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ABSTRACT. In this paper, the existence of solution for a class of third order quasilinear ordinary
differential equations with nonlinear boundary value problems

(Φp(u′′))′ = f(t, u, u′, u′′), u(0) = A, u′(0) = B, R(u′(1), u′′(1)) = 0

is established. The results are obtained by using upper and lower solution methods.
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1. I NTRODUCTION

We consider the nonlinear equation

(1.1) (Φp(u
′′))′ = f(t, u, u′, u′′), t ∈ I = [0, 1]

satisfying the conditions

(1.2) u(0) = A, u′(0) = B, R(u′(1), u′′(1)) = 0,

whereA and B are constants, andΦp(s) = |s|p−2s, p > 1. Equations of the above form
are mathematical models occuring in studies of thep-Laplace equation, generalized reaction-
diffusion theory [1], non-Newtonian fluid theory, and the turbulent flow of a gas in porous
medium [2]. In the non-Newtonian fluid theory, the quantityp is characteristic of the medium.
Media withp > 2 are called dilatant fluids and those withp < 2 are called pseudoplastics. If
p = 2, they are Newtonian fluids.

For the equation

(1.3) (Φp(u
′))′ = f(t, u, u′), t ∈ I = [0, 1]

with different boundary conditions has been studied by many authors, see, for example, [3]-
[11] and references therein. Our results were motivated by the paper [3], [4], [14]-[17], [21]
which studied periodic and Neumann with nonlinear boundary conditions for Eq. (1.3). On the
contrary, it seems that little is known about the result for problem (1.1)-(1.2). Whenp = 2, the
related some results have been obtained by [18]-[21] for problem (1.1)-(1.2). In this paper, we
obtain the existence of solutions to the problem (1.1)-(1.2), extended to results and complement
to the results by [18]-[21].

2. PRELIMINARIES

In this section, we present results for second order Volterra type intergro-differential equation,
which help to prove our main results.

Let us consider the following boundary value problem

(2.1) (Φp(u
′))′ = f(t, u, Tu, u′)

(2.2) u(0) = D, R(u(1), u′(1)) = 0,

whereTu(t) = φ(t) +
∫ t

0
K(t, s)u(s)ds, functionK(t, s) ∈ C([0, 1] × [0, 1]), φ(t) ∈ C[0, 1],

K(t, s) ≥ 0 on [0, 1]× [0, 1], andD is a constant.
As in [12], we give the following definition:

Definition 2.1. We say that a functionα(t) ∈ C1[0, 1] is a lower solution of Eq. (2.1) if
Φp(α

′) ∈ C1(0, 1) and satisfies

(Φp(α
′))′ ≥ f(t, α, Tα, α′), for t ∈ I = [0, 1].

Analogously, we say thatβ ∈ C1[0, 1] is a upper solution of Eq. (2.1) ifΦp(β
′) ∈ C1(0, 1)

and satisfies
(Φp(β

′))′ ≤ f(t, β, Tβ, β′), for t ∈ I = [0, 1].

Assume thatf(t, u, v, w) satisfies the following conditions:
(H1) f(t, u, v, w) is nonincreasing inv.
(H2) f(t, u, v, w) ∈ C([0, 1] × R3,R), for any positive constantsr1, r2 > 0, there exist

positive functionh(x) ∈ C[0,∞) satisfying∫ ∞

0

Φ−1
p (u)/h(Φ−1

p (u))du = ∞.
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and while0 ≤ t ≤ 1, |u| ≤ r1, |v| ≤ r2, w ∈ R, |f(t, u, v, w)| ≤ h(|w|).

From [12], we give the following Lemma

Lemma 2.1. Letα(t) andβ(t) be a lower and an upper solution of Eq. (2.1), respectively, with
α ≤ β in I. Assume that hypotheses(H1)− (H2) are satisfied. Then boundary value problem

(Φp(u
′))′ = f(t, u, Tu, u′), u(0) = A, u(1) = B

has at least one solutionα(t) ≤ u(t) ≤ β(t) for all α(0) ≤ A ≤ β(0), α(1) ≤ B ≤ β(1).

Lemma 2.2. Letα(t) andβ(t) be a lower and an upper solution of Eq. (2.1), respectively, with
α ≤ β in I. Assume that(H1) − (H2) are satisfied, andR(u, v) is nondecreasing inv with
continuous onR2, and

R(α (1) , α′(1)) ≤ 0 ≤ R(β(1), β′(1)).

Then boundary value problem

(2.3) (Φp(u
′))′ = f(t, u, Tu, u′), u(0) = D, R(u(1), u′(1)) = 0

has at least one solutionα (t) ≤ u (t) ≤ β (t) for all α (0) ≤ D ≤ β (0).

Proof. First, we assume thatα(1) = β(1), α(0) = β(0). Then, byα(t) ≤ β(t), it follows
that α′(1) ≥ β′(1). On the other hand, it is clear thatα′(1) ≤ β′(1) from R(α(1), α′(1)) ≤
R(β(1), β′(1)), which meansα′(1) = β′(1). Then the problem

(Φp(u
′))′ = f(t, u, Tu, u′), u(0) = D, u(1) = α(1)

has at least one solutionα(t) ≤ u(t) ≤ β(t), which is a solution of problem (2.3).
Next we consider thatα(1) < β(1) andα(0) < β(0) (if α(1) = β(1), α(0) < β(0) or

α(1) < β(1), α(0) = β(0) similar be proved). Applying Lemma 2.1, we know that the problem

(Φp(u
′))′ = f(t, u, Tu, u′), u(0) = D, u(1) = α(1)

has at least one solutionα0(t), andα(t) ≤ α0(t) ≤ β(t), it follows thatα′0(1) ≤ α′(1). From
the assumptions inR, we see that

(2.4) R(α0(1), α′0(1)) ≤ R(α(1), α′(1)) ≤ 0.

If ” = ” in (2.4) is true, thenα0(t) is a solution of problem (2.3). Thus the proof is complete.
Otherwise, we consider the following boundary value problem:

(Φp(u
′))′ = f(t, u, Tu, u′), u(0) = D, u(1) = β(1).

Clearly, the same reasoning gets to a solutionβ0(t) and such that

α0(t) ≤ β0(t) ≤ β(t), 0 ≤ t ≤ 1,

(2.5) R(β0(1), β′0(1)) ≥ R(β(1), β′(1)) ≥ 0.

Consequently, if "=" in (2.5) is true, then the proof is completed. Otherwise we choose
d1 = (β0(1) + α0(1))/2, and we consider the problem

(Φp(u
′))′ = f(t, u, Tu, u′), u(0) = D, u(1) = d1.

Applying Lemma 2.1, we obtain a solutionu1(t) from the above problem, andα0 ≤ u1(t) ≤
β0. If R(u(1), u′(1)) = 0, then the proof is completed. IfR(u(1), u′(1)) > 0, then letα1(t) =
α0(t), β1(t) = u1(t); if R(u(1), u′(1)) < 0, then letα1(t) = u1(t), β1(t) = β0(t). Hence
β1(1)−α1(1) = 1

2
[β0(1)−α0(1)]. By induction method, that we have obtainedαn(t), βn(t)(n =

1, 2, · · · , m), which satisfy

(2.6) αn−1(t) ≤ αn(t) ≤ βn(t) ≤ βn−1(t), 0 ≤ t ≤ 1,
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(2.7) βn(1)− αn(1) =
1

2
[βn−1(1)− αn−1(1)].

Then, choosingdm+1 = 1
2
[βm(1) + αm(1)], and we consider the following problem

(Φp(u
′))′ = f(t, u, Tu, u′), u(0) = D, u(1) = dm+1.

Consequently, by the same method used to obtainα1(t) andβ1(t), we haveαm+1(t) and
βm+1(t), which satisfy

αm(t) ≤ αm+1(t) ≤ βm+1(t) ≤ βm(t), 0 ≤ t ≤ 1,

βm+1(1)− αm+1(1) =
1

2
[βm(1)− αm(1)].

Hence, we prove the relations (2.6) and (2.7) for everyn.
In view of the fact choosingαn(t) andβn(t), it easy to see that

(2.8) R(αn(1), α′n(1)) < 0, R(βn(1), β′n(1)) > 0.

From (2.8), we imply that

(2.9) βn(1)− αn(1) =
1

2n
[β0(1)− α0(1)].

In addition, Nagumo condition shows that{αn(t)}, {βn(t)}, {α′n(t)}, {β′n(t)} are equicon-
tinuous and uniformly bounded in0 ≤ t ≤ 1. Therefore, applying the Arzela-Ascoli theorem
to the sequences{αn(t)} and {βn(t)}, there exist two subsequences{βnj

(t)} and {αni
(t)}

such that asj → ∞, βnj
(t) → u0(t), β

′
nj

(t) → u′0(t), uniformly on [0, 1], and asi → ∞,
αni

(t) → u0(t), α
′
ni

(t) → u′0(t), uniformly on [0, 1]. Thereforeu0(t) andu0(t) satisfies (2.1),
and we have from (2.8)

(2.10) R(u0(1), u′0(1)) ≥ 0, R(u0(1), u
′
0(1)) ≤ 0.

From (2.6), it is obvious that

(2.11) u0(t) ≥ u0(t), 0 ≤ t ≤ 1.

On the other hand, by (2.9), we can show thatu0(1) = u0(1). Thus, we have from (2.11)

(2.12) u′0(1) ≥ u′0(1).

From (2.10) and (2.12), it follows that

(2.13) 0 ≤ R(u0(1), u′0(1)) ≤ R(u0(1), u
′
0(1)) ≤ 0.

From (2.13), it is easy to show the following relations

0 = R(u0(1), u
′
0(1)) = R(u0(1), u

′
0(1)).

Hence, we complete the proof.

3. M AIN RESULTS

In this section, we discuss the existence of solutions for boundary value problem (1.1)-(1.2).

Definition 3.1. We say that a functionα(t) ∈ C2[0, 1] is a lower solution of Eq.(1.1) ifΦp(α
′′) ∈

C1(0, 1) and satisfies
(Φp(α

′′))′ ≥ f(t, α, α′, α′′), for t ∈ I.

Analogously, we say thatβ ∈ C2[0, 1] is a upper solution of Eq. (1.1) ifΦp(β
′′) ∈ C1(0, 1) and

satisfies
(Φp(β

′′))′ ≤ f(t, β, β′, β′′), for t ∈ I.

We obtain the following main theorem
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Theorem 3.1.Assume that
(i) f(t, u, u′, u′′) is nonincreasing inu and continuous on[0, 1]×R3;
(ii) Nagumo Condition, for(t, u, u′) on [0, 1]×R2,

f(t, u, u′, u′′) = O(|u′′|2), as |u′′| → ∞;

(iii) R(u, v) is nondecreasing inv and continuous onR2;
(iv) there exists an upper solutionβ(t) and a lower solutionα(t) of Eq.(1.1) onI = [0, 1]

such that
α(t) ≤ β(t), α′(t) ≤ β′(t), 0 ≤ t ≤ 1,

α(0) ≤ A ≤ β(0), α′(0) ≤ B ≤ β′(0),

R(α′(1), α′′(1)) ≤ 0 ≤ R(β′(1), β′′(1)),

then the boundary value problem (1.1)-(1.2) has a solutionu(t) such thatα(t) ≤ u(t) ≤ β(t).

Proof. Setu′ = z, then we haveu(t) = A +
∫ t

0
z(s)ds. Thus, the boundary value problem

(1.1)-(1.2) can be written as a boundary value problem for the second order integro-differential
equation of Volterra type as below

(3.1) (Φp(z
′))′ = f(t, A +

∫ t

0

z(s)ds, z, z′),

(3.2) z(0) = B, R(z(1), z′(1)) = 0.

In order to employ Lemma 2.2, we construct the lower and upper solutions for the boundary
value problem (3.1)-(3.2) by usingα(t), β(t) and hypotheses (i)-(iv). We set

(3.3) α(t) = α(t) + δ1, β(t) = β(t) + δ2,

whereδ1 = A− α(0), δ2 = β(0)−A. Then, it is clear thatα(0) = A = β(0). Moreover, if we
write

(3.4) α′(t) = α+(t), β
′
(t) = β+(t),

it is easy show that

(3.5) α+(t) ≤ β+(t)

because of (3.4) and (iv).
Note thatα(t) = A +

∫ t

0
α+(s)ds, β(t) = A +

∫ t

0
β+(s)ds. Now, using (3.4)-(3.5), (iv), and

the monotonicity off from (i), we obtain

(Φp(α
′
+))′ ≥ f(t, A +

∫ t

0

α+(s)ds, α+(t), α′+(t)),

(Φp(β
′
+))′ ≤ f(t, A +

∫ t

0

β+(s)ds, β+(t), β′+(t)),

α+(0) ≤ B ≤ β+(0), R(α+(1), α′+(1)) ≤ 0 ≤ R(β+(1), β′+(1)).

Thus, we see that the functionsα+(t) andβ+(t) are the lower and the upper solutions respec-
tively for the boundary value problem (3.1)-(3.2). Hence, by Lemma 2.2, we have

α+(t) ≤ z(t) ≤ β+(t), 0 ≤ t ≤ 1,

wherez(t) is a solution of the boundary value problem (3.1)-(3.2). Finally, from the relation
z(t) = u′(t), we can recoveru(t) = A +

∫ t

0
z(s)ds.
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Example 3.1.We consider the following third-order boundary value problem:

(3.6) (Φp(u
′′))′ + (t− u)2 − t(4 + t2)u′ − (u′)2 sin(u′′) = 0, 0 < t < 1,

(3.7) u(0) = 0, u′(0) = B, (u′(1))3 + (u′′(1))2 = 0,

whereΦp(u) = |u|p−2u, p > 1, −1 ≤ B ≤ 1. Let

f(t, u, v, w) = (t− u)2 − t(4 + t2)v − v2 sin w, R(v, w) = v3 + w2.

It is easily to prove thatα(t) = −t, β(t) = t are lower and upper solutions of BVP (3.6)-
(3.7), respectively.f is continuous on[0, 1]×R3 and nonincreasing inu whenα(t) ≤ u(t) ≤
β(t), t ∈ [0, 1]. R are continuous onR2, R(v, w) is increasing inw. Furthermore, we obtainf
satisfies Nagumo condition in

D = {(t, u, v, w) ∈ [0, 1]×R3 : −t ≤ u(t) ≤ t,−1 ≤ u′(t) ≤ 1}.
Therefore, by Theorem 3.1, there exists at least one solutionu(t) for BVP (3.6)-(3.7) such that

− t ≤ u(t) ≤ t, −1 ≤ u′(t) ≤ 1, t ∈ [0, 1].
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