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1. I NTRODUCTION

Newman and Wright (1982) introduced the concept of a demimartingale and demisubmartin-
gale as a generalization of the notion of martingales and submartingales. The definition is a
rather technical one and serves, among other things, the purpose of studying the behavior of the
partial sum of mean zero associated random variables.

In this paper we define the class of multidimensionally indexed demimartingales and demisub-
martingales as a natural generalization of the notion of Newman and Wright (1982) and prove a
Chow type maximal inequality. Since the partial sum of mean zero associated random variables
is a demimartingale, we obtain as a corollary a Hájek-Rényi inequality for multidimensionally
indexed associated random variables. It is worth pointing out that this Hájek-Rényi inequality,
when reduced to the case of single index, gives a bound which is half the (best) bound known
in the literature.

Let d be a positive integer. We denote byNd thed-dimensional positive integer lattice. For
n,m ∈ Nd with n = (n1, . . . , nd) andm = (m1, . . . ,md) the notationn ≤ m means that
ni ≤ mi ∀ i = 1, . . . , d while the notationn < m means thatni ≤ mi ∀ i = 1, . . . , d with at
least one inequality strict. The notationk →∞ means thatmin1≤j≤d kj →∞.

From now on, all random variables are defined on a probability space(Ω, A, P ).

Definition 1.1. A collection of multidimensionally indexed random variables{Xi, i ≤ n} is
said to be associated if for any two coordinatewise nondecreasing functionsf andg

Cov (f(Xi, i ≤ n), g(Xi, i ≤ n)) ≥ 0,

provided that the covariance is defined. An infinite collection is associated if every finite sub-
collection is associated.

The above definition is just the classical definition of association stated for the case of mul-
tidimensionally indexed random variables. The index of the variables in no way affects the
qualitative property of association, i.e., that nondecreasing functions of all (or some) of the
variables are nonnegatively correlated.

The concept of association is related to the idea of a demimartingale, as defined in [3]. Var-
ious authors have produced results for demimartingales and demisubmartingales, mainly max-
imal inequalities. See for example [1], [4], [5], and [6]. In this paper we extend the idea of a
demimartingale and demisubmartingale to the case of multiple index as follows:

Definition 1.2. An array of random variables{Xn,n ∈ Nd} is called a multidimensionally
indexed demimartingale if:

E {(Xj −Xi)f(Xk,k ≤ i)} ≥ 0, ∀ i, j ∈ Nd with i ≤ j,

and for all componentwise nondecreasing functionsf . If in addition f is required to be non-
negative then{Xn,n ∈ Nd} is said to be a multidimensionally indexed demisubmartingale.

It is easy to verify that the partial sum of mean zero associated multidimensionally indexed
random variables is a multidimensionally indexed demimartingale.

2. A CHOW TYPE MAXIMAL INEQUALITY

The following result is a Chow type maximal inequality for the collection{g(Yn),n ∈ Nd}
where{Yn,n ∈ Nd} is a multidimensionally indexed demimartingale andg is a nondecreasing
convex function. The monotonicity assumption ofg will be relaxed later.
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Lemma 2.1. Let {Yn,n ∈ Nd} be a multidimensionally indexed demimartingale and{cn,n ∈
Nd} a nonincreasing array of positive numbers. Further letg be a nonnegative and nondecreas-
ing convex function onR with g(0) = 0. Then∀ ε > 0:

εP

(
max
k≤n

{ckg(Yk)} ≥ ε

)
≤ min

1≤s≤d

{∑
k≤n

ckE[g(Yk;s;i)− g(Yk;s;i−1)]

}
,

whereYk;s;i = Yk1...ks−1iks+1...kd
, i.e., at thesth position of the indexk the componentks is equal

to i, and whereYk should be taken to be zero if at least one ofk1, . . . , kd is zero.

Proof. For simplicity we give the proof ford = 2. The cased > 2 is similar.

Define the sets

A =

{
max

(i,j)≤(n1,n2)
{cijg(Yij)} ≥ ε

}
,

B1j = {c1jg(Y1j) ≥ ε} , 1 ≤ j ≤ n2,

Bij = {cljg(Ylj) < ε, 1 ≤ l < i, cijg(Yij) ≥ ε} , 2 ≤ i ≤ n1, 1 ≤ j ≤ n2.

By the definitions of the setsA andBij we have thatA =
⋃

i,j Bij and thus

εP (A) = εP

 ⋃
(i,j)≤(n1,n2)

Bij

(2.1)

≤ ε

n2∑
j=1

n1∑
i=1

P (Bij)

=

n2∑
j=1

n1∑
i=1

E
(
εIBij

)
≤

n2∑
j=1

n1∑
i=1

E
[
cijg(Yij)IBij

]
=

n2∑
j=1

E
[
c1jg(Y1j)IB1j

]
+

n2∑
j=1

n1∑
i=2

E
[
cijg(Yij)IBij

]
=

n2∑
j=1

E [c1jg(Y1j)]−
n2∑

j=1

E
[
c1jg(Y1j)IBc

1j

]
+

n2∑
j=1

E
[
c2jg(Y2j)IB2j

]
+

n2∑
j=1

n1∑
i=3

E
[
cijg(Yij)IBij

]
≤

n2∑
j=1

E [c1jg(Y1j)] +

n2∑
j=1

c2jE
[
g(Y2j)IB2j

− g(Y1j)IBc
1j

]
+

n2∑
j=1

n1∑
i=3

E
[
cijg(Yij)IBij

]
,
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where the last inequality follows from the monotonicity of the array{cn,n ∈ N2}.
SinceB2j ⊆ Bc

1j ⇒ IB2j
= IBc

1j
− IBc

1j

T
Bc

2j
then:

εP (A) ≤
n2∑

j=1

E [c1jg(Y1j)] +

n2∑
j=1

E
[
c2j(g(Y2j)− g(Y1j))IBc

1j

]
−

n2∑
j=1

c2jE
[
g(Y2j)IBc

1j

T
Bc

2j

]
+

n2∑
j=1

n1∑
i=3

E
[
cijg(Yij)IBij

]
=

n2∑
j=1

E [c1jg(Y1j)] +

n2∑
j=1

E [c2j(g(Y2j)− g(Y1j))]

−
n2∑

j=1

E
[
c2j(g(Y2j)− g(Y1j))IB1j

]
−

n2∑
j=1

c2jE
[
g(Y2j)IBc

1j

T
Bc

2j

]
+

n2∑
j=1

n1∑
i=3

E
[
cijg(Yij)IBij

]
.(2.2)

Sinceg is nondecreasing convex, we can write

g(y)− g(x) ≥ (y − x)h(x)

where

h(y) = lim
x→y−

g(x)− g(y)

x− y

is the left derivative ofg. Observe thatIB1j
h(Y1j) is a nonnegative and nondecreasing function

of Y1j and by the demimartingale property of{Yn,n ∈ N2} we have that

E
[
(g(Y2j)− g(Y1j))IB1j

]
≥ E

[
(Y2j − Y1j)h(Y1j)IB1j

]
≥ 0, for j = 1, 2, . . . , n2.

Then,

εP (A) ≤
n2∑

j=1

E [c1jg(Y1j)] +

n2∑
j=1

E [c2j(g(Y2j)− g(Y1j))]−
n2∑

j=1

c2jE
[
g(Y2j)IBc

1j

T
Bc

2j

]
+

n2∑
j=1

E
[
c3jg(Y3j)IB3j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijg(Yij)IBij

]
≤

n2∑
j=1

E [c1jg(Y1j)] +

n2∑
j=1

E [c2j(g(Y2j)− g(Y1j))]

+

n2∑
j=1

c3jE
[
g(Y3j)IB3j

− g(Y2j)IBc
1j

T
Bc

2j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijg(Yij)IBij

]
(2.3)

where (2.3) follows from the monotonicity of the array{cn,n ∈ N2}.
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SinceB3j ⊆ Bc
1j

⋂
Bc

2j thenIB3j
= IBc

1j

T
Bc

2j
− IBc

1j

T
Bc

2j

T
Bc

3j
and we further have:

εP (A) ≤
n2∑

j=1

E [c1jg(Y1j)] +

n2∑
j=1

E [c2j(g(Y2j)− g(Y1j))]

+

n2∑
j=1

c3jE
[
(g(Y3j)− g(Y2j))IBc

1j

T
Bc

2j

]
−

n2∑
j=1

c3jE
[
g(Y3j)IBc

1j

T
Bc

2j

T
Bc

3j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijg(Yij)IBij

]
=

n2∑
j=1

E [c1jg(Y1j)] +

n2∑
j=1

E [c2j(g(Y2j)− g(Y1j))] +

n2∑
j=1

c3jE [(g(Y3j)− g(Y2j))]

−
n2∑

j=1

c3jE
[
(g(Y3j)− g(Y2j))IB1j

S
B2j

]
−

n2∑
j=1

c3jE
[
g(Y3j)IBc

1j

T
Bc

2j

T
Bc

3j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijg(Yij)IBij

]
.

Using the same arguments as before regarding the demimartingale property of{Yn,n ∈ N2} it
can be shown that, sinceIB1j

S
B2j

is a nonnegative nondecreasing function ofY1j andY2j,

E
[
(g(Y3j)− g(Y2j)) IB1j

S
B2j

]
≥ 0, for j = 1, 2, . . . , n2.

Therefore:

εP (A) ≤
n2∑

j=1

E [c1jg(Y1j)] +

n2∑
j=1

E [c2j(g(Y2j)− g(Y1j))] +

n2∑
j=1

c3jE [(g(Y3j)− g(Y2j))]

−
n2∑

j=1

c3jE
[
g(Y3j)IBc

1j

T
Bc

2j

T
Bc

3j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijg(Yij)IBij

]
.

Continuing in the same manner and since by definitionY0j = 0 we finally have:

εP (A) ≤
n1∑
i=1

n2∑
j=1

cijE [g(Yij)− g(Yi−1j)]−
n2∑

j=1

cn1jE
[
g(Yn1j)ITn1

i=1 Bc
ij

]
≤

n1∑
i=1

n2∑
j=1

cijE [g(Yij)− g(Yi−1j)] .(2.4)

Similarly it can be shown that:

εP (A) ≤
n1∑
i=1

n2∑
j=1

cijE [g(Yij)− g(Yij−1)]−
n1∑
i=1

cin2E
[
g(Yin2)ITn2

j=1 Bc
ij

]
≤

n1∑
i=1

n2∑
j=1

cijE [g(Yij)− g(Yij−1)] .(2.5)

Inequalities (2.4) and (2.5) give the desired result.
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Remark 2.1. Lemma 2.1 was proved under the assumption thatg is nondecreasing. However,
as the next result shows, the assumption is not necessary. The proof of Theorem 2.2 uses Lemma
2.1 as an auxiliary result.

Theorem 2.2.Let{Yn,n ∈ Nd} be a multidimensionally indexed demimartingale and{cn,n ∈
Nd} a nonincreasing array of positive numbers. Letg be a nonnegative convex function onR
with g(0) = 0.
Then∀ ε > 0:

εP

(
max
k≤n

{ckg(Yk)} ≥ ε

)
≤ min

1≤s≤d

{∑
k≤n

ckE [g(Yk;s;i)− g(Yk;s;i−1)]

}
,

whereYk;s;i = Yk1...ks−1iks+1...kd
, i.e., at thesth position of the indexk the componentks is equal

to i, and whereYk should be taken to be zero if at least one ofk1, . . . , kd is zero.

Proof. (Ford = 2.)
Following a standard argument (see for example [6]) letu(x) = g(x)I{x ≥ 0} andv(x) =
g(x)I{x < 0}. Clearlyu is a nonnegative nondecreasing convex function whilev a nonnegative
nonincreasing convex function. From the definition ofu(x) andv(x) we have:

g(x) = u(x) + v(x) = max{u(x), v(x)}.

Then,

εP

(
max

(i,j)≤(n1,n2)
cijg(Yij) ≥ ε

)
= εP

(
max

(i,j)≤(n1,n2)
cij max{u(Yij), v(Yij)} ≥ ε

)
≤ εP

(
max

(i,j)≤(n1,n2)
{ciju(Yij)} ≥ ε

)
+ εP

(
max

(i,j)≤(n1,n2)
{cijv(Yij)} ≥ ε

)
.(2.6)

Sinceu is nonnegative nondecreasing convex, by Lemma 2.1 we have:

εP

(
max

(i,j)≤(n1,n2)
{ciju(Yij)} ≥ ε

)
≤ min

{
n1∑
i=1

n2∑
j=1

cijE [u(Yij)− u(Yi−1j)] ,

n1∑
i=1

n2∑
j=1

cijE [u(Yij)− u(Yij−1)]

}
.(2.7)

We will show that

εP

(
max

(i,j)≤(n1,n2)
{cijv(Yij)} ≥ ε

)
≤ min

{
n1∑
i=1

n2∑
j=1

cijE [v(Yij)− v(Yi−1j)] ,

n1∑
i=1

n2∑
j=1

cijE [v(Yij)− v(Yij−1)]

}
.(2.8)
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Define the sets

A =

{
max

(i,j)≤(n1,n2)
{cijv(Yij)} ≥ ε

}
,

B1j = {c1jv(Y1j) ≥ ε} , 1 ≤ j ≤ n2,

Bij = {cljv(Yij) < ε, 1 ≤ l < i, cijv(Yij) ≥ ε} , 2 ≤ i ≤ n1, 1 ≤ j ≤ n2.

Then,

εP (A) ≤
n2∑

j=1

c1jE [v(Y1j)] +

n2∑
j=1

c2jE [v(Y2j)− v(Y1j)]−
n2∑

j=1

c2jE
[
(v(Y2j)− v(Y1j))IB1j

]
−

n2∑
j=1

c2jE
[
v(Y2j)IBc

1j

T
Bc

2j

]
+

n2∑
j=1

n1∑
i=3

E
[
cijv(Yij)IBij

]
,(2.9)

where (2.9) is obtained by following all the steps presented between (2.1) and (2.2) but for the
functionv instead of the functiong.

Sincev(x) is a nonnegative nonincreasing convex function, the function

h(y) = lim
x→y−

v(x)− v(y)

x− y

is a nonpositive nondecreasing function. By the convexity of the functionv,

v(Y2j)− v(Y1j) ≥ (Y2j − Y1j)h(Y1j).

Sinceh(Y1j) is a nonpositive nondecreasing function, the function−h(Y1j) is nonnegative non-
increasing and−h(Y1j)IB1j

is a nonincreasing function ofY1j, since by definition the indicator
functionIB1j

is a nonincreasing function ofY1j. Thenh(Y1j)IB1j
is a nondecreasing function

of Y1j. Further, by the demimartingale property of{Yn,n ∈ N2} we have:

E
[
(v(Y2j)− v(Y1j))IBij

]
≥ E

[
(Y2j − Y1j)IBij

h(Y1j)
]
≥ 0.

Thus,

εP (A) ≤
n2∑

j=1

c1jE [v(Y1j)] +

n2∑
j=1

c2jE [(v(Y2j)− v(Y1j))]−
n2∑

j=1

c2jE
[
v(Y2j)IBc

1j

T
Bc

2j

]
+

n2∑
j=1

c3jE
[
v(Y3j)IB3j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijv(Yij)IBij

]
≤

n2∑
j=1

2∑
i=1

cijE [(v(Yij)− v(Yi−1j))] +

n2∑
j=1

c3jE
[
v(Y3j)IB3j

− v(Y2j)IBc
1j

T
Bc

2j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijv(Yij)IBij

]
=

n2∑
j=1

3∑
i=1

cijE [(v(Yij)− v(Yi−1j))]−
n2∑

j=1

c3jE
[
(v(Y3j)− v(Y2j))IB1j

S
B2j

]
−

n2∑
j=1

c3jE
[
v(Y3j)IBc

1j

T
Bc

2j

T
Bc

3j

]
+

n2∑
j=1

n1∑
i=4

E
[
cijv(Yij)IBij

]
.
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The indicatorIB1j
S

B2j
is a nonincreasing function ofY1j, Y2j, so by using the same arguments

as before we have:
E[(v(Y3j)− v(Y2j))IB1j

S
B2j

] ≥ 0.

Continuing in the same way we finally have:

εP (A) ≤
n2∑

j=1

n1∑
i=1

cijE [v(Yij)− v(Yi−1j)]−
n2∑

j=1

cn1jE
[
v(Yn1j)ITn1

i=1 Bc
ij

]
≤

n2∑
j=1

n1∑
i=1

cijE [v(Yij)− v(Yi−1j)] .(2.10)

By symmetry it can be shown that:

εP (A) ≤
n2∑

j=1

n1∑
i=1

cijE [v(Yij)− v(Yij−1)]−
n1∑
i=1

cin2E
[
v(Yin2)ITn2

j=1 Bc
ij

]
≤

n2∑
j=1

n1∑
i=1

cijE [v(Yij)− v(Yi−1j)] .(2.11)

(2.10) and (2.11) together yield (2.8) and finally combining (2.6), (2.7) and (2.8) we obtain the
desired result.

Using Theorem 2.2 as a source result, one can obtain various maximal probability and maxi-
mal moment inequalities, as well as asymptotic results. For example, we can have the following
strong law of large numbers whose proof is established using similar arguments to those found
in the proof of Corollary 2.7 in [2].

Corollary 2.3. Assume that{Yk,k ∈ Nd}, {ck,k ∈ Nd} and the functiong are as in Theorem
2.2. Further assume that there exists a numberp ≥ 1 such thatE[g(Yk)]

p < ∞ and for some
1 ≤ s ≤ d,

∑
k cp

kE([g(Yk)]
p − [g(Yk;s;ks−1)]

p) < ∞ and
∑

ki,i6=s cp
k;s;NE[g(Yk;s;N)]p < ∞ for

eachN ∈ N. Then
ckg(Yk) → 0 a.s , ask →∞.

3. THE HÁJEK -RÉNYI INEQUALITY FOR ASSOCIATED RANDOM VARIABLES

Using Theorem 2.2 we derive the Hájek-Rényi inequality for arrays of mean zero associated
random variables.

Corollary 3.1. Let{Xn,n ∈ Nd} be mean zero multidimensionally indexed associated random
variables,{cn,n ∈ Nd} a nonincreasing array of positive numbers andSn =

∑
k≤n Xk. Then

∀ ε > 0,

P

(
max
k≤n

ck | Sk |≥ ε

)
≤ min

1≤s≤d

{
ε−2
∑
k≤n

c2
k

[
2Cov(Sk;s;i−1, S

(s)
k ) + E(S

(s)
k )2

]}
where

S
(s)
k =

k1∑
i1=1

. . .

ks−1∑
is−1=1

ks+1∑
is+1=1

. . .

kd∑
id=1

Xi1...is−1ksis+1...ir ,

Sk;s;ks−1 =

k1∑
l1=1

. . .

ks−1∑
ls−1=1

ks−1∑
ls=1

ks+1∑
ls+1=1

. . .

kd∑
ld=1

Xl,

and whereSk should be taken to be zero if at least one ofk1, . . . , kd is zero.
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Proof. (Ford = 2)
It can be easily verified that the array{Sn,n ∈ N2} is a 2-indexed demimartingale. Let
g(x) =| x |2. Theng is a nonnegative convex function.

P

(
max

(i,j)≤(n1,n2)
cij | Sij |≥ ε

)
= P

(
max

(i,j)≤(n1,n2)
c2
ij | Sij |2≥ ε2

)
≤ ε−2

n1∑
i=1

n2∑
j=1

c2
ijE
(
| Sij |2 − | Si−1j |2

)
= ε−2

n1∑
i=1

n2∑
j=1

c2
ijE [(Sij + Si−1j)(Sij − Si−1j)]

= ε−2

n1∑
i=1

n2∑
j=1

c2
ijE

[
j∑

m=1

Xim

(
2Si−1j +

j∑
m=1

Xim

)]

= ε−2

n1∑
i=1

n2∑
j=1

c2
ij

2Cov

(
Si−1j,

j∑
m=1

Xim

)
+ E

(
j∑

m=1

Xim

)2
(3.1)

where the first inequality follows from Theorem 2.2. Similarly it can be shown that
(3.2)

P

(
max

(i,j)≤(n1,n2)
cij | Sij |≥ ε

)
≤ ε−2

n1∑
i=1

n2∑
j=1

c2
ij

2Cov

(
Sij−1,

i∑
m=1

Xmj

)
+ E

(
i∑

m=1

Xmj

)2
 .

The result now follows from (3.1)and (3.2).

Remark 3.1. Observe that the results in this paper, although proved ford ≥ 2 are also trivially
valid for the cased = 1. It is easy to see that for the cased = 1 the bound derived by Corollary
3.1 is half the bound of the Hájek-Rényi inequality for associated random variables derived in
[1]. For d = 2 the result compares favorably with the Hájek-Rényi inequality in [6] for various
choices of thecij ’s, for example forcij = 1 ∀ (i, j), or cij = (ij)−1 ∀ (i, j).
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