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2 S. PRIYADHARSHINI , G.E. CHATZARAKIS , S. L. PANETSOS ANDV. SADHASIVAM *

1. I NTRODUCTION

The problem of oscillation and nonoscillation of beam equations has been investigated by
many authors, see ([1], [4], [10], [11], [19], [22], [23]). In the papers, the authors have discussed
the existence of arbitrarily large zeroes of solutions of beam equations with forcing term. In the
present paper we have obtained sufficient conditions for solutions on the boundary domains
with certain boundary value problems to have a zero. In fact we consider various boundary
conditions such as hinged ends, sliding ends and hinged-sliding ends.

The beam equations were proposed by Woinowsky-krieger[21] as a imitation for the trans-
verse deflection u(x,t) of an extensible beam of nature length L whose ends are held a fixed
distance apart. The imitation has also been discussed by Eisley[5] and Burgreen[2]. Recently,
Dickey[4] introduces the initial-boundary conditions for the beam equations, representing a vi-
brating string. These method is an adaptation in studying the oscillatory behavior of solutions
of hyperbolic equations ([3], [9], [12], [20], [24]).

The theory of the fractional differential equations is an important tool in modeling real world
phenomena. The derivative first appeared in the17th century in a more general form of the
integer order differential equations, extending those equations to an arbitrary order. The defin-
ition is most frequently involoved in nonlocal that is Riemann-Liouville derivative and Caupto
derivative ([6], [7], [8], [13], [14], [15], [16], [18]). They are used in physics, electrochemistry,
electromagentic and control theory field.

In 1985, N. Yoshida[23] studied the forced oscillations of extensible beams which motivates
this paper. To the authors’ knowledge, there has been no previous work made on the oscillation
of fractional beam equations. In this article we initiate the forced oscillation of self adjoint
fractional extensible beam equations of the form,

∂

∂t
(r(t)Dα

+,tu(x, t)) + p
∂4u(x, t)

∂x4
−

(
q +m

∫
Ω

(
∂u(ξ, t)

∂ξ

)2

dξ

)
∂2u(x, t)

∂x2

(1.1) + g

(
x, t,

∫ t

0

(t− s)−αu(x, s)ds

)
= f(x, t), (x, t) ∈ Ω× R+ = G.

Where,Ω = (0, L), α ∈ (0, 1), R+ = (0, ∞). Thenp is a non negative constant,q,m are
constants.u(x, t) ∈ C1+α(G,R1) ∩ C4(G,R1) andDα

+,t is the Riemann-Liouville fractional
derivative of orderα of u(x, t) with respect tot.
We assume the following conditions,
(A1) r(t) is continuous and

∫∞
0

1
r(s)

ds = ∞.

We defineQ(t, s) =
∫ t

s
1

r(η)
dη, (t, s) ∈ (0,∞).

(A2) g(x, t, E(t)) is a real-valued continuous function in G× R1.
(A3) E(t)g(x, t, E(t)) ≥ 0 for all (x, t, E(t)) ∈ G× R1.
(A4) g(x, t,−E(t)) = −g(x, t, E(t)) for all (x, t, E(t)) ∈ G× R+.
(A5) F (t), K(t) are continous functions,f(x, t) ∈ C(G,R+) , F (t) =

∫
Ω
f(x, t)ψ(x)dx,

K(t) =
∫

Ω
f(x, t)dx.

By a solution of the boundary value problem we mean a solution of the problem.
A functionu(x, t) : G→ R1 is said to be oscillatory in G, if it has a zero inΩ× (0,∞) for any
t > 0. otherwise it is nonoscillatory.
This paper is organized as follows, the preliminaries are given in section 2. In section 3, we
discuss the forced oscillation problems with boundary conditions that are hinged, sliding and
hinged-sliding ends. In section 4, we provide the suitable examples illustrate our main results.
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FRACTIONAL EXTENSIBLE BEAM EQUATIONS 3

2. PRELIMINARIES

We present the definition of the Riemann-Liouville derivatives and integrals which are
given in this section. We have studied a lemma which is uesd in the sequel.

Definition: 2.1. [13] The Riemann-Liouville fractional partial derivative of order0 < α < 1
with respect tot of a functionu(x, t) is given by

(Dα
+,tu)(x, t) :=

1

Γ(1− α)

∂

∂t

∫ t

0

(t− ν)−αu(x, ν)dν

provided the right hand side is pointwise defined onR+, whereΓ is the gamma function.

Definition: 2.2. [13] The Riemann-Liouville fractional integral of orderα > 0 of a function
x : R+ → R on the half-axisR+ is given by

(Iα
+x)(t) :=

1

Γ(α)

∫ t

0

(t− ν)α−1x(ν)dν for t > 0

provided the right hand side is pointwise defined onR+.

Lemma 2.1. [16] Let x be solution of (1.1) and

E(t) :=

∫ t

0

(t− ν)−αx(ν)dν for α ∈ (0, 1) and t > 0.

ThenE ′(t) = Γ(1− α)(Dα
+x)(t).

3. M AIN RESULTS

In this section, we study the oscillation of 1.1 with hinged ends, sliding ends and hinged-
sliding ends.

Oscillation of extensible beam with hinged.We treat the case, where the ends of the beam
are hinged and satisfy the condition

(3.1) u(0, t) = u(L, t) =
∂2u

∂x2
(0, t) =

∂2u

∂x2
(L, t) = 0.

In the following theorem, we reduce the multidimensional problems to one dimensional prob-
lem by using Jenson’s inequality and integral averaging method.

Theorem 3.1.Assume that m≥ 0, there exists a postive function
ψ(x)∈ C4(Ω), such that
1. pψ4(x) - qψ′′(x) ≥ cψ(x) in Ω for constant c≥ 0,
2. ψ′′(x) ≥ 0 in Ω, and
3. ψ(0) = ψ(L) = ψ′′(0) = ψ′′(L) = 0.
Each solution of 1.1 satisfying the boundary condition 3.1 is oscillatory inΩ × R+, if the
inequality

(3.2)
d

dt
(r(t)Dα

+U(t)) + cU(t) ≤ ±F (t)

is oscillatory at t =∞.

Proof. Assume on the contrary that u is a nonoscillatory inΩ × R+. We consideru(x, t) > 0,
multiplying 1.1 byψ(x) and integrating overΩ.∫

Ω

∂

∂t
(r(t)Dα

+,tu(x, t))ψ(x)dx+ p

∫
Ω

∂4u(x, t)

∂x4
ψ(x)dx− q

∫
Ω

∂2u(x, t)

∂x2
ψ(x)dx
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4 S. PRIYADHARSHINI , G.E. CHATZARAKIS , S. L. PANETSOS ANDV. SADHASIVAM *

−m

∫
Ω

(
∂u(ξ, t)

∂ξ

)2

dξ

∫
Ω

∂2u(x, t)

∂x2
ψ(x)dx+

∫
Ω

g

(
x, t,

∫ t

0

(t− s)−αu(x, s)ds

)
ψ(x)dx

(3.3) =

∫
Ω

f(x, t)ψ(x)dx

Intgrating by parts and using (3.1),

(3.4)
∫

Ω

∂4u(x, t)

∂x4
ψ(x)dx =

∫ L

0

∂4u(x, t)

∂x4
ψ(x)dx =

∫
Ω

u(x, t)ψ4(x)dx,

(3.5)
∫

Ω

∂2u(x, t)

∂x2
ψ(x)dx =

∫ L

0

∂2u(x, t)

∂x2
ψ(x)dx =

∫
Ω

u(x, t)ψ′′(x)dx.

Also, we have Jenson’s inequality and Lemma 2.1,

(3.6)
∫

Ω

g

(
x, t,

∫ t

0

(t− s)−αu(x, s)ds

)
ψ(x)dx ≥ g(x, t, E(t))

Equations 3.4, 3.5 and 3.6 are substituted in Equation 3.3,

∂

∂t

(
r(t)

(
Dα

+,t

∫
Ω

u(x, t)ψ(x)dx

))
+

∫
Ω

(pψ4(x)− qψ′′(x))u(x, t)dx ≤
∫

Ω

f(x, t)ψ(x)dx.

(3.7)
d

dt
(r(t)Dα

+U(t)) + cU(t) ≤
∫

Ω

f(x, t)ψ(x)dx,

whereU(t) =
∫

Ω
u(x, t)ψ(x)dx. ie,U(t) > 0 is a solution of 3.2.

The caseu(x, t) < 0 can be considered by the same method, we get

(3.8)
d

dt
(r(t)Dα

+U(t)) + cU(t) ≤ −
∫

Ω

f(x, t)ψ(x)dx.

From Equations 3.7 and 3.8, we get

d

dt
(r(t)Dα

+U(t)) + cU(t) ≤ ±F (t).

Hence the proof is complete.

Corollary 3.2. Assume that m≥ 0 andpψ4(x) + qψ′′(x) ≥ 0. Each solution of 1.1 satisfying
3.1 is oscillatory, if

(3.9) lim inf
t→∞

∫ t

T

Q(t, s)F (s)ds = −∞,

(3.10) lim sup
t→∞

∫ t

T

Q(t, s)F (s)ds = ∞

for all large T.

Proof. We see thatψ(x) = sin π
L
x satisfies the conditions of Theroem 3.1 with

c = p( π
L
)4 +q( π

L
)2. From 3.7, we have

(3.11)
d

dt
(r(t)Dα

+U(t)) ≤ F (t), t ≥ T.

Integrating the Equation?? twice fromT to t, we get

E(t) ≤ E(T ) + r(T )E ′(T )

∫ t

T

1

r(s)
ds+

1

Γ(1− α)

∫ t

T

1

r(s)

(∫ s

T

F (η)dη

)
ds
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= E(T ) + r(T )E ′(T )Q(t, T ) +
1

Γ(1− α)

∫ t

T

Q(t, s)F (s)ds, t ≥ T,

where E(T) and r(T)E ′(T ) are constant. We divide the above equations by Q(t,T) and
let t→∞. In view of (3.9 and 3.10) we conclude that

lim inf
t→∞

E(t)

Q(t, T )
= −∞,

lim sup
t→∞

E(t)

Q(t, T )
= ∞

which leads to a contradiction.

Corollary 3.3. Assume that m≥ 0 andpψ4(x) + qψ′′(x) ≥ 0. Every solution of 1.1 satisfying
3.1 is oscillatory, if

(3.12)
∫ t+ π

w

t

F (s)sinw(s− t)ds

is oscillatory in G, where w = (pψ4(x) + qψ′′(x))
1
2 .

Proof. Let us to prove that Equation 3.2 is oscillatory. Assume on the contrary that there exists
an eventually non negative solution of 3.2.
Multiplying k(t, s) = sin w(t-s) in 3.7, integrating over(s, s+ π

w
), we get

(3.13)
∫ s+ π

w

s

d

dt
(r(t)Dα

+U(t))k(t, s)dt+ c

∫ s+ π
w

s

U(t)k(t, s)dt ≤
∫ s+ π

w

s

F (t)k(t, s)dt∫ s+ π
w

s

d

dt
(r(t)Dα

+U(t))k(t, s)dt =
w

Γ(1− α)

(
r
(
s+

π

w

)
E
(
s+

π

w

)
− r(s)E(s)

)
+

(3.14)
1

Γ(1− α)

∫ s+ π
w

s

E(t)
∂

∂t
(r(t)kt(t, s))dt

Equation 3.14 is substituted in 3.13, gives

w

Γ(1− α)

(
r
(
s+

π

w

)
E
(
s+

π

w

)
− r(s)E(s)

)
+

1

Γ(1− α)

∫ s+ π
w

s

E(t)
∂

∂t
(r(t)kt(t, s)) dt

+ c

∫ s+ π
w

s

U(t)k(t, s)dt ≤
∫ s+ π

w

s

F (t)k(t, s)dt.

Therefore,

(3.15)
w

Γ(1− α)

(
r
(
t+

π

w

)
E
(
t+

π

w

)
− r(t)E(t)

)
≤
∫ t+ π

w

t

F (s)sinw(s− t)ds.

The left side of 3.15 is non negative, but the right side of 3.15 oscillates, which is contradicts
3.2, ast tends to infinity.

Corollary 3.4. Assume that m≥ 0 andpψ4(x) + qψ′′(x) ≥ 0. Then every solution u(x,t) of the
fractional extensible beam equation

∂

∂t
(r(t)Dα

+,tu(x, t)) + p
∂4u(x, t)

∂x4
−

(
q +m

∫
Ω

(
∂u(ξ, t)

∂ξ

)2

dξ

)
∂2u(x, t)

∂x2

+ g

(
x, t,

∫ t

0

(t− s)−αu(x, s)ds

)
= 0

is oscillatory in G.
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Oscillation of extensible beam with sliding.We deal the case of sliding with boundary con-
ditions

(3.16)
∂u

∂x
(0, t) =

∂u

∂x
(L, t) =

∂3u

∂x3
(0, t) =

∂3u

∂x3
(L, t) = 0.

In the following theorem, we reduce the multidimensional problems to one dimensional prob-
lem.

Theorem 3.5. Every solution of 1.1 satisfying the boundary condition 3.16 is oscillatory in G,
if the inequality

(3.17)
d

dt
(r(t)Dα

+U(t)) ≤ ±K(t)

is oscillatory.

Proof. Assume on the contrary that u is a nonoscillatory in G. We consideru(x, t) > 0 and
integrating overΩ.∫

Ω

∂

∂t
(r(t)Dα

+,tu(x, t))dx+ p

∫
Ω

∂4u(x, t)

∂x4
dx−m

∫
Ω

(
∂u(ξ, t)

∂ξ

)2

dξ

∫
Ω

∂2u(x, t)

∂x2
dx

(3.18) − q

∫
Ω

∂2u(x, t)

∂x2
dx+

∫
Ω

g

(
x, t,

∫ t

0

(t− s)−αu(x, s)ds

)
dx =

∫
Ω

f(x, t)dx.

We know that,

(3.19)
∫

Ω

∂4u(x, t)

∂x4
dx = 0,

(3.20)
∫

Ω

∂2u(x, t)

∂x2
dx = 0

and

(3.21)
∫

Ω

g

(
x, t,

∫ t

0

(t− s)−αu(x, s)ds

)
dx ≥ g(x, t, E(t)).

Equations 3.19, 3.20 and 3.21 are substituted in Equation 3.18, we get

(3.22)
d

dt
(r(t)Dα

+U(t)) + g(x, t, E(t)) ≤
∫

Ω

f(x, t)dx.

whereU(t) =
∫

Ω
u(x, t)ψ(x)dx andψ(x) = 1.

(3.23)
d

dt
(r(t)Dα

+U(t)) ≤
∫ t

0

f(x, t)dx.

The caseu(x, t) < 0 can be considered by the same method, we get

(3.24)
d

dt
(r(t)Dα

+U(t)) ≤ −
∫ t

0

f(x, t)dx.

From Equations 3.23 and 3.24, we get

d

dt
(r(t)Dα

+U(t)) ≤ ±K(t).

Hence the proof is complete.
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Theorem 3.6.Assume the condition
g(x,t,E(t))≥ h(t)J(E(t))∀ (x,t,E(t))∈ Ω×R+×R+, where h(t), J(E(t)) are continuous, positive
and J(E(t)) is convex inR+.
Each solution of 1.1 satisfying 3.16 is oscillatory in G, if the inequality

(3.25)
d

dt
(r(t)Dα

+U(t)) + h(t)J(E(t)) ≤ ±K(t)

is oscillatory att = ∞.

Proof. By the Theroem 3.5, we are using the Equation 3.22

d

dt
(r(t)Dα

+U(t)) + g(x, t, E(t)) ≤
∫

Ω

f(x, t)dx.

Using the condition, we get

d

dt
(r(t)Dα

+U(t)) + h(t)J(E(t)) ≤ ±K(t).

Hence the proof is complete.

Corollary 3.7. Every solution of 1.1 satisfying 3.16 is oscillatory in G, if

(3.26) lim inf
t→∞

∫ t

T

Q(t, s)K(s)ds = −∞,

(3.27) lim sup
t→∞

∫ t

T

Q(t, s)K(s)ds = ∞

for all large T.

Corollary 3.8. Assume thatg(x, t, E(t)) = c0E(t) (c0 is a positive constant). Each solution of
1.1 satisfying 3.16 is oscillatory, if

(3.28)
∫ t+ π

ew

t

K(s)sinw̃(s− t)ds

is oscillatory in G, wherẽw = (c0)
1
2 .

Oscillation of extensible beam with hinged-sliding ends.We deals with the case of hinged-
slinding ends

(3.29) u(0, t) =
∂2u

∂x2
(0, t) =

∂u

∂x
(L, t) =

∂3u

∂x3
(L, t) = 0.

Let Φ(x) is a non negative function,Φ(x) ∈ C4(Ω) which satisfies the boundary conditions

Φ(0) = Φ′′(0) = Φ′(L) = Φ′′′(L) = 0.

ThenΦ(x) = sin π
2L
x. Hence,sin π

L
x is replaced bysin π

2L
x in Theorem 3.1.

Theorem 3.9. Assume that q, m = 0, andψ4(x) ≥ εψ(x) in Ω for someε ≥ 0. Then there
exists a solution of 1.1 satisfying the boundary condition 3.29 which is oscillatory in G, if the
inequality

(3.30)
d

dt
(r(t)Dα

+U(t)) + pεU(t) ≤ ±F (t)

is oscillatory.
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Proof. Assume on the contrary that u is nonoscillatory in G. We consideru(x, t) > 0, multiply-
ing 1.1 byψ(x) and integrating overΩ, we get∫

Ω

∂

∂t
(r(t)Dα

+,tu(x, t))ψ(x)dx+ p

∫
Ω

∂4u(x, t)

∂x4
ψ(x)dx

(3.31) +

∫
Ω

g

(
x, t,

∫ t

0

(t− s)−αu(x, s)ds

)
ψ(x)dx =

∫
Ω

f(x, t)ψ(x)dx

Taking into account that,

(3.32)
∫

Ω

g

(
x, t,

∫ t

0

(t− s)−αu(x, s)ds

)
ψ(x)dx ≥ g(x, t, E(t)),

Equation 3.32 are substituted in Equation 3.31, we get

d

dt

(
r(t)

(
Dα

+,t

∫
Ω

u(x, t)ψ(x)dx

))
+ pε

∫
Ω

u(x, t)ψ(x)dx ≤
∫

Ω

f(x, t)ψ(x)dx

(3.33)
d

dt
(r(t)Dα

+U(t)) + pεU(t) ≤
∫ t

0

f(x, t)ψ(x)dx.

Next, we consideru(x, t) < 0, similarly, we obtain

(3.34)
d

dt
(r(t)Dα

+U(t)) + pεU(t) ≤ −
∫ t

0

f(x, t)ψ(x)dx.

From Equations 3.33 and 3.34, we have

d

dt
(r(t)Dα

+U(t)) + pεU(t) ≤ ±F (t).

Hence the proof is complete.

Corollary 3.10. Each solution of (1.1) satisfying (HSE) is oscillatory in G, if

(3.35) lim inf
t→∞

∫ t

T

Q(t, s)F (s)ds = −∞,

(3.36) lim sup
t→∞

∫ t

T

Q(t, s)F (s)ds = ∞

for all large T.

4. EXAMPLE

We provide a few examples to illustrate our results established in Section 3.

Example: 4.1. We consider the fractional extensible beam equations

∂

∂t
(D

1
2
+,tu(x, t)) +

(
L

π

)4
∂4u(x, t)

∂x4
−

((
L

π

)2

+

(
L

π

)4 ∫
Ω

(
∂u(ξ, t)

∂ξ

)2

dξ

)
∂2u(x, t)

∂x2

(4.1) + g

(
x, t,

∫ t

0

(t− s)−
1
2u(x, t)ds

)
= f(x, t), (x, t) ∈ G,

with boundary conditions 3.1

u(0, t) = u(L, t) =
∂2u

∂x2
(0, t) =

∂2u

∂x2
(L, t) = 0.
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Here,r(t) = 1, p(t) =
(

L
π

)4
, q(t) =

(
L
π

)2
,m(t) =

(
L
π

)4
, g(x, t, E(t)) = E(t) and

f(x, t) =
(
St(−3

2
, 1) +

√
πSt(

1
2
, 1) + (2 + L

2
sin2t)sint

)
sin π

L
x .

Therefore,∫ t

T

Q(t, s)F (s)ds

=

∫ t

T

Q(t, s)

(∫ L

0

(
Ss(−

3

2
, 1) +

√
πSs(

1

2
, 1) + (3 +

L

2
sin2s)sins

)
sin

π

L
xsin

π

L
x

)
ds

=
L

2

∫ t

T

Q(t, s)

(
Ss(−

3

2
, 1) +

√
πSs(

1

2
, 1) + (3 +

L

2
sin2s)sins

)
ds = ∞.

Thus all the conditions of Corollary 3.2 are satisfied. Hence, every solution of 4.1 and 3.1 is
oscillatory in G. In fact,u(x, t) = sintsin π

L
x is one such solution.

Example: 4.2. We consider the fractional extensible beam equations

∂

∂t
(D

1
2
+,tu(x, t)) +

(
L

π

)4
∂4u(x, t)

∂x4
−

(
−
(

2L

π

)2

+

(
2L3

π4

)∫
Ω

(
∂u(ξ, t)

∂ξ

)2

dξ

)
∂2u(x, t)

∂x2

(4.2) + g

(
x, t,

∫ t

0

(t− s)−
1
2u(x, t)ds

)
= f(x, t), (x, t) ∈ G,

with boundary conditions 3.1

u(0, t) = u(L, t) =
∂2u

∂x2
(0, t) =

∂2u

∂x2
(L, t) = 0.

Here,r(t) = 1, p(t) =
(

L
π

)4
, q(t) = −

(
2L
π

)2
,m(t) =

(
2L3

π4

)
, g(x, t, E(t)) = E(t) and

f(x, t) =
(
Et(−3

2
, 1) +

√
πEt(

1
2
, 1) + (1 + e−2t)e−t

)
sin π

L
x.

Therefore,∫ t

T

Q(t, s)F (s)ds

=

∫ t

T

Q(t, s)

(∫ L

0

(
Es(−

3

2
, 1) +

√
πEs(

1

2
, 1) + (1 + e−2s)e−s

)
sin

π

L
xsin

π

L
x

)
ds

≤ L

2

∫ ∞

0

Q(t, s)(3 + e−2s)e−sds <∞.

The conditions of Corollary 3.2 are not satisfied. Infact,u(x, t) = e−tsin π
L
x is a nonoscillatory

solution of 4.2.

Example: 4.3. We consider the fractional extensible beam equations

(4.3)
∂

∂t
(r(t)Dα

+,tu(x, t)) + p
∂4u(x, t)

∂x4
−

(
q +m

∫
Ω

(
∂u(ξ, t)

∂ξ

)2

dξ

)
∂2u(x, t)

∂x2
= 0,

(x, t) ∈ G,
with boundary conditions 3.1

u(0, t) = u(L, t) =
∂2u

∂x2
(0, t) =

∂2u

∂x2
(L, t) = 0.

where m≥ 0 and pψ4(x) + qψ′′(x) ≥ 0. Corollary (3.4) implies that each solution of 4.3
satisfying 3.1 is oscillatory.
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An oscillatory solution of u(x, t) =(sin( π
L
x)V (t)) and r(t) = 1, here V(t) is a solution of the

fractional Duffing’s equation

d

dt
(Dα

+(V (t))) +

(
p
(π
L

)4

+ q
(π
L

)2
)
V (t) +

mL

2

(π
L

)4

V 3(t) = 0.

5. CONCLUSION

We have mainly focussed on deriving some new sufficient conditions for the forced
oscillation of self adjoint fractional extensible beam equations with some boundary conditions.
The results are essentially new and complements the previous existing literature in the classical
case. We have also presented a few examples to illustrate our new results.
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