINGH

1. INTRODUCTION

Forn =1,2,... let, = {(21,...,2,) :2; >0,i=1,...,n;) ., p; = 1} denote the
set of all finite discreten -component complete probability distributions with nonnegative ele-
ments. Throughout the sequé, will denote the set of all real numbers aid= {z € R: 0 <
x <1}.

For any probability distributionz;,...,z,) € I',, n=1,2,...

(11) Hn(xlv"‘7x’rL> - _inlogQ'xi
i=1

with H, : T, = R, n=1,2,... and0log, 0 = 0 are called the Shannonl [8] entropies. Itis
obvious that

Hy(x1,...,2,) = Zﬁ(xi)

forall H, : T, = R, (z1,...,2,) € T,, n = 1,2,... whereh : I — R is a mapping
defined as

(1.2) h(z) = —zlog, x

forall x € I. The mappingh : I — R, defined by), is known as the generating function
of the sequencéd,, : ', — R, n = 1,2,... of the Shannon entropigs (1L.1) which are additive.

The expressiory ., h(z;) is known as the sum form representation of the Shannon entropies

..
Havrda and Charvat [4] introduced axiomatically the nonadditive entropies of degke
fined as

(1.3) HY (21, .. my) = (1— 21_0‘)_1 (1 — fo‘)

with H2 : T, = R, n=1,2,...; a € R, a >0, a# 1 and0* := 0, 1* := 1 for all
a # 1. They calleda the characteristic parameter. Here, too, it is clear that

Hy(xy,...,z,) = Z Zo(T4)

=1

where the mappings, : I — R, a € R,a > 0, # 1, are defined as
(1.4) zo(2) = (1 — 21_0‘)71 (x — )
forall x € I with 0% :=0,1“:=1,forall « # 1, > 0,a € R. The mappingz, : [ — R,
defined by[(1.]4), is known as the generating function of the sequéfjce I', — R,n =
1,2,... of the nonadditive entropies. The expressipif_, z,(z;) is known as the sum form
representation for the entropid$? : I', - R,n=1,2,....

With the purpose of giving a joint characterization of the entropies (1.1)and (1.3), Taneja [7]
considered the functional equation
(1.5) DO hlwiy) =Y fla) > gly;) + > k()
] =1

i=1 j=1 i=1 j=1

whereh: I - R, f: I >R, g: 1 >R, k: I —->R, (x1,...,2,) €0y (Y1,---,Ym) €
I, andn =1,2,...; m =1,2,.... By assuming each of the mappingsf, ¢ and k to be
continuous on the interval, he determined various solutions|of (1.5) for@lh, ..., z,) € T,
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Y1y Ym) € Ty n=1,2,...; m = 1,2,... and finally characterized the entropil.l)
and [1.3) by assuming(1) = 2(0) and h(}) = 3.

Dial [3] assumed the mappings, f,g and k£ to be measurable in the sense of Lebesgue;
found the solutions of (1]5) for alfzy, ... ,z,) € Ty, (y1,- .., Ym) € Ty, n,m = 2,3; and
also finally characterized the entropies [1.1) and (1.3) by assufi{ing= 1(0) and i (3) = ;.

The object of this paper is to determine the general solutiorjs df (1.5) ferall ... z,) €
Ly (Y1,---,ym) € 'y n >3, m > 3 arbitrary but fixed integers. Notice that no regularity
condition has been imposed upon any of the mappings ¢ and % .

During the process of finding the general solutions[of|(1.5) for(all,...,z,) € T,,
(y1,---»ym) € T'm, n > 3, m > 3 fixed integers, the authors have come across the func-
tional equation
(1.6) D> Glay) = Flx)Y Gly) + Y Gla:) +n(m — 1)G(0)

i=1 j=1 i=1 j=1 i=1
inwhichG: I —-R, F: 1 >R, (z1,...,2,) €0y (Y1, Ym) € T

The general solutions df (1.6), for alk:y, ..., z,) € Ly (Y1, Ym) € Ty >3, m >3
fixed integers, have been investigated in sedtion 3. Making use of these solutions, the corre-
sponding general solutions ¢f (IL.5) have been investigated in sé¢tion 4. To develop $ections 3
and 4, some general definitions and results are needed and these have been stated|if section 2.
Finally, some general comments and observations have been mentioned in[ection 5.

2. SOME PRELIMINARY RESULTS

Let A ={(z,9):0<2<1,0<y<1,0<z+y <1} denote the unit closed triangle. A
mappinge : I — R is said to be additive or if it satisfies the equation
e(z+y) =e(x) +e(y)

for all (z,) € A. AmappingE : R — R is said to be additive orR if it satisfies the
equation

(2.1) E(x +y)=E(x) + E(y)
forall z € R,y € R. Itis known [2] that if e : I — R is additive on/, then it has a unique
additive extensiorEZ : R — R inthe sense thakl : R — R satisfies|(2]1) for alk: € R,y € R
and E(x) =e(x) forall z € I.

A mapping M : I — R is said to be multiplicative ol if

(2.2) M(0) =0

(2.3) M) =1

and

(2.4) M(zy) = M(z)M(y)

forall z €]0,1[, y €]0,1] where]0,1[={z € R: 0 <z < 1}.
Notice that in the sense of this definition, the mappidds : 7 — R and M, : [ — R,
defined as

forall z € I and
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forall x € I, are not multiplicative mappings a&/;(1) =0 # 1 and M(0) =1 #0.

Result 2.1([9]). Supposer is a given constant and a mapping I — R satisfies the equation

Z p(r;) =c

for all (z1,...,z,) € 'y, n > 3 a fixed integer. Then there exists an additive mapping

A : R — R such that

pla) = Ale) ~ A+ ©

n
forall z € I.

Result 2.2([5]). If a mappingG, : I — R satisfies the functional equation
(2.5) DO Galwiys) =D Gilw) + > Gily))
i=1 j=1 i=1 j=1

forall (z1,...,2,) € T, (y1,...,ym) € I'm, n >3, m > 3 being fixed integers, thetr;
is of the form

ct+cenm—n—m)r+a(x)+ D(x,z) if 0<zx<1
(2.6) Gl(x):{c ( )z + a(x) + D( >M:O

where ¢ = G1(0) is an arbitrary real constanty : R — R is an additive mapping;
D :Rx]0,1] — R is additive in the first variable and there exists a mappihgR x R — R,
additive in both variables, such that(1,1) = a(1), and

(2.7) D(zy,zy) — D(zy,z) — D(zy,y) = E(z,y)
holds for all = €]0,1], y €]0,1] where]0,1] ={z e R: 0 <z < 1}.

Notice that if we putz =y = 1 in (2.7) and use£(1,1) = a(1), we get
(2.8) a(1)+ D(1,1) =0.

Note. The functional equatioif (2.5) is due to Chaundy and Mcleod [1] who came across it while
studying some problems in statistical thermodynamics.

Result 2.3([6]). Supposel’ : I — R is a mapping which satisfies the functional equation

2.9) > Y T(wiy)=> T(x:) Y T(y;)+ (m—n)T(0)> T(y;) +m(n—1)T(0)

i=1 j=1 i=1 j=1 j=1
forall (z1,...,2z,) €T, (y1,...,ym) € ['m; n >3, m > 3 being fixed integers. Then, any
general solution of2.9)is of the form

(2.10) T(x) =1a(x)+1T(0)

wherea : R — R is an additive mapping with

2.11) {au) = —mT(0) if T(1)+ (m—1)T(0)#1 or
a(l)=1—mT(0) if T(1)+ (m—-1)T(0)=

or

(2.12) T(x) = M(x) —b(z)+T(0)

whereb : R — R is an additive mapping with

(2.13) b(1) = mT(0)
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and M : I — R is a nonconstant nonadditive mapping which is multiplicative in the sense that
it satisfies2.2), (2.3)and(2.4)for all = €10,1[, y €10, 1[.

Below, we prove a result which is similar to Regult]2.3.

Result 2.4. SupposeF; : I — R is a mapping which satisfies the functional equation

n

2.14) > ) Fi(zy;) = > Fi(x) Z Fi(y;)+(n=m)Fy(0) Y Fi(z;)+n(m—1)F(0)

i=1 j=1 i=1 i=1

forall (zq,...,2,) € Ty (v1,---,ym) € T'ms n >3, m > 3 being fixed integers. Then, any
general solution of2.14)is of the form

Fi(z) = by(z) + F1(0)
whereb; : R — R is an additive mapping with
{51(1) = —nF(0)  if Fi(1)+ (n—1)F(0)#1 or
bi(1) =1—-nF1(0) if Fi(1)4(n—1)F(0)=1
or
Fi(x) = M(z) — b(z) + F1(0)
whereb : R — R is an additive mapping with
b(1) = nFi(0)

and M : I — R is a nonconstant nonadditive mapping which is multiplicative in the sense that
it satisfies(2.2), (2.3)and(2.4)for all = €]0,1[, y €0, 1[.
Proof. Let us write [[2.144) in the form

(2.15) ZZFl(xiyj):ZFl(xi) ZF1<yj)+<n_m)Fl<0) +n(m —1)F1(0).

i=1 j=1

Define the mapping': I — R as

(2.16) T(z) = Fi(x) + (n —m)F(0)z

forall z € I. Then equatiorf (2.15) reduces to equatjon|(2.9). Ffom|(2.16), it follows that
T(0) = F1(0)

and

T(1) = Fi(1) + (n — m)Fy(0).

Now, from Resulf2]3 and the above observations, the required solutiops df (2.14) follow by
defining the mappings; : R — R andb: R — R as

bi(z) = a(x) — (n —m)F(0)x

and

b(x) =b(x) + (n —m)F1(0)x
forall x € R. Notice thatb, : R — R andb: R — R are additive g
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3. THE FUNCTIONAL EQUATION (1.6)

The main result of this section is:

Theorem 3.1.Let F': I — R, G : I — R be mappings which satisfy the functional equation
(1.6)for all (z1,...,2,) € Ty, (Y1,...,Ym) € T; n > 3, m > 3 being fixed integers.
Then, any general solution dfL..6)is of the form(for all = € I):

)~ Ly L
(3.1) ] G(0) G0)z+a(x)+ D(z,z) fO0<zx<1
1 G(0) if 2=0
or
52) { F(e) = Ta(e) = Shi(1)
G(z) = ba(z) + G(0)
or
F' is an arbitrary real-valued mapping
&3 { G(2) = bo(e) = —ba(1)

with by(1) = — mG(0) or

(3.4) { F(x) = M(x) + by(x) - %64(1)
G(z) = — [bs(1) +mG(0)] M () + bs(x) + G(0), bs(1) + mG(0) # 0

whereb; : R — R (i =1,2,3,4), b; : R — R (j = 1,2) are additive mappings)M : [ — R
is a nonconstant nonadditive mapping which is multiplicative in the sense that it safSHgs
@.3)and(2.4)forall = €]0,1[, y €]0,1[;and a : R = R, D : Rx ]0,1] — R are as
mentioned in ResuR.2

Proof. Let us write [1.6) in the form

> {ZG(WJJ‘) = Gly) ) Flw) =y, ZG (2 } — n(m —1)G(0).

j=1 Li=1

By Resul, there exists a mapping: I', x R — R, additive in the second variable, such
that

—G(y) Y Flz:)—y Y Gla:)
(3.5) i=1 i=1 i=1

Puttingy = 0 in (3.5) and making use of the fact thal(z,, .. ., z,;0) = 0, we get

mZF(xl)—n]

(3.6) Az, ... 20 1) = G(0)
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forall (zy,...,z,) € I',. Equations (3.5) and (3.6) give

Y Glay) —[Gly) = GO)] Y Flx;) —y Y Glz)

=1 =1 =1

Let (r,...,7m,) € ', be any probability distribution. Putting = r,...,r, successively

in ), adding the resulting equations and using the additivity of in the second variable,
we obtain

(3.7)

n

D Flx) =) Gla)

i=1 =1

38 ; ; G(xiry) — ; G(r;) — nG(0)

= A(z1,...,7,;1) + n*G(0).
From (3.6) and[(3]8), it follows that

> ) Glar) = n(n — 1)G(0)

i=1 t=1

— [Z G(ry) + (m —n)G(0)

The left hand side of (3]9) is symmetric iy and r,. So, the right hand side df (3.9) must also
be symmetric inx; andr;. This gives the equation

Z F(x;) + Z G(z;)
Z F(ry) + Z G(ry)

(3.9)

n n

> G(r1) + (m —n)G(0)

Z G(z;) + (m — n)G(0)

which can be written in the form

[Z G(ry) + (m —n)G(0)

ZF(:@) - 1]
> F(r) - 1] :

Case 1.) " , F(x;) — 1 vanishes identically od’,, . This means that

(3.10)

Z G(z;) + (m — n)G(0)

(3.11) iF(wi) =1

holds for all (z1,...,,) € T,. By Resul{ 2., there exists an additive mapping R — R
such that
1

1
forall = € I. The substitutionz = 0 in (3.12) and the use of the fact that(0) = 0 gives

bi(1) = 1 — nF(0).
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From (1.6) and[(3.11), we obtain the equation

(3.13) EZE:GWMJZE:G@D+§:G@0+nmw—UGm)

i=1 j=1
Define the mapping=; : I — R as
(3.14) Gi(p) = G(p) +n(m — HG(0)p
forall pe I. Then
(3.15) G1(0) = G(0).
Moreover, G; satisfies the functional equatidn (R.5). Making use of Résult 2.2, and equations
(3.14) and|(3.15), it follows that
a)_{G@—wﬂmn+M@+D@w)ﬁ0<x§1

(3.16) G(0) if z=0.

Equations[(3.72) and (3.[16) constitute the solutjon|(3.1) of equdtioh (1.6) widnd D as
mentioned in Result2.2.

Case 2.7 | F(z;) — 1 does not vanish identically ofi,, . Then there exists a probability
distribution (z7,...,z}) € I';, such that

(3.17) jiF@ﬂ—l#Q

Choosingz; = =7, i = 1,...,n in (3.10), making use of (3.17) and performing the necessary

71

calculations, it follows that

(3.18) > G(ry)=c

E:me—q—@n—mam)
where

CcC =

E:F@D—q I;:G@D+On—MG®4.

Case2.1.c=0.
In this case|[(3.18) reduces to

(3.19) > G(r) = (n—m)G(0).

Proceeding as in the case df (3.11), it follows that there exists an additive mapping
by : R — R with

(3.20) by(1) = —mG(0)
such that

1
(3.21) G(z) = ba(z) — EbQ(l)

forall z € I. From [3.21) and (3.20), it is easy to conclude that

(3.22) > Gly;) =0
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and

(3.23) > D Gla;) = m(n —1)G(0)
i=1 j=1
hold for all (z4,...,z,) € I, and (y1,...,ym) € I'y; n > 3, m > 3 being fixed inte-
gers. From[(1]6)](3.19), (3.R2) ar{d (3.23), it follows ttfatcan be any arbitrary real-valued
mapping. This statement, together with (3.20) and (3.21), constitute the sofutipn (3.3) of (1.6).
Case 2.2.c#0.
Let us write [3.IB) in the form

n

D [G(ry) = cF(ry)] = (n — m)G(0) —c.

t=1

By Resul{ 2.1, there exists an additive mappidg R — R such that

(3.24) G(z) — cF(x) = A(x) — %A(l) + %{(n —m)G(0) —c}
for all z € I. The substitutionz = 0 in (3.24) and the use ofl(0) = 0 gives
(3.25) A1) = enF(0) — mG(0) — c.

From (3.24) and (3.25), it follows that

(3.26) G(z) = c[F(z) — F(0)] + A(x) + G(0)

forall = € I. From [3.25) and (3.26), the following three equations can be derived:

327) > Glawy) =cY > Flaw,) — cn(m — 1)F(0) +m(n — 1)G(0) — ¢

i=1 j=1 i=1 j=1

(3.28) Z G(z;) = CZ F(z;) + (n —m)G(0) — ¢
(3.29) Z G(y;) = CZ F(y;) 4 ¢(n —m)F(0) — c.

From (1.6),[(3.2]7),[(3.28), (3.29) and the fact that 0, it follows that
(3.30) Y > F(zy) = Z F(x;) Z F(y;) + (n —m)F(0) Z F(z;) +n(m — 1)F(0).

i=1 j=1

Thus F satisfies[(2.14) for al{z1,...,z,) € Ty, (y1,-..,Ym) € I, n >3, m > 3 being
fixed integers. But we need only those solutions for whicli_, F'(z;) — 1 does not vanish
identically onT',, . Making use of Result 2|4, there are only two possibilities which we discuss
below:

The first possibility is thatF" is of the form

F(z) = by (z) + F(0)

forall z € I whereb, : R — R is an additive mapping withh;(1) = —nF(0) if
F(1)+ (n = 1)F(0) — 1 # 0, as the conditionF'(1) + (n — 1)F(0) — 1 # 0 ensures that
> w F(xz;) — 1 does not vanish identically of,, . Hence

(3.31) Flz) = Bu(z) — %51(1).
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From (3.31),(3.26) and the faét (1) = — nF(0), it follows that
G(z) = cby(x) + A(z) + G(0), ¢#0
forall z € I. Defineb, : R — R as

(3.32) by(x) = cby(x) + A(x)
forall x € R. Thenb, is additive and
(3.33) G(7) = by(x) + G(0)

forall =z € I. Making use of (3.@2) 3.25) and the fact that1) = — nF(0), it follows that

ba(1) = —mG(0) — c. Equations|(3.31) andl (3.83) constitute the solu. 1(3.2) 2) of (1.6).
The second possibility is that

(3.34) F(z) = M(x) —b(z) + F(0)

whereb : R — R is an additive mapping with(1) = nF(0) and M : I — R is a nonconstant
nonadditive multiplicative mapping.
We claim that, in this case als, ., F(z;) — 1 does not vanish identically ofi,, . Suppose
our claim is false. This means that
> Fla) =1
=1

forall (zi,...,z,) € I',,. Also, from ), using the fact thaf1) = nF(0), we have

n n

forall (zy,...,2,) €I, .So

> M(x) =1

=1
forall (z1,...,z,) € I',. Then by Result 2]1, there exists an additive mappihg R — R
such that

M(z) = B(z) — %3(1) 41

forall z € I. Puttingz = 0 in the above equation and using the fact th&{0) = B(0) =0,
we obtainB(1) = 1. So,

M(zx) = B(x)
for all x € I. This means thatV is additive, thereby, contradicting the fact thaf is
nonadditive.

From [3.26) and (3.34), we have
(3.35) G(x) = eM(x) — eb(z) + A(z) + G(0)
forall x € I. Letus define a mapping; : R — R as
(3.36) bs(z) = —cb(z) + A(x)
forall x € R. Thenb; is an additive mapping. Also, from (3/35) afnd (3.36), it follows that
(3.37) G(z) = cM(x) + bs(x) + G(0)

forall = € I. Puttingp = 1 in (3.38), making usd (3.25) anb(1) = nF(0), it is easy to
conclude that

(3.38) ¢ = — [b3(1) + mG(0)].
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From (3.37) and (3.38), we have

(3.39) G(z) = —[bs(1) + mG(0)|M (z) + bs(z) + G(0), [b3(1) + mG(0)] # 0.
Let us define a mapping; : R — R as
by(z) = — b(x)

forall z € R. Thenb, is additive. Equatiorf (3.34) can now be written as
1
(3.40) F(x) = M(z) 4+ by(x) — ﬁb‘l(l)
forall = € I, with b,(1) = —nF(0). Equations[(3.39) andl (3.40) constitute the solutjon| (3.4)
of (1.6). This completes the proof of Theorgm|31.
4. THE FUNCTIONAL EQUATION (1.5)
The main result of this paper is the following:

Theorem4.l.leth: I —- R, f: I - R, g: 1 — R andk: I — R be mappings which
satisfy equation| (1]5) for al(z1, . . ., ) € Ty (Y1, .., Ym) € Ty m >3, m > 3 being
fixed integers. Then, any general solution[of(1.5) is of the form

h(e) = A4(a) + (O
F(@) = As(a) = —Ay(1)

(51) g isan arbitrary?eal-valued mapping
() = As(x) — ~ [A5(1) ~ Ay(1)  nm A(0)]

or

(h(z) = (1) + (0 = DO {ba(x) + 9(1) + (m — Dg(O)}x} + Bl) + h(0)

f is an arbitrary real-valued mapping

S L) =b@) +g0) + (m— 1)g(0)]z — (1)

k() = [F(1) + (= DFO)] #2(2) + g(1) + (o — Do 0]}

~[g(1) + (m = Dg(O)] /(@) + B*(x) + - [B(1) = B(1)] +m h(0)

or
(h(a) = [£(2)+(n-1)F0)] {lo(1)~(O)]+a(x) + Dz, x)} + Bla) + (0
if 0<z<1
= h(0) if =0
) =) + (0= D] ) — Tou1) +
o(2) = (1) ~ 9O + a(a) + D(a ) +9(0) W 0<w <1
(S3) = ¢(0) if =0
@) = (1) + (n = 1)F0)] {lo(1) — 9(O)]z + a(z) + D, )}

n

= 1F)+ (0= SO0 + = Do) {b0) — Tu(1) 41}
+ B*(z) + %[Eu) — B ()] +mh(0) ifO0O<z<l

= L[B(1) =B ()]~ [£0)+(n—1)F(0)]lg1)+ (m—1)g(0)][1 by (1)
+mh(0) ifxz=0
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() = [F0) + (1= DFONT5(1) + ma()] M (x)
+19(1) + m — 1 (O)}x + bafa)} + Bla) + h(0)

@) =170 + (0= D] { M) + 1o —%m )

o) = ~[bs(1) + ma(O)M(z) + [o(1) + (m — Dg(O) + by(x) + 9(0)

b3(1) + mg(0)] M (x)
+0s(2)} = [g(1) + (m — 1)g(0)]

<L) + (0= D01 { M) + o) - 200}

1
+ B*(z) + E[B(l) — B*(1)] + mh(0),

[ (b3(1) +mg(0) # 0, [f(1) + (n — 1) £(0)] # 0)

whereB:R - R, B*:R—R, A,:R—R (i=1,2,3),b:R—=R (j=1,2,3,4) are

additive mappingsM : I — R is a nonconstant nonadditive mapping which is multiplicative

in the sense that it satisfi¢®8.9), (2.3)and (2.4)forall = €]0,1[, y €]0,1[;and a : R — R,

D :Rx ]0,1] — R are as mentioned in Res{lt 2.2.

(S4) k(z) =[f(1) + (n = 1) f(O){-
[

Before giving the proof of this theorem, we need to prove some lemmas.
Lemmad4.2.1f h: I — R, k: I — R are mappings which satisfy the functional equation
(4.1) DO hlwiyy) =) k)

i=1 j=1 i=1

forall (z1,...,2,) €Ty, (y1,...,ym) € [y n >3, m > 3 being fixed integers, theh and
k are of the form

(4.2) h(z) = Ay(x) + h(0)
1
(4.3) k(z) = As(z) — E[AQ(l) — Ay(1) — nmh(0)]
where 4; : R — R (i = 1,2) are additive mappings.
Proof of Lemm@.d. Chooser; = 1,2, = ... = z,, = 0 in (4.1). We obtain the equation

Z h(y;) = k(1) + (n = 1)k(0) — m(n — 1)h(0)

forall (y1,...,ym) € I'y,. By Resulf 2.1L, there exists an additive mappifag: R — R such
that

(4.4) h(z) = Ai(x) — %Al(l) + %{k(l) + (n —1)k(0) — m(n — 1)h(0)}
forall x € I. The substitutionz = 0 in (4.4) gives
(4.5) Ai(1) = k(1) + (n — 1)k(0) — nmh(0)

as A;(0) = 0. On putting this value ofd;(1) in (4.4), [4.2) follows. Now, from[(4]2)] (4]5)
and [4.1), the equation

Z k(z;) = k(1) + (n — 1)k(0)
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follows for all (1,...,,) € T, . By Resulf 2.]L, there exists an additive mappiig: R — R
such that

(46) K(w) = Ax(e) = A1) + —{k(1) + (2 = D)}

forall z € I, with Ay(1) = k(1) — k(0) . From [4.5) and[(4]6)[ (4.3) follows. This completes
the proof of Lemm& 4]2a

Lemma 4.3.If the mappingsh : I — R, f: I - R, g: I — R andk: I — R satisfy the
functional equation (1]5) for allzy, ... ,z,) € Iy, (Y1,...,Ym) € T'm; n >3, m > 3 being
fixed integers, then the mappingsand ¢ also satisfy the functional equation

FD)+ (=1 0] glawy))

i=1 j=1

m n

@7 =2 @)Y g + )+ (0= 1DFO) D glw) — [9(1) + (m = 1)g(0)]

% D~ F @)+ n(m = DgOF (1) + (n ~ DI O]
Proof of Lemmg.3. Puttingz; = 1,2, = ... =z, = 0 in (1.5), we obtain the equation
Z{h(yj) —[f(Q) + (n = 1) f(0)lg(y;)} = k(1) + (n — 1)k(0) — m(n — 1)h(0)

forall (yi,...,ym) € [y By Resul{ 2.1, there exists an additive mappig R — R such
that

(4.8) h(z) = [f(1) + (n = 1) f(0)][9(z) — 9(0)] + B(z) + h(0)
forall x € I with

(4.9) B(1) = m[f(1) + (n — 1) £(0)]g(0) + k(1) + (n — 1)k(0) — mnh(0).
Making use of the equations (#.8) and (4.9)in|1.5), we obtain the equation

Z () Z g(y;) + Z k()

(4.10) o

= O+ (=1 O] |32 glig)=m(n = Dg(0)| +k(1)+(n — Dk(0)
forall (xi,...,2,) €Ty, (v1,...,ym) € Iy . The substitutiony; = 1,40 =... =y, =0 in
@10) gives
way 90+ On = DgOLfe) + k) = £1) + (0= D O)lg(r)}

= (m —n)g(O)[f(1) + (n = 1) f(0)] + k(1) + (n — 1)k(0)

forall (zy,...,z,) € T',,. By Resul{ 2.1, there exists an additive mappifg: R — R such
that

k(x) = [f(1) + (n = 1) f(0)][g(x) = g(0)] = [g(1) + (m — 1)g(0)][f (x) — f(0)]

(4.12) + B*(z) + k(0)
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forall x € I with
(4.13) B*(1) = mg(0)[f(1) + (n — 1) f(0)] —nf(0)[g(1) + (m — 1)g(0)] + k(1) — k(0).

Elimination of }_" | k(z;) from (4.10) and[(4.11) gives equatidn (4.7). This completes the
proof of Lemmd 4.3

Proof of Theorer.]. We divide the discussion into two cases:

Casel.f(1)+ (n—1)f(0)=0.
In this case, equatioh (4.7) reduces to the equation

(4.14) {Zg(yj) — [g(1) + (m — 1)9(0)]} Z flz) =0

valid for all (z1,...,2,) € I'n, (y1,-..,ym) € Iy, such thatf(1)+ (n—1)f(0) = 0. Hence,
either

(4.15) > fl@) =0
forall (xy,...,2,) €, or
(4.16) > 9(y;) = l9(1) + (m = 1)g(0)] = 0

forall (yi,...,ym) € I',. Inthe former case, by Reslilt .1, there exists an additive mapping
As : R — R such that

(4.17) () = Ag(a) — = A5(1)

forall + € I. Keeping in view [(4.15); from[(4.14), it follows thatg" is an arbitrary real-
valued mapping”. On the other hand, usipg (4.15) in|(1.5), we obtain the equatipn (4.1) whose

solutions are given by (4.2) and (4.3). Thus, equatipns (4.2), (£.3)] (4.17) and the statgment *
is an arbitrary real-valued mapping”, constitute the solufisn)(of (1.5).

Now in the later case, by Res[ilt .1, there exists an additive mappingR — R such that
1 1

(4.18) 9(z) = Aa(z) = —As(1) + —[g(1) + (m — 1)g(0)]
for all = € I. The substitutionz = 0 in (4.18) givesA,(1) = ¢(1) — ¢(0). Making use of
this value of A4(1) in (4.18), equatior] (4.18) reduces to
(4.19) g(x) = Ay(x) + g(0)
forall x € I. Also, from [4.14) and[(4.16), one is led to the conclusioh i an arbitrary
real-valued mapping”. Sincg¢(1) + (n — 1) f(0) = 0, equations|(4]8) andl (4.12) give

(4.20) h(z) = B(z) + h(0)

and

(4.21) k() = B () = [g(1) + (m = 1)g(0)][f () = F(0)] + k(0)
forall = € I. But, from (4.9) and[(4.13), we have

(4.22) k(0) = %[F(l) — B ()] + mh(0) = f(0)[g(1) + (m — 1)g(0)].
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Making use of this value of:(0) in (4.27), we obtain
(4.23) k(z) = B(x) = [9(1) + (m = 1)g(0)] f () + %[F(l) — B*(1)] +mh(0)
forall € I. The solution, of[(1)5), consisting of (4]19), (4.20), (4.23) and the statenyeis

an arbitrary real-valued mapping” is included|i8,() if we set A4(z) = bs(z) + [g(1) + (m —
1)g(0)]x and use the fact thati,(1) = g(1) — g(0) whereb, : R — R is an additive mapping.

Case 2. f(1)+ (n—1)f(0) #0.
In this case, let us writ¢ (4.7) in the form

> {glayy) — [9(1) + (m — 1)g(0)]ay;}

i=1 j=1

(4.24) = Z {F @)+ (n = O] f (i) } Z {9(y;) = [9(1) + (m — 1)g(0)]y;}

+ Z {g(z;) — [g(1) + (m — 1)g(0)]z;} + n(m — 1)g(0).

Define the mappingg’: I — R andG : I — R as

(4.25) F(z) = [f(1) + (n = D) f(0)] 7" f(2)
(4.26) G(x) = g(z) — [9(1) + (m — 1)g(0)]x
forall = € I. Then [4.24) reduces to the equatipn1.6) as
(4.27) G(0) = g(0).

From (4.2%),((4.26) and (4.27), it can be easily verified that
(4.28) F(1)+ (n—1)F(0) =1

and

(4.29) G(1) 4+ (m —1)G(0) = 0.

In Theorenj 3.1, we have already obtained the required general solditions (3.1) to (B.4) of (1.6).
We reject [(3.R) because, in this case, the mappihgloes not satisfy| (4.28). The solutions
(3.7), [3.3) and[(314) do satisfly (4]28) and (4.29). The required solufisss and

can be obtained from the equatiops (4.25), (4.26), {4.27), (4.8)](4.13), (4.9]), (A.1B),/(3]1), (3.3)

and [3.4). The calculation work is omitted for the sake of brevity. This completes the proof of

Theorenm 4.1y

5. COMMENTS

In this section, we point out the importance of various solutions of equdtioh (1.5) in infor-
mation theory. The solutiof; )) is not of any relevance in information theory as the mapping
g : I — R is arbitrary and the summands_;_, h(z;), > ., f(z;) and > "  k(x;) are
independent of probabilities, ..., z, . The solution[G,) is also not of any relevance in in-
formation theory for the similar reason. Before we discuss the importance of so[&nin(
information theory, we mention the following:

Let (z1,...,z,) € Iy, n > 3 being afixed integer. Leb = {i : 0 < z; < 1,1 <i < n}.
Then S is nonempty. Let, be the number of elementsin S.
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From solution[S;])) and [2.8), we obtain

€S

Z h(z;) = noh(0) + [f(1) + (n — 1) f(0)] {[9(1) —9(0)] +a(1) + Y D(w, xi)}

+ B(1) 4 (n — no)h(0)

or
> hlw) = nh(0) + [f(1) + (n — 1) f(0)]
(5.1) =
X {[9(1) —g(0)] = D(L,1) + ) D(:ci,xa} +B(1).
ies
Similarly
(5.2) > f@i) = f()+(n=1)f(0)
(5.3) > 9(x:) = [g(1) + (n —1)g(0)] = D(1,1) + Y _ D, ;)

=1 i€S

> k(@) = [f(1) + (n = 1) £(0)] {— mg(0) = D(1,1) + ) D(xi,xi)}
(5.4) — i€S

+ B(1) + nmh(0).

Keeping in view the form of the Shannon entropy given[by|(1.1), it seems appropriate to choose
the mappingD : Rx ]0,1] — R defined as

D(x,y) = dzlog,y

forall x € R, y €]0,1], d an arbitrary real constant. The cage= 0 is not of much
importance. So we restrict td # 0. Now

(5.5) D(z,x) = dxlog,
forall = €10,1] and D(1,1) = 0. To accommodate the 0-probabilities, we assume
(5.6) xlir61+ D(z,z) =0

or equivalently0log,0 = 0 as d # 0. Making use of[(5.5),[(5]6)] (1.1) and the fact that
D(1,1) = 0 in equations[(5]1)[ (5]3), (5.4), we get

Z h(w:) = nh(0) + [f(1) + (n — 1) f(0){g(1) — 9(0) — dH,(21, ..., 2a)} + B(1)
Zg(%) = [g(1) + (n = 1)g(0)] — dHp (21, . .., @)

Z k(z;) = [f(1) 4+ (n — 1) f(0)]{—mg(0) — dH,(zy, ... ,z,)} + B(1) + nmh(0).

Thus we see that out of the four unknown mappings appearing in equgtion (1.5), the three
mappingsh, g and k£ are very closely connected to the Shannon entropy.
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Now, we discuss the solutiofb()

> hla) = [F (1) + (n = 1) f(0)][bs(1) + mg(0)]

=1

1- ZM(SQ)]

+ (1) + (0 =D F0)][g(1) = g(0)] + B(1) + nh(0)

Zf(mi) = —[f(1) + (n=1)f(0)] [1 - ZM(%)

+ (1) + (n=1)f(0)]

> glwi) = [bs(1) + mg(0)] [1 =Y M(xz)| +[g(1) + (n = 1)g(0)]

i=1 =1

n

D k() = [F(1) + (n = 1) f(0)][bs(1) + (1) + (2m — 1)g(0)] [1 - Z M(%)]

)+ (- DAO)g(0) + B) + nmh(0).

Taking into consideration the form of the nonadditive entropy of degregefined by [(1.B)
it seems appropriate to choose the mappiig: I — R defined asM (z) = z* for all
rel,aeRa>0,a%10 :=0and1*:=1. Then using[(1]3), the above equations give

Z h(zi) = [f(1) + (n = 1) (0)][b3(1) +mg(0)}(1 — 2"~ H} (21, .., )
+ (1) + (n =1 f(0)]lg(1) = g(0)] + B(1) + nh(0)

Zf(l‘i) == [f() + (0= DFO)1 = 27" Hy (21, ..., 20) + [f(1) + (n = 1).£(0)]

> gl@) = [bs(1) + mg(O)](1 = 2" ) Hy (w1, ) + [9(1) + (n = 1)g(0)]

S k(a) = [£(1) + (0 = D F(0)][bs(1) + g(1) + (2m — 1)g(0))(1 — 2" H (a1, ..., 2,)

= m[f(1) + (n = 1)f(0)]g(0) + B(1) + nm h(0).
Thus we see that all the four mappings f,¢g and k& appearing in[(1]5) are related to the
nonadditive entropy of degree due to Havrda and Charvat [4].
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