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2 J. HENDERSON ANDS. K. NTOUYAS

1. I NTRODUCTION

We are concerned with determining values ofλ (eigenvalues) for which there exist positive
solutions for the system of three-point boundary value problems,

(1.1)
u′′(t) + λa(t)f(v(t)) = 0, 0 < t < 1,
v′′(t) + λb(t)g(u(t)) = 0, 0 < t < 1,

(1.2)
u(0) = 0, u(1) = αu(η),
v(0) = 0, v(1) = αv(η),

where0 < η < 1, 0 < α < 1/η, and

(A) f, g ∈ C([0,∞), [0,∞)),
(B) a, b ∈ C([0, 1], [0,∞)), and each does not vanish identically on any subinterval,
(C) All of

f0 := lim
x→0+

f(x)

x
, g0 := lim

x→0+

g(x)

x
,

f∞ := lim
x→∞

f(x)

x
and g∞ := lim

x→∞

g(x)

x
exist as positive real numbers.

For several years now, there has been a great deal of activity in studying positive solutions of
boundary value problems for ordinary differential equations. Interest in such solutions is high
from both a theoretical sense [4, 7, 10, 21] and as applications for which only positive solutions
are meaningful [2, 5, 14, 15]. These considerations are caste primarily for scalar problems, but
good attention has been given to boundary value problems for systems of differential equations
[11, 12, 13, 17, 20, 23]. Of equal interest has been the intersection of questions involving
positive solutions and nonlocal boundary value problems; see, for example [1, 6, 16, 18, 19, 21,
22, 23].

Recently Benchohraet al. [3] and Henderson and Ntouyas [9] studied the existence of pos-
itive solutions of systems of nonlinear eigenvalue problems. Here we extend these results to
eigenvalue problems for systems of three-point boundary value problems.

The main tool in this paper is an application of the Guo-Krasnosel’skii fixed point theorem
for operators leaving an annular-like region in a Banach space cone invariant [7]. A Green’s
function plays a fundamental role in defining an appropriate operator on a suitable cone.

2. SOME PRELIMINARIES

In this section, we state some preliminary lemmas and the well-known Guo-Krasnosel’skii
fixed point theorem.

Lemma 2.1. [8] Let 0 < η < 1, 0 < α < 1/η; then, for anyy ∈ C[0, 1], the boundary value
problem

(2.1) u′′(t) + y(t) = 0, 0 < t < 1,

(2.2) u(0) = 0, u(1) = αu(η),

has a unique solution

u(t) =

∫ 1

0

k(t, s)y(s)ds
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wherek(t, s) : [0, 1]× [0, 1] → R+ is defined by

(2.3) k(t, s) =


t(1−s)
1−αη

− αt(η−s)
1−αη

− (t− s), 0 ≤ s ≤ t ≤ 1 ands ≤ η,
t(1−s)
1−αη

− αt(η−s)
1−αη

, 0 ≤ t ≤ s ≤ η ,
t(1−s)
1−αη

, if 0 ≤ t ≤ s ≤ 1 ands ≥ η,
t(1−s)
1−αη

− (t− s), η ≤ s ≤ t ≤ 1.

Notice that

(2.4) u(t) =
t

1− αη

∫ 1

0

(1− s)y(s)ds− αt

1− αη

∫ η

0

(η − s)y(s)ds−
∫ t

0

(t− s)y(s)ds.

From (2.4) obviously we have (see [16]) that

(2.5) u(t) ≤ t

1− αη

∫ 1

0

(1− s)y(s)ds,

and

(2.6) u(η) ≥ η

1− αη

∫ 1

η

(1− s)y(s)ds.

Lemma 2.2. [16] Let 0 < α < 1/η and assume (A) and (B) hold. Then, the unique solution of
(1.1)- (1.2) satisfies

inf
t∈[η,1]

u(t) ≥ γ‖u‖,

whereγ = min
{

αη, α(1−η)
1−αη

, η
}

.

We note that a pair(u(t), v(t)) is a solution of eigenvalue problem (1.1), (1.2) if, and only if,

u(t) = λ

∫ 1

0

k(t, s)a(s)f

(
λ

∫ 1

0

k(s, r)b(r)g(u(r))dr

)
ds, 0 ≤ t ≤ 1,

where

v(t) = λ

∫ 1

0

k(t, s)b(s)g(u(s))ds, 0 ≤ t ≤ 1.

Values ofλ for which there are positive solutions (positive with respect to a cone) of (1.1),
(1.2) will be determined via applications of the following fixed point theorem.

Theorem 2.3.LetB be a Banach space, and letP ⊂ B be a cone inB. AssumeΩ1 andΩ2 are
open subsets ofB with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

T : P ∩ (Ω2 \ Ω1) → P

be a completely continuous operator such that, either

(i) ||Tu|| ≤ ||u||, u ∈ P ∩ ∂Ω1, and||Tu|| ≥ ||u||, u ∈ P ∩ ∂Ω2, or
(ii) ||Tu|| ≥ ||u||, u ∈ P ∩ ∂Ω1, and||Tu|| ≤ ||u||, u ∈ P ∩ ∂Ω2.

ThenT has a fixed point inP ∩ (Ω2 \ Ω1).
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4 J. HENDERSON ANDS. K. NTOUYAS

3. POSITIVE SOLUTIONS IN A CONE

In this section, we apply Theorem 2.3 to obtain solutions in a cone (that is, positive solutions)
of (1.1), (1.2). For our construction, letB = C[0, 1] with supremum norm,‖ · ‖, and define a
coneP ⊂ B by

P =

{
x ∈ B | x(t) ≥ 0 on [0, 1], and min

t∈[η, 1]
x(t) ≥ γ‖x‖

}
.

For our first result, define positive numbersL1 andL2 by

L1 := max

{[
γη

1− αη

∫ 1

η

(1− r)a(r)f∞dr

]−1

,

[
γη

1− αη

∫ 1

η

(1− r)a(r)g∞dr

]−1
}

,

and

L2 := min

{[
1

1− αη

∫ 1

0

(1− r)a(r)f0dr

]−1

,

[
1

1− αη

∫ 1

0

(1− r)b(r)g0dr

]−1
}

.

Theorem 3.1.Assume conditions(A), (B) and (C) are satisfied. Then, for eachλ satisfying

(3.1) L1 < λ < L2,

there exists a pair(u, v) satisfying(1.1), (1.2)such thatu(x) > 0 andv(x) > 0 on (0, 1).

Proof. Let λ be as in (3.1) andε > 0 be chosen such that

max

{[
γη

1− αη

∫ 1

η

(1− r)a(r)(f∞ − ε)dr

]−1

,

[
γη

1− αη

∫ 1

η

(1− r)a(r)(g∞ − ε)dr

]−1
}
≤ λ

and

λ ≤ min

{[
1

1− αη

∫ 1

0

(1− r)a(r)(f0 + ε)dr

]−1

,

[
1

1− αη

∫ 1

0

(1− r)b(r)(g0 + ε)dr

]−1
}

.

Define an integral operatorT : P → B by

(3.2) Tu(t) := λ

∫ 1

0

k(t, s)a(s)f

(
λ

∫ 1

0

k(s, r)b(r)g(u(r))dr

)
ds, u ∈ P .

We seek suitable fixed points ofT in the coneP.
By Lemma 2.2,TP ⊂ P . In addition, standard arguments show thatT is completely contin-

uous.
Now, from the definitions off0 andg0, there exists anH1 > 0 such that

f(x) ≤ (f0 + ε)x andg(x) ≤ (g0 + ε)x, 0 < x ≤ H1.

Let u ∈ P with ‖u‖ = H1. We first have from (2.5) and choice ofε,

λ

∫ 1

0

k(s, r)b(r)g(u(r))dr ≤ λ
t

1− αη

∫ 1

0

(1− r)b(r)g(u(r))dr
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≤ λ
t

1− αη

∫ 1

0

(1− r)b(r)(g0 + ε)u(r)dr

≤ λ
1

1− αη

∫ 1

0

(1− r)b(r)dr(g0 + ε)‖u‖

≤ ‖u‖
= H1.

As a consequence, we next have from (2.5), and choice ofε,

Tu(t) = λ

∫ 1

0

k(t, s)a(s)f

(
λ

∫ 1

0

k(s, r)b(r)g(u(r))dr

)
ds

≤ λ
t

1− αη

∫ 1

0

(1− s)a(s)f

(
λ

∫ 1

0

k(s, r)b(r)g(u(r))dr

)
ds

≤ λ
t

1− αη

∫ 1

0

(1− s)a(s)(f0 + ε)λ

∫ 1

0

k(s, r)b(r)g(u(r))drds

≤ λ
1

1− αη

∫ 1

0

(1− s)a(s)(f0 + ε)H1ds

≤ H1

= ‖u‖.
So,‖Tu‖ ≤ ‖u‖. If we set

Ω1 = {x ∈ B | ‖x‖ < H1},
then

(3.3) ‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1.

Next, from the definitions off∞ andg∞, there existsH2 > 0 such that

f(x) ≥ (f∞ − ε)x andg(x) ≥ (g∞ − ε)x, x ≥ H2.

Let

H2 = max

{
2H1,

H2

γ

}
.

Let u ∈ P and‖u‖ = H2. Then,

min
t∈[η,1]

u(t) ≥ γ‖u‖ ≥ H2.

Consequently, from (2.6) and choice ofε,

λ

∫ 1

0

k(s, r)b(r)g(u(r))dr ≥ λ
η

1− αη

∫ 1

η

(1− r)b(r)g(u(r))dr

≥ λ
η

1− αη

∫ 1

η

(1− r)b(r)g(u(r))dr

≥ λ
η

1− αη

∫ 1

η

(1− r)b(r)(g∞ − ε)u(r)dr

≥ λ
η

1− αη

∫ 1

η

(1− r)b(r)(g∞ − ε)drγ‖u‖

≥ ‖u‖
= H2.
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6 J. HENDERSON ANDS. K. NTOUYAS

And so, we have from (2.6) and choice ofε,

Tu(η) ≥ λ
η

1− αη

∫ 1

η

(1− s)a(s)f

(
λ

∫ 1

η

k(s, r)b(r)g(u(r))dr

)
ds

≥ λ
η

1− αη

∫ 1

η

(1− s)a(s)(f∞ − ε)λ

∫ 1

η

k(s, r)b(r)g(u(r))drds

≥ λ
η

1− αη

∫ 1

η

(1− s)a(s)(f∞ − ε)H2ds

≥ λ
γη

1− αη

∫ 1

η

(1− s)a(s)(f∞ − ε)H2ds

≥ H2

= ‖u‖.
Hence,‖Tu‖ ≥ ‖u‖. So, if we set

Ω2 = {x ∈ B | ‖x‖ < H2},
then

(3.4) ‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2.

Applying Theorem 2.3 to (3.3) and (3.4), we obtain thatT has a fixed pointu ∈ P∩(Ω2\Ω1).
As such, and withv defined by

v(t) = λ

∫ 1

0

k(t, s)b(s)g(u(s))ds,

the pair(u, v) is a desired solution of (1.1), (1.2) for the givenλ. The proof is complete. �

Prior to our next result, we define positive numbersL3 andL4 by

L3 := max

{[
γη

1− αη

∫ 1

η

(1− r)a(r)f0dr

]−1

,

[
γη

1− αη

∫ 1

η

(1− r)a(r)g0dr

]−1
}

,

and

L4 := min

{[
1

1− αη

∫ 1

0

(1− r)a(r)f∞dr

]−1

,

[
1

1− αη

∫ 1

0

(1− r)b(r)g∞dr

]−1
}

.

Theorem 3.2.Assume conditions(A)–(C) are satisfied. Then, for eachλ satisfying

(3.5) L3 < λ < L4,

there exists a pair(u, v) satisfying(1.1), (1.2)such thatu(x) > 0 andv(x) > 0 on (0, 1).

Proof. Let λ be as in (3.5). And letε > 0 be chosen such that

max

{[
γη

1− αη

∫ 1

η

(1− r)a(r)(f0 − ε)dr

]−1

,

[
γη

1− αη

∫ 1

η

(1− r)a(r)(g0 − ε)dr

]−1
}
≤ λ

and

λ ≤ min

{[
1

1− αη

∫ 1

0

(1− r)a(r)(f∞ + ε)dr

]−1

,
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[
1

1− αη

∫ 1

0

(1− r)b(r)(g∞ + ε)dr

]−1
}

.

Let T be the cone preserving, completely continuous operator that was defined by (3.2).
From the definitions off0 andg0, there existsH1 > 0 such that

f(x) ≥ (f0 − ε)x andg(x) ≥ (g0 − ε)x, 0 < x ≤ H1.

Also, from the definition ofg0 it follows thatg(0) = 0 and so there exists0 < H3 < H3 such
that

λg(x) ≤ H3

1
1−αη

∫ 1

0
(1− r)b(r)dr

, 0 ≤ x ≤ H3.

Chooseu ∈ P with ‖u‖ = H3. Then

λ

∫ 1

0

k(s, r)b(r)g(u(r))dr ≤ λ
t

1− αη

∫ 1

0

(1− r)b(r)g(u(r))dr

≤ λ
1

1− αη

∫ 1

0

(1− r)b(r)g(u(r))dr

≤
1

1−αη

∫ 1

0
(1− r)b(r)H3dr

1
1−αη

∫ 1

0
(1− r)b(s)ds

≤ H3.

Then, by (2.6)

Tu(η) ≥ λ
η

1− αη

∫ 1

η

(1− s)a(s)f

(
λ

η

1− αη

∫ 1

η

(1− r)b(r)g(u(r))dr

)
ds

≥ λ
η

1− αη

∫ 1

η

(1− s)a(s)(f0 − ε)λ
η

1− αη

∫ 1

η

(1− r)b(r)g(u(r))drds

≥ λ
η

1− αη

∫ 1

η

(1− s)a(s)(f0 − ε)λ
γη

1− αη

∫ 1

η

(1− r)b(r)(g0 − ε)‖u‖drds

≥ λ
η

1− αη

∫ 1

η

(1− s)a(s)(f0 − ε)‖u‖ds

≥ λ
γη

1− αη

∫ 1

η

(1− s)a(s)(f0 − ε)‖u‖ds

≥ ‖u‖.

So,‖Tu‖ ≥ ‖u‖. If we put
Ω3 = {x ∈ B | ‖x‖ < H3},

then

(3.6) ‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω3.

Next, by definitions off∞ andg∞, there existsH1 such that

f(x) ≤ (f∞ + ε)x andg(x) ≤ (g∞ + ε)x, x ≥ H4.

Clearly, sinceg∞ is assumed to be a positive real number, it follows thatg is unbounded at∞,

and so, there exists̃H4 > max{2H3, H4} such thatg(x) ≤ g(H̃4), for 0 < x ≤ H̃4.
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8 J. HENDERSON ANDS. K. NTOUYAS

Set
f ∗(t) = sup

0≤s≤t
f(s), g∗(t) = sup

0≤s≤t
g(s), for t ≥ 0.

Clearlyf ∗ anfg∗ are nodecreasing real valued function for which it holds

lim
x→∞

f ∗(x)

x
= f∞, lim

x→∞

g∗(x)

x
= g∞.

Hence, there existsH4 such thatf ∗(x) ≤ f ∗(H4), g∗(x) ≤ g∗(H4) for 0 < x ≤ H4.
Choosingu ∈ P with ‖u‖ = H4, we have

Tu(t) ≤ λ
1

1− αη

∫ 1

0

(1− s)a(s)f

(
λ

1

1− αη

∫ 1

0

(1− r)b(r)g(u(r))dr

)
ds

≤ λ
1

1− αη

∫ 1

0

(1− s)a(s)f ∗
(

λ
1

1− αη

∫ 1

0

(1− r)b(r)g(u(r))dr

)
ds

≤ λ
1

1− αη

∫ 1

0

(1− s)a(s)f ∗
(

λ
1

1− αη

∫ 1

0

(1− r)b(r)g∗(u(r))dr

)
ds

≤ λ
1

1− αη

∫ 1

0

(1− s)a(s)f ∗
(

λ
1

1− αη

∫ 1

0

(1− r)b(r)g∗(H4)dr

)
ds

≤ λ
1

1− αη

∫ 1

0

(1− s)a(s)f ∗
(

λ
1

1− αη

∫ 1

0

(1− r)b(r)(g∞ + ε)H4dr

)
ds

≤ λ
1

1− αη

∫ 1

0

(1− s)a(s)f ∗(H4)ds

≤ λ
1

1− αη

∫ 1

0

(1− s)a(s)ds(f∞ + ε)H4

≤ H4

= ‖u‖,
and so‖Tu‖ ≤ ‖u‖. For this case, if we let

Ω4 = {x ∈ B | ‖x‖ < H4},
then

(3.7) ‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω4.

Application of part (ii) of Theorem 2.3 yields a fixed pointu of T belonging toP∩(Ω4 \Ω3),
which in turn yields a pair(u, v) satisfying (1.1), (1.2) for the chosen value ofλ. The proof is
complete. �
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