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ABSTRACT. Demimartingales and demisubmartingales introduced by Newman and Wright (1982)
generalize the notion of martingales and submartingales respectively. In this paper we define
multidimensionally indexed demimartingales and demisubmartingales and prove a maximal in-
equality for this general class of random variables. As a corollary we obtain a Hajek-Rényi in-
equality for multidimensionally indexed associated random variables, the bound of which, when
reduced to the case of single index, is sharper than the bounds already known in the literature.
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1. INTRODUCTION

Newman and Wright (1982) introduced the concept of a demimartingale and demisubmartin-
gale as a generalization of the notion of martingales and submartingales. The definition is a
rather technical one and serves, among other things, the purpose of studying the behavior of the
partial sum of mean zero associated random variables.

In this paper we define the class of multidimensionally indexed demimartingales and demisub-
martingales as a natural generalization of the notion of Newman and Wright (1982) and prove a
Chow type maximal inequality. Since the partial sum of mean zero associated random variables
is a demimartingale, we obtain as a corollary a Hajek-Rényi inequality for multidimensionally
indexed associated random variables. It is worth pointing out that this Hajek-Rényi inequality,
when reduced to the case of single index, gives a bound which is half the (best) bound known
in the literature.

Let d be a positive integer. We denote By the d-dimensional positive integer lattice. For
n,m € NYwithn = (n;,...,nq) andm = (my,...,my) the notationn < m means that
n; <m; Vi=1,...,dwhile the notatiom < m means that; < m; Vi =1,...,d with at
least one inequality strict. The notatitn— oo means thatin; <<, k; — oo.

From now on, all random variables are defined on a probability sgace(, P).

Definition 1.1. A collection of multidimensionally indexed random variables;,i < n} is
said to be associated if for any two coordinatewise nondecreasing fungtenmsy

Couv (f(X5,i <), g(X;,i <n)) 20,

provided that the covariance is defined. An infinite collection is associated if every finite sub-
collection is associated.

The above definition is just the classical definition of association stated for the case of mul-
tidimensionally indexed random variables. The index of the variables in no way affects the
gualitative property of association, i.e., that nondecreasing functions of all (or some) of the
variables are nonnegatively correlated.

The concept of association is related to the idea of a demimartingale, as defined in [3]. Var-
ious authors have produced results for demimartingales and demisubmartingales, mainly max-
imal inequalities. See for example [1],/ [4], [5], and [6]. In this paper we extend the idea of a
demimartingale and demisubmartingale to the case of multiple index as follows:

Definition 1.2. An array of random variable§X,,n € N?} is called a multidimensionally
indexed demimartingale if:

E{(X;— Xi)f (X, k <i)} >0, Vi, j € N'withi <,

and for all componentwise nondecreasing functigngf in addition f is required to be non-
negative thed X,,, n € N} is said to be a multidimensionally indexed demisubmartingale.

It is easy to verify that the partial sum of mean zero associated multidimensionally indexed
random variables is a multidimensionally indexed demimartingale.

2. A CHOW TYPE MAXIMAL INEQUALITY

The following result is a Chow type maximal inequality for the collectigriy,),n € N¢}
where{Y,,n € N¢} is a multidimensionally indexed demimartingale ani¢ a nondecreasing
convex function. The monotonicity assumptiongokill be relaxed later.
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Lemma 2.1. Let{Y;,,n € N¢} be a multidimensionally indexed demimartingale dag, n €
N4} a nonincreasing array of positive numbers. Furtherdéte a nonnegative and nondecreas-
ing convex function o with ¢(0) = 0. ThenV ¢ > 0:

eP (rli?f{ckg(yk)} > 5) < min {ZCkE[g(Yk;S;i> - Q(Yk;S;i—l)]} )

1<s<d
k<n

whereYi.oi = Yi, . ky_rikysr..kqr 1-€., AL thes'” position of the indek the component, is equal
to 7, and whereYy should be taken to be zero if at least oné&qf. . . , k, is zero.

Proof. For simplicity we give the proof foil = 2. The casel > 2 is similar.

Define the sets

A= { e () 2 e,

(4,3)<(n1,n2)

By = A{eyg(Yy) =2 e}, 1 <j <y,

Bij = {ejg(Vy) <e, 1 <1<, cijg(Yiy) > e}, 2<i<my, 1 <j<ny.

By the definitions of the setd and B;; we have tha! = | J, ; B;; and thus

(2.1) ¢P(4) = P U Bi;
(4,5)<(n1,n2)

n2 ni

e> ) P(By)

j=1 i=1

IA

na2 ni

- Zl Zl E (ngij)

ng  ni

Z Z E [Cijg(Y;'j)IBij]

j=1 i=1

IA

na2 ni

ng
= D Eleyg(¥i)ls,] + Y > E[eig(Yi)ls,]
j=1 j=1 i=2

n2 n2

= Y BlaygMipl = Y E gl | + 3 E lo(¥a)) I,

na2 ni

+ > Eleyg(Yi)ls,]

j=1 i=3

S Eleg¥ij)+ > ey [g(YQjﬂmj - g(Yu)foj]
=1 i=1

no ni
+ ZZE [Cz‘jg(yij)IBij} ’

j=1 i=3

IA
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where the last inequality follows from the monotonicity of the arfay, n € N?}.
Sinceng - Bf] = IBQJ‘ = Iij — [ijﬂng then:

cP(A) < ZECMQ Yiy)] +ZE[@J (Vay) = 9(¥iy)) I |

n2 n2 ni

- ZCQJE [g(ng)Iij ﬂBEa} +ZZE lcijg(Yij)p,]

j—l j=1 i=3

= ZE €159 Yi] +ZE 62] S/éj (3/1]))]

n2

3B [en9(¥s) — 6(Yi) ] =B (Vi) Ing g |

Jj=1
na2 N1

(2.2) + ZZE [Cijg(Y;j)[Bij] :

j=1 i=3

Sinceg is nondecreasing convex, we can write

9(y) — g(x) > (y — x)h(x)
where

h(y) = lim 9(x) —9(y)

T—Y r—Yy

is the left derivative ofy. Observe thafz ;h(Y1;) is @ nonnegative and nondecreasing function
of Y1; and by the demimartingale property @f,,, n € N*} we have that

E [(9(Yy)) = 9(Yij))Ip,,] = E[(Yo; = Yij)h(Yij)Ip,] 20, forj=1,2,... ny

Then,

€P(A) S ZE C159 Yl] _I'ZE C2j Yéj Yi] ZCQJ [ }/2‘7 IBC ﬂB

n2 ni

+ ZE C3;9 Yé] IB3J +ZZE Cljg ij IBH:|

7j=1 =4

ZE c1;9(Y15)] +ZE c25(9(Y25) — 9(Y1;))]

IN

ne Ny
(2.3) + Z%’E [Q(Y:aj)fng - g(Yzj)foij;J + ZZE [cij9(Yi) B,
j=1

j=1 i=4

where [2.B) follows from the monotonicity of the arréy,, n € N2}.
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SinceBs; C By, N BS; ;thenlp, = ]Bc nB;, — Ip:. B, N B, and we further have:

eP(4) < ZE c1;9(Y15)] +ZE c25(9(Yz;) — g(Y1))]

+ 203] [ Y},g (YQJ [BC ﬂBC] chg [ Y3g IBC N BS, ﬂng]

na2 ni

+ Z Z E [Cijgo/ij)IBij}

j—1 i=4

= ZE C1;9 }/1] + ZE CZ] Yé] }/1] + ZC?U Y}’] (}/2]))]

n2 n2

— > e B [(9(Ys) — 9o Iy, uny) — Y csiE [Q(Hj)IB@mBgmB;j
j=1 i=1

+ ZZE lcizg(Yij)IB,,] -
j=1 i=4

Using the same arguments as before regarding the demimartingale propgrty nfe N2} it
can be shown that, sindg, ;| 5,, is @ nonnegative nondecreasing functiorypfandYs;,

E [(9(Ys)) — 9(Y27)) Iy, U] > 0, for j = 1,2, my

Therefore:

eP(4) < ZE c1;9(Y15)] +ZE c25(9(Ya5) — 9(Y1;)) JFZC?)J 9(Ys;) — g(Ya;))]

ng  ni
- ZCBjE [9(%;’)1353.035].035].] + ZZE [C’L’jg<}/ij)IBij} :
j=1 j=1 i=4
Continuing in the same manner and since by definilign= 0 we finally have:
ny n2
5P<A) < ZZCUE[Q(YU) chlj [ nij Iﬂ;”leJ
i=1 j=1
ny n2
(2.4) < DY B g(Yy) — 9(Yieyy)]
i=1 j=1

Similarly it can be shown that:

ni no ni
eP(A) < ) > ciBlg(Yy) = 9(Yy-1)] = ) cin, B [ ina )2, s,
i=1 j=1 i=1
(2.5) < Z Z cij B [9(Yij) — g(Yij-1)] -
i=1 j=1

Inequalities[(2.4) and (2.5) give the desired result.
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Remark 2.1. Lemmg 2.1 was proved under the assumption ghiatnondecreasing. However,
as the next result shows, the assumption is not necessary. The proof of Thegrem 2.2 uses Lemma
[2.7 as an auxiliary result.

Theorem 2.2.Let{Y,, n € N} be a multidimensionally indexed demimartingale dngl n
N4} a nonincreasing array of positive numbers. lgebe a nonnegative convex function Bn
with ¢(0) = 0.

ThenvV e > 0:

epP (fggf{Ckg(Yk)} > 5) < min {Z el [9(Yisii) — g(Yk;s;z‘—l)]} 7

1<s<d
k<n

whereYi.oi = Yi,. ko 1ikysr..kqr 1-€., AL thes'” position of the indek the component, is equal
to 7, and whereyy should be taken to be zero if at least oné&qf. . . , k; is zero.

Proof. (Ford = 2.)

Following a standard argument (see for example [6]ulet) = g(z)/{z > 0} andv(x) =
g(x)I{x < 0}. Clearlyu is a nonnegative nondecreasing convex function whdenonnegative
nonincreasing convex function. From the definition«¢f) andv(z) we have:

g(x) = u(zx) + v(z) = max{u(zr), v(z)}.

Then,

eP (( max  ¢;9(Yi;) > 5) = ¢P ((' max ¢ max{u(Y;;), v(Yi;)} > z—:)
ij

i,5)<(n1,n2) )<(n1,n2)

< ¢P ((, max  {eu(Y;)} 25)
Z?]

)<(n1,n2)

(2.6) + €P <(' max {¢v(Y;;)} > 8) :

)<(n1,n2)

Sinceu is nonnegative nondecreasing convex, by Lepnmja 2.1 we have:

1,5)<(n1,m2)

eP (( max  {cju(Vi;)} > 5> < min {Z > eyE[u(Yy) = ulYii))],

i=1 j=1

@) SN ey B (V) - u%m} .

i=1 j=1

We will show that

eP <(m max ){cijv(Yij)} > 5) < min {Z Z ci; B v(Yi;) —v(Yie1))]

<(ni1,n
)<(n1na i=1 j=1

(2.8) YO eEu(Yy) - U(Yz’j—l)]} :

i=1 j=1
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Define the sets

A = {(ijmax {cijv(yij)}zs},

7)< (n1,n2)

By = {eyv(Yiy) > e}, 1 <5 <y,

Bij {Clj ( zg)<€ 1<l<7, CijU (K]>Z€},2§Z§n1,1§j§n2

eP(A) < chj v(Y1;)] +ZCZJ v(Ya;) — v(Yy)] 2023 v(Ys5) _U(}/]-]))IBU}

n2

(29 - ZCQjE[ (Ya;) ]BC N B } +ZZE civ(Yij) ]Bw}’

j=1 Jj=1 =3

where [(2.9) is obtained by following all the steps presented betWwegn (2.1) ahd (2.2) but for the
functionv instead of the functiog.
Sincev(z) is a nonnegative nonincreasing convex function, the function

h(y) = lim U(.’L’) — U(y)
oY~ r—1y
is a nonpositive nondecreasing function. By the convexity of the funetion
v(Ya;) — v(Yyy) = (Yo5 — Ya;)h(Ya ).

Sinceh(Y3,) is a nonpositive nondecreasing function, the functidr{Y;,) is nonnegative non-
increasing and-h(Y1;) 15, is a nonincreasing function of;;, since by definition the indicator
function Ip,, is a nonincreasing function af; . Thenh(Ylj)IBlj Is a nondecreasing function
of Y1;. Further, by the demimartingale property{df,, n € N*} we have:

E [(U(X/?]) - U(Yij))]Bij} > FE [(1/2] - Yi])]szh<)/1J)} > 0.

Thus,
cP(A) < chj o(%i)] + Z% o(Yay) = o(Vi)] = 3 e [0(Vay) Ig, s |
=1
no n2 ni ’
+ ZCSjE [U(ifi’)j)IBw} + ZZE [Cijv(yij)]Bij}
=1 j=1 i=4
ng 2
< SN By - Zc@ [ (a)) T, = v(Y2)) I, 155,
=1 i=1
Jng ni
+ > > Eleu(Yi)ls,]
j=1 i=4
ng 3
= ZZC”E[(’U(Y;]) 2033 YE’»J (Yv?j))[BuUBm]
=1 i=1
Jng n2 ni
- chjE [U(Y:aj)]B;ijgijgj] + ZZE ciiv(Yij)Ip,] -
j=1 Jj=1 =4
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The indicator/, ;| ,, is a nonincreasing function of;;, Y55, so by using the same arguments
as before we have:

E[(UO/:@’*J) - U(}/&j))IB1j Usz] > 0.
Continuing in the same way we finally have:

ng N1 no

P(A) < 30D B oY) = v(¥i)] = D eu B [v(¥i o, b
(2.10) < YD B (Yy) —o(Yiy)].

By symmetry it can be shown that:

ng  ni

eP(A) < D ) e E(Y:) —v(Yij) Zcmg [ ina Imj213§]]
j=1 i=1
na  ni
(2.11) < D> B (Yy) —v(Yiy)]
7j=1 =1

(2.10) and[(2.11) together yield (2.8) and finally combining](2[6), (2.7) (2.8) we obtain the

desired resulty

Using Theorem 2]2 as a source result, one can obtain various maximal probability and maxi-
mal moment inequalities, as well as asymptotic results. For example, we can have the following
strong law of large numbers whose proof is established using similar arguments to those found
in the proof of Corollary 2.7 in]2].

Corollary 2.3. Assume thafY;, k € N}, {¢,, k € N4} and the functiory are as in Theorem
[2.2. Further assume that there exists a numper 1 such thatE[g(Yi)]” < oo and for some
1< s <d Y, A9V — 90V -)P) < 00 andY, . ey Elg(Yies) P < o for
eachN € N. Then

ag(Yx) — 0as, ask — oo.

3. THE HAJEK-RENYI INEQUALITY FOR ASSOCIATED RANDOM VARIABLES

Using Theorem 2]2 we derive the Hajek-Rényi inequality for arrays of mean zero associated
random variables.

Corollary 3.1. Let{X,, n € N?} be mean zero multidimensionally indexed associated random
variables,{c,, n € N?} a nonincreasing array of positive numbers asig = Y xen Xk- Then
Ve >0, -

P (rl?g)l(ck | Sk [= 6) < min {5—2 Zci [QCOU(Sk;s;i—ly Sy 1 E(Sl((s))g} }

1<s<d
k<n

where
kl s+1

Sl(j) = Z Z Z ZXH dg—1Ksts1.ntr)

11=1 lg_1= 11,;+1 1 1g=1

s 1 ks 1 k5+1

Sksk:—l—z D N ZXl,

=1 ls—1=1ls=1ls11=1 lg=1
and whereSy should be taken to be zero if at least onéqf. . ., k; is zero.
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Proof. (Ford = 2)

It can be easily verified that the arr@§,,, n € N?} is a 2-indexed demimartingale. Let
g(z) =| = |*. Theng is a nonnegative convex function.

P( max ¢ | Sy [> 6) = P( max ;| Sy > 82)
(4,5)<(n1,m2) (1,5)<(n1,m2)

ny  ng

e D GBSy P =185 )
i=1 j=1

ny n2

= 2 > &E[(Sy+ Sic1;)(Sij — Sic1y)]
=1 j=1
Z sz <2Sz 1j + Z sz)]
. . 2
(31) = 672 Z Z C?j 2Cov (Si1j> i X1m> + E <i X2m>
m=1 m=1

i=1 j=1

IN

where the first inequality follows from TheorémP.2. Similarly it can be shown that
(3.2)

niy n9 7 7 2
P max cl Sii|>e ) <e” c;: |2Cov | Sij-1, Xmi | +F X
(orsze) =5 o (0 By o5 (510

The result now follows fron (3]1)anf (3.2.

Remark 3.1. Observe that the results in this paper, although proved for2 are also trivially

valid for the casel = 1. Itis easy to see that for the cage- 1 the bound derived by Corollary

[3.1 is half the bound of the Hajek-Rényi inequality for associated random variables derived in
[1]. For d = 2 the result compares favorably with the Hajek-Rényi inequality lin [6] for various
choices of the:;,'s, for example fore;; = 1V (i, ), orcy; = (i)' V (4, 7).

REFERENCES

[1] T.C.CHRISTOFIDES, Maximal inequalities for demimartingales and a strong law of large numbers.
Statist. Probab. Let0 (2000), pp. 357-363.

[2] T.C. CHRISTOFIDES, and R. J SERFLING, Maximal inequalities for multidimensionally indexed
submartingale arrayg&nn. Probab18 (1990), pp. 630-641.

[3] C. M. NEWMAN, and A. L. WRIGHT, Associated random variables and martingale inequalties.
Wahrsch. Verw. Geta9 (1982), pp. 361-371.

[4] B. L.S. PRAKASA RAO, Whittle type inequality for demisubmartingalBsoc. Amer. Math. Soc.,
130(2002), pp. 3719-3724.

[5] B. L. S. PRAKASA RAO, On some maximal inequalities for demisubmartingales and N-
demisupermartingales. Inequal. Pure Appl. Matt8 (2007), Article 112, 17pp.

[6] J. WANG, Maximal inequalities for associated random variables and demimartingatistist.
Probab. Lett66 (2004), pp. 347-354.

AJMAA Vol. 7, No. 2, Art. 9, pp. 1-9, 2011 AIJMAA


http://ajmaa.org

	1. Introduction
	2. A Chow type maximal inequality
	3. The Hájek-Rényi inequality for associated random variables
	References

