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ABSTRACT. In this paper, we study variational inequalities related to ergodic control problems
studied by M. Boulbrachéne and H. Sissaoui [[L1}, 1996], where the "discount factor" (i.e., the zero
order term) is set to 0, we use an overlapping Schwarz method on nomatching grid which consists
in decomposing the domain in two subdomains. For o € ]0.1[ we provide the discretization on
each subdomain converges in L°°-norm.
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2 S. SAADI, H. MECHERI

1. INTRODUCTION

The ergodic control problems my be solved by considering the solution u,, of the following

variational inequalities:
a(uaav_ua)+a(ua7v_ua> Z (f,U—Ua),
(1.1)
Uy € H' (Q) ,uq <5 ve H (Q),v <,

as o tends to 0; o > 0.
Let © is a given bounded smooth open set in RY | f is a given positive function in L (£2), 1)
a positive obstacle of W2 (Q),

(1.2) a(u,v):/QV(u).V(v)da:.

(., .) denotes the L?-scalar product, ||.||_ the L*-norm.
It is proved under suitable assumptions that u,, converges to ug, the unique solution of:

a (ug, v —ug) = (f, v —uo),
ug € H (Q) ,ug < ,v € H (Q),v < 1.

(1.3)

The method characterizes the solution of the continuous problem (respectively, the discret prob-
lem) as the upper of the set continuous subsolutions (respectively, the discrete subsolutions). [3]]
Let o € |0, 1], by easy transformation, u,, is also a solution of the following problem:

) b (Ua, v — Us) > (f + Mg, v — ug)
1.
4 U € H () 10 < 0 € HY(R),0 < 0,
where
A=1—aq,
(1.5) b(u,v) =a(u,v) + (u,v).

Proposition 1.1. (see [2,5]) Under assumptions (1.1)-(1.3), u, is uniformly bounded in WP (Q),
p < +oo. Moreover u,, converges uniformly on 2 and strongly in H' (Q) to ug the unique so-

lution of (1.3)).

Notation . We denote by w = o (g, ¢) the solution of the following (VI):

b(w,v—w) > (g,v—w)

(1.6)
v <Y, w < P
Then
(17) Uq :O-(f+>‘ua7¢)

1.1. Lipschitz Continuous Dependence. Let g, § € L™ () and u = 0 (g,¢); u = o (g,v¢)
the associated solutions.

Proposition 1.2. Under the above notations, we have

The following property is crucial in this paper.
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1.2. The concept of subsolution. Let X be the set of subsolutions of problem (I.4),that is,

w € X if and only if
b(w,v) < (f + hw,v),
(1.9)
Yoe H (Q), v>0,w <.

Lemma 1.3. The solution u,, of (1.4)) is the upper bound of X.

The proof is standard, we adapt [3]. Clearly v, € X and if w € X, an iterative schema
starting from w < u,, leads to an increasing sequence wy, Weo = lim wy = .

2. THE SCHWARZ METHOD FOR THE OBSTACLE PROBLEM 1
2.1. The continuous Schwarz sequences. we consider the following problem:

2.1
b(ua,v - ua) Z (f + )\UQ,U - ua) Vv S ¢7vua S ¢

{ Find u, € H} () the solution of:

We decompose (2 into two overlapping polygonal subdomains €2;and €25, such that
(2.2) Q=10 U,

and u,, satisfies the local regularity condition

Uq 10, € W2P(€;),2 < p < o0.

We denote by 9€2; the boundary condition of €2;, and I'; = 9€; N ;. The intersection of T, and
I'; is assumed to be empty.
Choosing u? = wg,such that u the unique solution of:

a(UO?U_UO) > (f,U—UQ),

we respectively define the alternating Schwarz sequences (u”{') on ©; such that:

bi(u™ T v —uT) > (fi 4+ Mgy, v —ulth) Yo <, v=u", on Ty

al
2.3)
u't =, on Ty,
and
bo(ul'st v —ulsh) > (fa + Mgz, v —ul3') Vo <o =u{" onTy
24 { u'st = u"Tt on Iy,
where
(2.5) fi=fAa,
and
(2.6) bi (Ue, V) = a;(Ug,v) + /Q Augvdr 1=1,2.

The following geometrical convergence is du to Lions [10].
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2.2. Geometrical convergence.

Theorem 2.1. [12] The sequences (u”“), (u”“) n > 0, produced by the Schwarz alternating
method converge geometrically to the solution u,, of obstacle problem (2.1). More precisely,
there exist two constants ky, ko €0, 1[ such that for all n > 0,

@) = 2y < G = = 1.2
Moreover, oo — 0,
e8) oo~ 5 gy < (K1) ot — 8] 7 = 1.2

3. THE DISCRET PROBLEM 2

We suppose for simplicity that 2 is polyhedral. Let r; be a regular, quasi uniform triangula-
tion of € into n-simplexes of diameter less than h.

We denote by V}, the standard piecewise linear finite element espace, we consider the discrete
variational inequality:

G a (Uah, U, — Uah) + & (Uah, U — Uan) > (f,Uh — Uan) ,
. Uah € Viy Uan ST, vp € Vi, vp < i),
Or:
b (Uah, Vn — Uan) > (f + Miah, Vp — Uan) ,
(3.2)
Uah € Vi, Uah < Th10, v, € Vi, v <rptd.

4. THE DISCRETE MAXIMUM PRINCIPLE 3[1]]
We assume that the matrix A with generic coefficient

“4.1) a (gpi,gpj)

is a M —matrix.
As for the continuous problem, it is easy to prove that u,; converges to ugy, the solution of
the following (VI):
b (uon, vn — uon) > (f,vn — uon)
(4.2)

Uon € Vi, uon < mpth, v € Vi, v < rptd.

Proposition 4.1. [S] Under the assumption (2.3)), then u,, converges uniformly on ) and
strongly in H' (Q) to ugy,, the unique solution of (2.4).

Notation . We note w;, = oy, (g, %) the solution of the following discrete (VI):
b(wp,vn —wn) > (9,0 — Wa) , V8 < TRY, Wy < TRY.

Then
Uah = (Onf + Auan; ).

As for the continuous case, we establish a Lipschitz discrete property.

Proposition 4.2. Under the assumption (2.3). Then
(4.3) lon (9:9) = on (9 ¥)lle < llg = 9ll
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The proof is similar to that of proposition 4.1}
We now define X, to be the set of discret subsolutions of problem (2.2)), that is wy, € X}, if
and only if

(4.4) b(wp,p;) < (f + Awp, ;) , Vi € {1,...m(h)},w, < rp
Lemma 4.3. Under the assumption (4.2), then the solution u.;, of (2.2) is the upper bound of
Xh.

The proof is similar to that of Lemma(I.3]
Results. Let #;, be the solution of discrete VI :

b (ﬁh,vh — ﬂh) 2 (f + )\Ua, UV — ﬂh) s
4.5)
vp < TR, up < TR,

u,, being the solution of (1.4)
Let 4" be the solution of the continuous VI:

b(u™,v—u®™) > (f+ Mugp,v—uM),
v < pu <o,
Uy, being the solution of (2.2).

(4.6)

Lemma 4.4.

(4.7) e — tinl| o < Ch? loghf*,
and

(4.8) ||u(h) — uahHOO < Ch?|log h|*.

Proof. We adapt [4]. 1
Theorem 4.5. [11]]

4.9) [tte — tan|| o, < Ch? [log h?,
and
(4.10) 1o — uon|| o, < Ch? [loghl*.

Remark 4.1. In the sequel, the constant C'is always considered independent of both o and h.

4.1. The discrete Schwarz sequences. Let V},, = V},. (€2;) be the space of continuous piece-
wise linear function on 7;; which vanish on 92 N 0f);.
For w € C (I';), we define

V,f:”) ={veV,/v=00n00NQ;, v=mp(w) onT;}

Where 75; denotes the interpolation operator on I;.

For ¢ = 1,2. Let 75, be a standard regular finite element triangulation in €2; , h; being the
mesh size. We suppose that the two triangulation are mutually independent on €2, U(), a triangle
belonging to one triangulation does not necessarily belong to the other.

Choosing ugh = uop, such that wugy, is a solution of the following inequation:

a (uon, v — uop) > (f,v —uen) ,

We define the discrete sequence of Schwarz (u 1) on

1 1 1
@.11) { bl(uﬁhv” - Ugﬂ) > (fi+ Aulyy,, v — u?;rh) Vo < 9,0 = ugy, on Iy
. uZﬂl = Ugop, on 'y,
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and (u!3) on Q) such that
ba (g, v — Uz ) = (fo + Ny, v — upzy) Yo <1, v =gy on Ty

n+l _  n+l
Uns, = Uy, on Lo

5. L°°-ERROR ANALYSIS

This section is devoted to the proof of the present paper to that end we begin by introducing
two discrete auxiliary sequences and prove a fundamental Lemma.

0 _ ,,0
aih = Uik

5.1. Definition of two auxiliary sequences. For w
sequence w},lon

= ugp; ¢ = 1,2, we défine the

5.1

n+l _ n
Wi, = Unoy, On Iy

{ b (wih, v —wih) > (fi + Ay, v —wif) Vo <¢,0=ul,, on Ty
[0

and w"},! on Q, such that:

n+1 n+1 n n+1 _ . n+l
(5.2) ba(wezn , v = wigp ) = (f2 + Awgon, v = wigy ) Vo <4, v = ugy, on Ty
. n+l _  n+l
wa2h - ualh on F2

aih 7

Note that (w#! ) is the finite element approximation of (u/;"') definite in (2.13), (1.14).

Notation . We will adapt the following notations:

(5.3) |l = H'HLOO(FZ-) =12
Ill; = ||'||L°°(Qi)>i: 1.2
Thi = ’I"h,i =1.2

The following Lemma will play a key role in proving the main result of this paper.

Lemma 5.1. We have

n+1 n
GA ui —anll, < > by = whill + Y b — whyl,
p=1 p=0
n+1 n
(55) < Z |Iu€a - lehHl + Huga - wnghHQ + Z ||uz27a - wZZh”Q
p=1 p=1
Where
[uSe, — whon |, = It — tonllo, < CH*|log h|?
and

n+1 n+1

(5.6) Hu%rl - ug;riin =< Z [t — woanll, + Z [ute — Wainll,
p=0 p=0

n+1 n+1

(57) Z Huga - wZQhHl ++ Huga - wnghHl + Z ||u11;a - wgthl
p=0 p=1

IA

In the same way
2
[u20 — waonl[, = lluo — wonll, < CB* flog |
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Proof. We will take
hl == h2 - h
Indeed, for n = 0, using the discrete form of Proposition @.1] we get

1 0
Hu%a - u%ah”l < Z Huzlja - lehHl + Z Huga - wZQhHQ
p=1 p=0

1 1
1 1 p V4 p p
Hu2a - u2ah||2 < E Hu2a - wa2hH1 + § : Hula - walh“l
p=0 p=0
For subdomain €, :
1 1 1 1 1 1
Hula_ulahHl < “ula_walh“1+ ||wa1h_u1ahH1
1 1 0 0
< ||ula - wathl + ‘T‘-huoﬁ - Whua?h‘l
1 1 0 0
< ||ute = warnl], + [|ube — waznll,
and subdomain (2, :
1 1 1 1 1 1
HUZa_UQahHQ < HUZa_wthHQ—i_ ||wa2h_u2ahH2
1 1 1 1
< ||u2a - wa2h”2 + }ﬂ—hual - 71—huozlh,‘g
1 1 1 1
< [Juza = wasnl, + f[war = varnll,

1 1 1 1 0 0
< ||uze = waznl |y + [[uta = wainll, + ||uae — wasnll,

Let as now suppose that

n n
3, — waoplly < Z |30 — Waaplly + Z [t — Wl
p=0 p=1

Then
Juta = widy ||, < [luid —wigi |, + [[widy —uidi]l,
< H“?llc;L1 - wgfthl + [ Thtgs — ThUpon|y
< Jlui = wili |l + g — uhanll,

n n
< ”U?f;l - wZTth1 + Z [0 — Waaplly + Z [ule — woanlly
p=0 p=1

And consequently,

n+1

n
Hu?otl - u?;hl”l < Z |ufy — leth + Z b, — wgzh“2
p=1 p=0

Likewise, using the above estimate, we get

n+l _  ntl n+l _  n+l n+l _  n+tl
||U2a Ugah H2 < H“m Waoh Hz + Hwth Uoan, ||2
n+1 n+1 n+1 n+1
< Hu2a — Wuop ||2 + ’Whual — ThUyip ’2
n+1 n+1 n+1 n+1
< Juza — wozy [l + [Juai™ —uain ],
n+1 n+1

< Z [t — woanlly + Z [ute — Wainlly
p=0 p=1
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Forn=1:
2 1
Hu%a - u?ofhl}ll < Z Hulfoz - lehHQ + Z Huga - w§2hH2
p=1 p=0
and
2 2
Huga - ugah”Q < Z “uzl)a - meHl + Z ||uga - wZQh”Q
p=1 p=0
|

Theorem 5.2. Let h = max (hy, hy) . Then, there exists two constants C and k, 0 < k < 1
independent of both h and n such that

log h
(5.8) n+1< gk
We have
(5.9) [tai = uii, || fo ) < € =1,2
and
(5.10) [[woi = tgih || o () < O =1,2
Proof. Let us give the proof for ¢ = 1, The case ¢ = 2 is similar.
letar =iy < flwar = oty + fJue™ =il
< ()™ |Juar — udy ||, + (n + 1) Coh? [log h|? + nCsh? [log h|?
< (B)" M uar — uon|l, + (n+ 1) Coh? log h|* + nC3h? [log h?

< (B)" lim Jluar — wor ||y + (n+ 1) Cih? log b + nCah? log h”.
a—r

We obtain

|tta1 — ZT;}HI < Ch?|log h)*

Which is the desired error estimate.
For the case oo = 0, we adapt [14]. 1
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