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continuity condition on the Pseudomonotone operator is removed in this work. A Strong conver-
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comparison with other methods in the literature in the framework of infinite dimensional Hilbert
spaces. The results obtained in this paper extend, generalize and improve several.
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1. I NTRODUCTION

Let H be a real Hilbert space with the inner product〈·, ·〉 and induced norm‖ · ‖, C be a
nonempty closed convex subset ofH andF1 : H → H be an operator. The classical Variational
Inequality Problem (VIP) is formulated as: Findx ∈ C such that

〈F1x, y − x〉 ≥ 0 ∀ y ∈ C.(1.1)

The notion of VIP was introduced independently by Stampacchia [30] and Fichera [12, 13]
for modeling problems arising from mechanics and for solving Signorini problems. It is well-
known that many problems in economics, mathematical sciences, and mathematical physics can
be formulated as VIP. Censor et al. in [10] extended the concept of VIP (1.1) to the following
Split Variational Inequality Problem (SVIP): Find

x∗ ∈ C that solves〈F1x
∗, x− x∗〉 ≥ 0 ∀ x ∈ C(1.2)

such thaty∗ = Ax∗ ∈ Q solves

〈F2y
∗, y − y∗〉 ≥ 0 ∀ y ∈ Q,(1.3)

whereC andQ are nonempty, closed and convex subsets of real Hilbert spacesH1 andH2

respectively,F1 : H1 → H1, F2 : H2 → H2 are two operators andA : H1 → H2 is a bounded
linear operator.

Remark 1.1. WhenF1 = F2 = 0, the SVIP reduces to the Split Feasibility Problem (SFP).

The concept of SFP was introduced by Censor and Elfving [8] in the framework of finite-
dimensional Hilbert spaces. The SFP has found applications in many real-life problems such as
image recovery, signal processing, control theory, data compression, computer tomography and
so on (see [11, 9] and the references therein). The fixed point problem finds application in prov-
ing the existence of solutions of many nonlinear problems arising in many real life problems.
From the existence of solutions of differential, partial differential, integral, random differential
and random integral equations, and evolutionary equations. For details about fixed point prob-
lems (see [14, 15, 17]). Furthermore, a common solution of a VIP and a fixed point problem
find applications in real life problems like network resource allocation, image recovery, signal
processing, for further details, (see [2, 6, 32, 31, 33] and the references therein).
Mainge in [21] proposed and studied a new type of optimization problem. Find

x∗ ∈ V I(F1, C) ∩ F (T ) such that〈F2x
∗, x− x∗〉 ≥ 0, ∀ x ∈ V I(F1, C) ∩ F (T ),(1.4)

whereF1 : H → H is monotone andL-Lipschitz continuous,F2 : H → H is η-strongly
monotone andk-Lispchitz continuous andT : H → H is a γ-demicontractive mapping and
demiclosed at zero. He proposed the following iterative algorithm



x0 = H1

yn = PC(xn − λnF1xn)

zn = PC(xn − λnF1yn)

tn = zn − αnF2(zn)

xn+1 = (1− ω)tn + ωT (tn),

(1.5)

whereλn ⊂ [a, b] ⊂ (0, 1
L
), {αn} ⊂ (0, 1), lim

n→∞
αn = 0,

∑∞
n=0 αn = ∞ andω ∈ (0, 1−γ

2
). He

established that the sequence generated by algorithm (1.5) converges strongly to the solution
set.
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SOLVING SPLIT BILEVEL VARIATIONAL INEQUALITIES PROBLEM 3

Remark 1.2. However, in Algorithm (1.5), the projectionPC onto feasible setC is evaluated
two times in each iteration and this have adverse effect on the performance of the algorithm.
In addition, the Lipschitz constant is required which is very difficult or impossible to estimate.
Thus, the above iterative scheme is not easily applicable.



x0, x1 = H1

wn = xn + θn(xn − xn−1),

yn = PC(wn − λnAwn),

Tn = {x ∈ H : 〈wn − λnAwn − yn, x− yn〉 ≤ 0}
zn = PTnP (wn − λnAyn),

xn+1 = zn − αnγF (zn),

(1.6)

and 

x0, x1 = H1

wn = xn + θn(xn − xn−1),

yn = PC(wn − λnAwn),

zn = yn − λn(Ayn − Awn),

xn+1 = zn − αnγF (zn),

(1.7)

Minh, Van and Anh in [26], also studied the following Split Bilevel Variational Inequality Prob-
lem (SBVIP): Find

x∗ ∈ Γ such that〈F2x
∗, x− x∗〉 ≥ 0,(1.8)

for anyx ∈ Γ, where
Γ = {x∗ ∈ V I(F1, C) : Ax∗ ∈ F (S)}.

Using the following iterative method, they established a strong convergence theorem.

Algorithm 1.1. Initialization: Letx0 ∈ H1. Setn := 0.
Step 1.Computeun = A(xn) and

yn = xn + ωnA
∗(S(un)− un).(1.9)

Step 2.Compute

zn = PC(yn − λnF1yn),(1.10)

tn = PTn(yn − λnF1zn),(1.11)

whereTn = {ω ∈ H : 〈yn − λnF1yn − zn, ω − zn〉 ≤ 0}.
Step 3.Compute

xn+1 = tn − αnF2tn,(1.12)

whereA : H1 → H2, F2 : H1 → H1 is η-strongly monotone andL-Lipschitz continuous on
H1, with L > 0, F1 : H1 → H1 is pseudomonotone onC andL-Lipschitz continuous onH1

with lim supn→∞〈F1xn, y − yn〉 ≤ 〈F1x, y − y〉. They prove that the sequence{xn} generated
by Algorithm 1.1 converges weakly to a unique solution of (1.8).

Remark 1.3. It is well-known that stepsizes play essential roles in the convergence properties
of iterative methods, since the efficiency of the methods depends heavily on it. When the step
size depends on the knowledge of either the operator norm or the coefficient of an operator, it
usually slows down the convergence rate of the method. Moreover, in many practical cases, the
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operator norm or the coefficient of a given operator may not be known or may be difficult to
estimate, thus, making the applicability of such method to be questionable. Therefore, iterative
methods that do not depend on any of these, are more applicable in practice. From Algorithm
1.1, we have that

{ωn} ⊂ [ω, ω] ⊂
(

0,
1− γ

‖A‖+ 1

)
,

which require computing the norm of‖A‖ and makes the algorithm difficult to compute and
apply to real-life problems.

The inertial extrapolation method has proven to be an effective way for accelerating the rate
of convergence of many iterative algorithms. The technique is based on a discrete version
of a second order dissipative dynamical system [4, 3]. The inertial type algorithms use its
two previous iterates to obtain its next iterate [1, 20]. For details on inertia extrapolation, see
[5, 27, 28] and the references therein.
Based on Remark 1.2, Remark 1.3, the research works described above and the recent research
interests in this direction, we propose a new self adaptive iterative method for solving SBVIP
(1.8) that is free of the setbacks highlighted in Remark 1.2 and Remark 1.3. Furthermore, we
prove that the proposed method converges strongly to a minimum norm solution of the BSVIP
(1.8) in real Hilbert spaces. More so, some examples and numerical experiments were given
to show the efficiency and implementation of our method in comparison with other methods
in the literature in the framework of infinite dimensional Hilbert spaces. We emphasize that
one of the novelties of this work is the introduction of a modified inertial technique and the
removal of the weakly sequential continuity condition used by some authors to obtain strong
convergence. The rest of this paper is organized as follows: In Section 2, we shall recall some
useful definitions and Lemmas. In Section 3, we present our proposed method and highlight
some of its features. Strong convergence analysis of our method is investigated in Section
4. Moreover, some numerical experiments to show the efficiency and implementation of our
method (in comparison with other methods in the literature) are also discussed in the framework
of infinite dimensional Hilbert spaces in Section 5. Lastly, in Section 6 we give a conclusion of
the paper.

2. PRELIMINARIES

In this section, we begin by recalling some known and useful results which are needed in the
sequel.
Let H be a real Hilbert space. The set of fixed points of a nonlinear mappingT : H → H
will be denoted byF (T ), that isF (T ) = {x ∈ H : Tx = x}. We denotes strong and weak
convergence by "→" and "⇀", respectively. For anyx, y ∈ H andα ∈ [0, 1], it is well-known
that

‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2.(2.1)

‖x + y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2.(2.2)

‖x− y‖2 ≤ ‖x‖2 + 2〈y, x− y〉.(2.3)

‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2.(2.4)

Definition 2.1. Let T : H → H be an operator. Then the operatorT is called
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(a) L-Lipschitz continuous if there existsL > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖,
for all x, y ∈ H;

(b) monotone if

〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ H;

(c) α- strongly monotone onH if there existsα > 0, such that

〈Tx− Ty, x− y〉 ≥ α‖x− y‖2, ∀ x, y ∈ H.

(d) pseudomonotone if

〈Ty, x− y〉 ≥ 0 ⇒ 〈Tx, x− y〉 ≥ 0, ∀ x, y ∈ H.

Definition 2.2. A mappingT : H → H is said to be

(a) δ-demicontrative ifF (T ) 6= 0 and there existsδ ∈ (0, 1) such that

‖Tx− x∗‖2 ≤ ‖x− x∗‖2 + δ‖x− Tx‖2 ∀ x ∈ H, x∗ ∈ F (T );

(b) directed if

‖Tx− x∗‖2 ≤ ‖x− x∗‖2 − ‖x− Tx‖2,

equivalently

〈x∗ − Tx, x− Tx〉 ≤ 0 ∀ x ∈ H, x∗ ∈ F (T );

(c) nonexpansive it

‖Tx− Ty‖ ≤ ‖x− y‖ ∀ x, y ∈ H;

(d) sequentially weakly continuous if for each sequence{xn} we have{xn} converges
weakly tox implies that{Txn} converges toTx;

(e) demiclosed at zero if for every sequence{xn} contained inH, the following implica-
tions holds

xn ⇀ x and(I − T )xn → 0

implies thatx ∈ F (T ).

Lemma 2.1. [16]. LetC be a nonempty, closed and convex subset of a real Hilbert spaceH.
Givenx ∈ H andz ∈ K. Then

z = PCx ⇐⇒ 〈x− z, z − y〉 ≥ 0, ∀ y ∈ C.

Lemma 2.2. [16, 18]. LetC be a nonempty, closed and convex subset of a real Hilbert space
H. Givenx ∈ H, then

(a) ‖PCx− PCy‖ ≤ 〈PCx− PCy, x− y〉, ∀ y ∈ C;
(b) ‖x− y‖ − ‖x− PCx‖ ≥ ‖PCx− y‖;
(c) ‖(I − PC)x− (I − PC)y‖2 ≤ 〈(I − PC)x− (I − PC)y, x− y〉, ∀ y ∈ C.

Lemma 2.3. [18]. ConsiderV I(F1, C) (1.1) with C being a nonempty, closed and convex
subset of a real Hilbert spaceH andF1 : K → H being a pseudomonotone and continuous
operator. Thenx∗ ∈ V I(F1, C) if and only if

〈F1x, x− x∗〉 ≥ 0, ∀ x ∈ C.

Lemma 2.4. [2] LetT : H → H be an operator. Then the following statements are equivalent:

(1) T is directed;
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(2) there holds the relation

‖x− Tx‖2 ≤ 〈x− p, x− Tx〉 ∀p ∈ F (T ), x ∈ H;(2.5)

(3) there holds the relation

‖Tx− p‖2 ≤ ‖x− p‖2 − ‖x− Tx‖2 ∀p ∈ F (T ), x ∈ H.(2.6)

Lemma 2.5. [29] Let{an} be a sequence of positive real numbers,{αn} be a sequence of real
numbers in(0, 1) such that

∑∞
n=1 αn = ∞ and{dn} be a sequence of real numbers. Suppose

that

an+1 ≤ (1− αn)an + αndn, n ≥ 1.

If lim supk→∞ dnk
≤ 0 for all subsequences{ank

} of {an} satisfying the condition

lim inf
k→∞

{ank+1 − ank
} ≥ 0,

then, lim
n→∞

an = 0.

3. PROPOSED ALGORITHM

In this section, we present our proposed method for solving a class of bi-level split variational
inequality and composed fixed point problem and highlight some of its important features.

Assumption 3.1. Condition A.Suppose

(1) H1 andH2 are two real Hilbert spaces.
(2) The feasible setC is a nonempty closed and convex subset ofH1.
(3) {Sn} is a sequence of nonexpansive mapping.
(4) A : H1 → H2 is a bounded linear operator with the adjoint operatorA∗ andT : H2 →

H2 be a directed mapping, such thatT is demiclosed at zero.
(5) F1 : H1 → H1 is pseudomonotone,L1- Lipschitz continuous operator (Lipschitz con-

stant need not to be known) andF2 : H1 → H1 isα-strongly monotone andL2-Lipschitz
continuous operator, whereL1, L2 > 0 andα > 0.

(6) The mappingF1 satisfies the following; whenever

{xn} ⊂ C, xn ⇀ x∗ we get‖F1x
∗‖ ≤ lim inf

k→∞
‖F1xn‖.(3.1)

(7) The solution set of problem(1.8) is denoted byΩ andΩ is not empty.

Condition B. Suppose that{αn} and{βn} are real sequences such that

(1) βn ⊂ (0, 1), lim
n→∞

βn = 0 and
∑∞

n=0 βn = ∞.

(2) εn is a positive integer such that◦(βn) = εn, µ ∈ (0, 1), {αn} ⊂ (a, 1 − a) for some
a > 0, α ≥ 3.

We present the following iterative algorithm.

Algorithm 3.2. Iterative steps: Choosex0, x1 ∈ H1, given the iteratesxn−1 and xn for all
n ∈ N, chooseθn such that0 ≤ θn ≤ θ̄n, where

θ̄n =


min

{
n−1

n+α−1
, εn

‖xn−xn−1‖}

}
, if xn 6= xn−1

n−1
n+α−1

, otherwise.

(3.2)

Step 1.Set
wn = xn + θn(Snxn − Snxn−1).
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Then, compute

yn = wn + γnA
∗(T (Awn)− Awn),(3.3)

whereγn be chosen in such a way that for someε > 0,

γn =

(
ε,

‖T (Awn)− Awn‖
‖A∗(T (Awn)− Awn)‖

− ε

)
(3.4)

for T (Awn) 6= Awn, otherwiseγn = γ.
Step 2.Compute

zn = PC(yn − λnF1yn).(3.5)

vn := yn − γnbn,(3.6)

wherebn = yn − zn − λn(F1yn − F1zn),

γn =
〈yn − zn, bn〉

‖bn‖2
if bn 6= 0, elseγn = 0.(3.7)

and

λn+1 =

{
min

{
µ‖yn−zn‖

‖F1yn−F1zn‖ , λn

}
, if F1yn 6= F1zn,

λn otherwise.
(3.8)

Step 3.Compute

xn+1 = αnyn + (1− αn)vn − βnFvn.(3.9)

Remark 3.1. (1) The sequentially weakly continuous assumption usually used in the liter-
ature is replaced with a weaker assumption.

(2) The extra projection onto the convex set and the projection into the half space tech-
nieques used in literature are dispensed with our new approach. In addition, compar-
ing our algorithm with [26, 21], the implementation of our method does not require
the knowledge of norm of the bounded linear operator‖A‖. We emphasize that this at-
tribute is very important, because iterative algorithms that depends on the operator norm
require the computation of the norm of the bounded linear operator, which in general is
impossible or very difficult to compute.

(3) In Algorithm 3.2, it is easy to compute Step 1 since the value of‖xn − xn−1‖ is known
before choosingθn. It is also easy to see from (3.2) thatlim

n→∞
θn

βn
‖xn − xn−1‖ = 0.

Since,{εn} is a positive sequence such thatεn = ◦(βn), which means thatlim
n→∞

εn

βn
= 0.

Also θn‖xn − xn−1‖ ≤ εn ∀ n ∈ N, and with lim
n→∞

εn

βn
= 0, yields

lim
n→∞

θn

βn

‖xn − xn−1‖ ≤ lim
n→∞

εn

βn

= 0.

In addition, our numerical experiment (that is Section 5), we shall consider the sensi-
tivity of θn in order to find numerically the optimum choice forθn with respect to the
convergence speed of our proposed iterative method.

(4) Step 4 of our algorithm guarantee the strong convergence to the minimum norm solution
of the problem.
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4. CONVERGENCE ANALYSIS

In this section, we establish strong convergence result of our proposed method.

Lemma 4.1. [33] The sequence{λn} generated by Algorithm 3.2 is nonincreasing and

lim
n→∞

λn = λ ≥ { µ

L1

, λ1}.(4.1)

Lemma 4.2. The setepsize sequenceγn defined by(3.4) is well defined.

Proof. Let p ∈ Ω, thenAp ∈ F (T ), sinceT is a directed mapping andF (T ) 6= ∅, using (2.5),
we obtain

‖A∗(T − I)Awn‖‖wn − p‖ ≥ 〈A∗(T − I)Awn, wn − p〉
= 〈(T − I)Awn, Awn − Ap〉
≥ ‖(T − I)Awn‖2.(4.2)

SinceT (Awn) 6= Awn, then‖(T − I)Awn‖ > 0, then‖wn − p‖‖A∗(T − I)Awn‖ > 0, hence,
‖A∗(T − I)Awn‖ 6= 0. Therefore,γn is well defined.

Lemma 4.3. Let{xn} be a sequence generated by Algorithm 3.2. Then, under Assumption 3.1,
we have that{xn} is bounded.

Proof. Let p ∈ Ω and sincelim
n→∞

θn

βn
‖xn − xn−1‖ = 0, there existsN1 > 0 such thatθn

βn
‖xn −

xn−1‖ ≤ N1, for all n ∈ N. Then fromStep2, we have

‖wn − p‖ = ‖xn + θn(Snxn − Snxn−1)− p‖
≤ ‖xn − p‖+ θn‖Snxn − Snxn−1‖

≤ ‖xn − p‖+ βn

θn

βn

‖xn − xn−1‖

≤ ‖xn − p‖+ βnN1.(4.3)

Also, using the fact thatT is directed mapping, (2.2),F (T ) 6= ∅, (2.5) and the stepsize ofγn in
(3.4), we have

‖yn − p‖2 = ‖wn + γnA
∗(T − I)Awnp‖2

= ‖wn − p‖2 + γ2
n‖T ∗(J

B2
λ − I)Twn‖2 + 2γn〈wn − p, A∗(T − I)Awn〉

= ‖wn − p‖2 + γ2
n‖A∗(T − I)Awn‖2 + 2γn〈A(wn − p), (T − I)Awn〉

≤ ‖wn − p‖2 + γ2
n‖A∗(T − I)Awn‖2 − γn‖(T − I)Awn‖2

= ‖wn − p‖2 − γn(‖T − I)Awn‖2 − γn‖A∗(T − I)Awn‖2)

≤ ‖wn − p‖2 − γnε‖A∗(T − I)Awn‖2

≤ ‖wn − p‖2.(4.4)

Sincezn = PC(yn − λF1yn), then by the characteristics of thePC , we obtain

〈yn − zn − λF1yn, zn − p〉 ≥ 0.(4.5)

Also, sincep ∈ V I(F1, C) andzn ∈ C, we obtain

〈F1p, zn − p〉 ≥ 0,

thus using the pseudomonotonicity ofF1, we obtain

〈F1zn, zn − p〉 ≥ 0.(4.6)
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From (4.5) and (4.6), we obtain

〈zn − p, yn − zn − λn(F1yn − F1zn)〉 ≥ 0.(4.7)

Thus, we have

〈yn − p, bn〉 = 〈yn − zn, bn〉+ 〈zn − p, bn〉
= 〈yn − zn, bn〉+ 〈zn − p, yn − zn − λn(F1yn − F1zn)〉
≥ 〈yn − zn, bn〉(4.8)

From Step 3 of Algorithm 3.2 and (4.8), we have

‖vn − p‖2 = ‖yn − γnbn − p‖2

= ‖yn − p‖2 + γ2
n‖bn‖2 − 2γn〈yn − p, bn〉

≤ ‖yn − p‖2 + γ2
n‖bn‖2 − 2γn〈yn − zn, bn〉

= ‖yn − p‖2 + γ2
n‖bn‖2 − 2γ2

n‖bn‖2

= ‖yn − p‖2 − ‖γnbn‖2

= ‖yn − p‖2 − ‖vn − yn‖2

≤ ‖yn − p‖2,(4.9)

which implies

‖vn − p‖ ≤ ‖yn − p‖.(4.10)

Now, observe

‖[(1− αn)vn − βnF2vn]− [(1− αn)p− βnF2p]‖
≤ (1− αn − βn)‖vn − p‖+ βn‖(vn − p)− (F2vn − F2p)‖,(4.11)

using the fact thatF2 is L2-Lipschitz continuous andα-strongly monotone onH1, we have that

‖(vn − p)− (F2vn − F2p)‖2 = ‖vn − p‖2 − 2〈vn − p, F2vn − F2p〉+ ‖F2vn − F2p‖2

≤ ‖vn − p‖2 − 2α‖vn − p‖2 + L2
2‖vn − p‖2

= (1− 2α + L2
2)‖vn − p‖2,(4.12)

which implies that

‖(vn − p)− (F2vn − F2p)‖ ≤
√

(1− 2αn + L2
2)‖vn − p‖.

Thus, we have (4.11) become

‖[(1− αn)vn − βnF2vn]− [(1− αn)p− βnF2p]‖

≤ (1− αn − βn)‖vn − p‖+ βn

√
(1− 2α + L2

2)‖vn − p‖

= (1− αn − βn + βn

√
1− (2α− L2

2))‖vn − p‖

= (1− αn − βn(1−
√

1− (2α− L2
2))‖vn − p‖

= (1− αn − βnτ)‖vn − p‖,(4.13)

whereτ = 1−
√

1− (2α− L2
2) ∈ (0, 1).
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Now, using Step 4 of Algorithm 3.2 and (4.13), we have

‖xn+1 − p‖ = ‖αnyn + (1− αn)vn − βnFvn − p‖
= ‖αn(yn − p) + (1− αn)vn − βnFvn − (1− αn)p + βnFp− βnFp‖
≤ ‖[(1− αn)vn − βnFvn]− [(1− αn)p− βnFp]‖+ αn‖yn − p‖+ βn‖Fp‖
≤ (1− αn − βnτ)‖vn − p‖+ αn‖yn − p‖+ βn‖Fp‖
≤ (1− αn − βnτ)‖yn − p‖+ αn‖yn − p‖+ βn‖Fp‖
≤ (1− βnτ)‖yn − p‖+ βn‖Fp‖
≤ (1− βnτ)‖wn − p‖+ βn‖Fp‖
≤ (1− βnτ)‖xn − p‖+ βnN1 + βn‖Fp‖

≤ (1− βnτ)‖xn − p‖+ τβn

(N1 + ‖Fp‖)
τ

(4.14)

It follows by induction

‖xn − p‖ ≤ max{‖x0 − p‖, N1 + ν‖Fp‖
τ

}.(4.15)

Thus, we have{xn} is bounded.

Lemma 4.4. Let Assumption 3.1 hold and let{xn} be a sequence generated by Algorithm 3.2.
Assume that the subsequence{xnk

} of {xn} converges weakly to a pointx∗, and lim
k→∞

‖ynk
−

wnk
‖ = lim

k→∞
‖ynk

− znk
‖ = 0, then,x∗ ∈ Γ.

Proof. Let {xnk
} be a subsequence of{xn} which converges weakly tox∗ ∈ H. It is easy to

see that

‖wnk
− xnk

‖ = αnk

θnk

αnk

‖xnk
− xnn−1‖ → 0 ask →∞.(4.16)

It follows that

‖ynk
− xnk

‖ ≤ ‖ynk
− wnk

‖+ ‖wnk
− xnk

‖ → 0 ask →∞.(4.17)

SinceA is a bounded linear operator, it follows from (4.16) that{Awnk
} converges weakly to

Ax∗ ∈ H2. Also, by (4.17), we obtain thatynk
converges weakly tox∗. In addition, we have

‖znk
− xnk

‖ ≤ ‖znk
− ynk

‖+ ‖ynk
− xnk

‖ → 0 ask →∞.(4.18)

From (4.4), we have that

‖yn − p‖2 ≤ ‖wn − p‖2 − γnε‖A∗(T (Awn)− Awn)‖2

≤ ‖wn − p‖2 − ε2‖A∗(T (Awn)− Awn)‖2(4.19)

which implies that

ε2‖A∗(T (Awnk
)− Awnk

)‖2 ≤ ‖wnk
− p‖2 − ‖ynk

− p‖2

≤ ‖wnk
− ynk

‖2 + 2‖ynk
− p‖‖wnk

− ynk
‖,(4.20)

thus, we have that

lim
k→∞

‖A∗(T (Awnk
)− Awnk

)‖ = 0.(4.21)

Also from (4.4), we have

‖yn − p‖2 ≤ ‖wn − p‖2 + γ2
n‖A∗(T (Awn)− Awn)‖2 − γn‖T (Awn)− Awn‖2

≤ ‖wn − p‖2 + ε2‖A∗(T (Awn)− Awn)‖2 − ε‖T (Awn)− Awn‖2,

AJMAA, Vol. 20 (2023), No. 1, Art. 4, 20 pp. AJMAA

https://ajmaa.org


SOLVING SPLIT BILEVEL VARIATIONAL INEQUALITIES PROBLEM 11

which implies that

ε‖T (Awnk
)− Awnk

‖2

≤ ‖wnk
− p‖2 − ‖ynk

− p‖2 + ε2‖A∗(T (Awnk
)− Awnk

)‖2

≤ ‖wnk
− ynk

‖2 + 2‖ynk
− p‖‖wnk

− ynk
‖+ ε2‖A∗(T (Awnk

)− Awnk
)‖2,

thus, using (4.21), we have that

lim
k→∞

‖T (Awnk
)− Awnk

‖ = 0.(4.22)

Thus, using demicloseness property and (4.22), we have

Ax∗ ∈ F (T ).(4.23)

In addition, by the definition of{zn} and Lemma 2.1, that

〈ynj
− λnj

F1ynj
− znj

, v − znj
〉 ≤ 0, ∀ v ∈ C,

which implies

〈ynj
− znj

, v − znj
〉 ≤ λnj

〈F1ynj
, v − znj

〉
= λnj

〈F1ynj
, ynk

− znj
〉+ λnj

〈F1ynj
, v − znj

〉.(4.24)

As such, we have
1

λnj

〈ynj
− znj

, v − znk
〉+ 〈F1ynj

, znj
− ynj

〉 ≤ 〈F1ynj
, v − ynj

〉, ∀ v ∈ C.(4.25)

Since{ynj
} is converges weakly to a pointx∗ ∈ H1, thus, it is bounded. Then, sinceF1 is

Lipschitz continuous,{F1ynj
} is bounded. In addition, we have that{znj

} is bounded since
‖ynj

− znj
‖ → 0 asj → ∞ andλnj

∈ min
{
λ1,

µ
L

}
. Taking limit asj → ∞ in (4.25) we

obtain

lim inf
j→∞

〈F1ynj
, v − ynj

〉 ≥ 0.(4.26)

Now, note that

〈F1znj
, v − znj

〉 = 〈F1znj
, v − ynj

〉+ 〈F1znj
, ynj

− znj
〉

= 〈F1znj
− F1ynj

, v − ynj
〉+ 〈F1ynj

, v − ynj
〉+ 〈F1znj

, ynk
− znj

〉.(4.27)

Using the fact thatlim
j→∞

‖ynj
− znj

‖ = 0 and the continuity ofF1, we have

lim
j→∞

‖F1ynj
− F1znj

‖ = 0.(4.28)

Thus, using (4.26),(4.27) and (4.28), we have

lim inf
j→∞

〈F1ykj
, v − ykj

〉 ≥ 0.(4.29)

We choose a subsequence{εj} of positive number decreasing in(0, 1), such thatεj → 0 as
j →∞. For eachj, let Nj be the smallest nonnegative integer such that

〈F1zni
, v − zni

〉+ εj ≥ 0, ∀ i ≥ Nj.(4.30)

Since{εj} is decreasing, it is obvious thatNj is increasing. Further, for eachj ∈ N, the
subsequence{zNj

} ⊂ C we obtainF1zNj
6= 0 so thatzNj

is not a solution of theV IP (C, F1).
Now, we set

νNj
=

F1zNj

‖F1zNj
‖2

,
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such that〈F1zNj
, νNj

〉 = 1 for eachj. It follows from this and (4.30), that〈F1zNj
, v + εjνNj

−
zNj

〉 ≥ 0. SinceF1 is pseudomonotone, we have〈F1(v + εjνNj
), v + εjνNj

− zNj
〉 ≥ 0 and thus

〈F1v, v − zNj
〉 ≥ 〈F1v − F1(v + εjνNj

), v + εjνNj
− zNj

〉 − εj〈F1v, νNj
〉.(4.31)

Next, we show thatεjνNj
→ 0 asj →∞. To see this, using our hypothesis, that islimk→∞ ‖znk

−
ynk

‖ = 0, we have{znk
} converges weakly tox∗. Since{znk

} ⊂ C andC is closed, then
x∗ ∈ C. We suppose thatF1x

∗ 6= 0, if not, we obtain thatx∗ is a solution. Now, using condition
(3.1), we obtain

0 < ‖F1x
∗‖ ≤ lim inf

j→∞
‖F1zNj

‖.(4.32)

More so, using the fact that{zNj
} ⊂ {znj

} andεj → 0 asj →∞, we get

0 ≤ lim sup
j→∞

‖εjνNj
‖ = lim sup

j→∞

(
εj

‖F1znj
‖

)
≤ 0

‖F1x∗‖
= 0,

that is

lim
j→∞

‖εjνNj
‖ = 0.

Thus from (4.31), we have

lim inf
j→∞

〈F1v, v − zNj
〉 ≥ 0.

Therefore, for allv ∈ C, we have

〈F1v, v − x∗〉 = lim
j→∞

〈F1v, v − zNj
〉 = lim inf

j→∞
〈F1v, v − zNj

〉 ≥ 0.

Hence, by Lemma 2.3 we havex∗ ∈ V I(F1, C). The proof is thus complete.

Theorem 4.5.Let{xn} be the sequence generated by Algorithm 3.2. Then, under the Assump-
tion 3.1, if lim

n→∞
βn = 0,

∑∞
n=1 βn = ∞. Then,{xn} converges strongly top ∈ Ω, where

‖p‖ = min{‖x∗‖ : x∗ ∈ Ω}.

Proof. Let p ∈ Ω, observe that

‖wn − p‖2 = ‖xn + θn(Snxn − Snxn−1)− p‖2

= ‖xn − p‖2 + 2θn〈xn − p, Snxn − Snxn−1〉+ θ2
n‖xn − xn−1‖2

≤ ‖xn − p‖2 + 2θn‖Snxn − Snxn−1‖‖xn − p‖+ θ2
n‖xn − xn−1‖2

≤ ‖xn − p‖2 + θn‖xn − xn−1‖[2‖xn − p‖+ θn‖xn − xn−1‖]

= ‖xn − p‖2 + θn‖xn − xn−1‖[2‖xn − p‖+ βn

θn

βn

‖xn − xn−1‖]

≤ ‖xn − p‖2 + θn‖xn − xn−1‖[2‖xn − p‖+ αnN1]

≤ ‖xn − p‖2 + θn‖xn − xn−1‖N2,(4.33)
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for someN2 > 0. Furthermore, we have that

‖xn+1 − p‖2 = ‖αnyn + (1− αn)vn − βnF2vn − p‖2

= ‖αn(yn − p) + (1− αn)vn − βnFvn − (1− αn)p + βnFp− βnFp‖2

= ‖[(1− αn)vn − βnFvn]− [(1− αn)p− βnFp] + αn(yn − p) + βnFp‖2

=

(
‖[(1− αn)vn − βnFvn]− [(1− αn)p− βnFp]‖+ αn‖yn − p‖

)2

+ 2βn〈Fp, p− xxn+1〉

≤
(

[1− αn − βnτ ]‖vn − p‖+ αn‖yn − p‖
)2

+ 2βn〈Fp, p− xxn+1〉

≤ [1− αn − βnτ ]‖vn − p‖2 + αn‖yn − p‖2 + 2βn〈Fp, p− xxn+1〉
≤ [1− αn − βnτ ]‖yn − p‖2 + αn‖yn − p‖2 + 2βn〈Fp, p− xxn+1〉
≤ [1− βnτ ]‖yn − p‖2 + 2βn〈Fp, p− xxn+1〉
≤ [1− βnτ ]‖wn − p‖2 + 2βn〈Fp, p− xxn+1〉
≤ [1− βnτ ]‖xn − p‖2 + [1− βnτ ]θn‖xn − xn−1‖N2 + 2βn〈Fp, p− xxn+1〉
≤ [1− βnτ ]‖xn − p‖2 + θn‖xn − xn−1‖N2 + 2βn〈Fp, p− xxn+1〉

= [1− βnτ ]‖xn − p‖2 + βnτ

(
θn

βnτ
‖xn − xn−1‖N1 +

2

τ
〈F2p, p− xxn+1〉

)
= [1− βnτ ]‖xn − p‖2 + βnτΨn,(4.34)

whereΨn = θn

βnτ
‖xn−xn−1‖N1 + 2

τ
〈Fp, p−xxn+1〉. According to Lemma 2.5, to conclude our

proof, it is sufficient to establish thatlim supk→∞Ψn ≤ 0 for every subsequence{‖xnk
− p‖}

of {‖xn − p‖} satisfying the condition:

lim inf
k→∞

{‖xnk+1 − p‖ − ‖xnk
− p‖} ≥ 0.(4.35)

From (4.34) and (4.9), we have

‖xn+1 − p‖2 ≤ ‖xn − p‖2 + θn‖xn − xn−1‖N2 − [1− αn − βnτ ]‖vn − yn‖2

+ 2βn〈Fp, p− xxn+1〉,
(4.36)

this implies that

[1− αn − βnτ ]‖vn − yn‖2 ≤ ‖xn − p‖2 + θn‖xn − xn−1‖N2(4.37)

− ‖xn+1 − p‖2 + 2βn〈Fp, p− xxn+1〉.

Thus, we have

lim sup
k→∞

(
[1− αnk

− βnk
τ ]‖vnk

− ynk
‖2

)
≤ lim sup

k→∞

[
‖xnk

− p‖2 + βnk

θnk

βnk

‖xnk
− xnk−1‖N2

(4.38)

+ 2βnk
〈F2p, p− xnk+1〉 − ‖xnk+1 − p‖2

]
(4.39)

≤ − lim inf
k→∞

[‖xnk+1 − p‖2 − ‖xnk
− p‖2] ≤ 0,(4.40)
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as such, we have that

lim
k→∞

‖vnk
− ynk

‖ = 0.(4.41)

From Step 3 of Algorithm 3.2, we obtain that

‖bnk
‖ = ‖ynk

− znk
− λn(F1ynk

− F1znk
)‖

≤ ‖ynk
− znk

‖+ λn‖F1ynk
− F1znk

‖

≤ (1 +
λnµ

λn+1

)‖ynk
− znk

‖,(4.42)

also, we have

〈ynk
− znk

, bnk
〉 = 〈ynk

− znk
, ynk

− znk
− λ(Aynk

− Aznk
)〉

= ‖ynk
− znk

‖2 − λ〈ynk
− znk

, Aynk
− Aznk

〉
≥ ‖ynk

− znk
‖2 − λn‖ynk

− znk
‖‖F1ynk

− F1znk
‖

≥ (1− λnµ

λn+1

)‖ynk
− znk

‖2.(4.43)

In addition, from the definition ofvn, we have that

‖ynk
− vnk

‖ = γnk
‖bnk

‖ =
〈ynk

− znk
, bnk

〉
‖b‖

≥ λnk+1 − µλnk

λnk+1 + λnk
µ
‖ynk

− znk
‖,

⇒ ‖ynk
− znk

‖ ≤ λnk+1 + µλnk

λnk+1 − µλnk

‖vnk
− ynk

‖.(4.44)

From Lemma 4.1, we obtain

lim inf
k→∞

λnk+1 + µλnk

λnk+1 − µλnk

=
1 + µ

1− µ
,(4.45)

thus,{λnk+1+µλnk

λnk+1−µλnk
} is bounded and (4.41), we have

lim
k→∞

‖ynk
− znk

‖ = 0.(4.46)

It is easy to see from (4.34) that

‖xn+1 − p‖2

≤ ‖yn − p‖2 + 2βn〈Fp, p− xn+1〉
≤ ‖wn − p‖2 − ε2‖A∗(T − I)Awn‖2 + 2βn〈Fp, p− xn+1〉
≤ ‖xn − p‖2 + θn‖xn − xn−1‖N2 − ε2‖A∗(T − I)Awn‖2 + 2βn〈Fp, p− xn+1〉,(4.47)

which implies

lim sup
k→∞

ε2‖A∗(T − I)Awn‖2

≤ lim sup
k→∞

[
‖xnk

− p‖2 + βnk

θnk

βnk

‖xnk
− xnk−1‖N2(4.48)

+ 2βnk
〈Fp, p− xnk+1〉 − ‖xnk+1 − p‖2

]
≤ − lim inf

k→∞
[‖xnk+1 − p‖2 − ‖xnk

− p‖2] ≤ 0.
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We obtain

lim
k→∞

‖A∗(T − I)Awnk
‖ = 0.(4.49)

Thus, using (4.2), (4.49) and and the boundedness of{wn}, we obtain

lim
k→∞

‖(T − I)Awnk
‖ = 0.(4.50)

Using (4.49), we have that

‖ynk
− wnk

‖ = γn‖A∗(T (Awnk
)− Awnk

)‖ → 0 ask →∞.(4.51)

It is easy to see that, ask →∞, we have

‖wnk
− xnk

‖ = θnk
||xnk

− xnk−1|| = αnk
· θnk

αnk

||xnk
− xnk−1|| → 0.(4.52)

It is easy to see that, ask →∞, we have

‖wnk
− xnk

‖ = θnk
||xnk

− xnk−1|| = βnk
· θnk

βnk

||xnk
− xnk−1|| → 0.(4.53)

In addition, we have that

‖ynk
− xnk

‖ ≤ ‖ynk
− wnk

‖+ ‖wnk
− xnk

‖ → 0 ask →∞.

‖znk
− xnk

‖ ≤ ‖znk
− ynk

‖+ ‖ynk
− xnk

‖ → 0 ask →∞.

‖vnk
− xnk

‖ ≤ ‖vnk
− ynk

‖+ ‖ynk
− xnk

‖ → 0 ask →∞.

‖vnk
− ynk

‖ ≤ ‖vnk
− xnk

‖+ ‖xnk
− ynk

‖ → 0 ask →∞.

‖xnk+1 − ynk
‖ ≤ (1− αnk

)‖vnk
− ynk

‖+ βnk
‖F2vnk

‖ → 0 ask →∞.

‖xnk+1 − xnk
‖ ≤ ‖xnk+1 − ynk

‖+ ‖ynk
− xnk

‖ → 0 ask →∞.

Since{xnk
} is bounded, it follows that there exists a subsequence{xnkj

} of {xnk
} converges

weakly tox∗. In addition, from (4.53), we obtain that{Twnk
} converges weakly toTx∗ and

with (4.50) and the demiclosedness principle, we have

Ax∗ ∈ F (T ).

More so, we have

lim sup
k→∞

〈F2p, p− xnk
〉 = lim

j→∞
〈F2p, p− xnkj

〉 = 〈F2p, p− x∗〉.

Also, we obtain from (4.46), (4.51) and Lemma 4.4 thatx∗ ∈ Ω. Sincep is a unique solution of
Ω, we have obtain from (4) that

lim sup
k→∞

〈F2p, p− xnk
〉 = 〈F2p, p− x∗〉 ≤ 0,

which implies that

lim sup
k→∞

〈F2p, p− xnk+1〉 ≤ 0,

Using using our assumption, (4.41) and the above inequality, we have thatlim supk→∞Ψnk
=

lim supk→∞

(
θnk

βnk
τ
‖xnk

− xnk−1‖N1 + 2
τ
〈Fp, p− xxnk+1〉

)
≤ 0. Thus, the last part of Lemma
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2.5 is achieved. Hence, we have thatlim
n→∞

‖xn − p‖ = 0. Thus,{xn} converges strongly to

p ∈ Ω.

5. NUMERICAL EXAMPLES

In this section, we give some numerical examples in both finite and infinite dimensional Hilbert
spaces.

Example 5.1. Let H1 = R4 be the four-dimensional Euclidean space of the real number with

a norm defined by‖x‖ =

√
4∑

i=1

‖xi‖2 wherex = {xi}4
i=1 ∈ R4 and H2 = R2 be the two-

dimensional Euclidean space of the real number with a norm defined by‖x‖ =

√
2∑

i=1

‖xi‖2

wherex = {xi}2
i=1 ∈ R2. Define the feasible setC by C := {x ∈ R4 : ‖x‖ ≤ 1} where

x = {xi}∞i=1. Consider the mappingF1 : R4 → R4 defined byF1(x) = (sin ‖x‖ + 2)b,
whereb = (12,−4, 4,−4)T for all x ∈ R4. It is easy to verify thatF1 is pseudomonotone
with 8

√
3 Lipschitz constant (see[26]). Also, let the mappingF2 : R2 → R2 be defined by

F2(x) = (x1, x2, x3, x4)
T for all x = {xi}2

i=1. It is obvious thatF2 is 1-strongly monotone
with a Lipschitz constant 1. Now, define the operatorA : R4 → R2 by A(x) = (2x1 + x2 +
x3 + 3x4, x1 + x2 + x3 + 2x4), thenA is a bounded linear operator with‖A‖ = 1955

419
. Let the

mappingS : R2 → R2 be defined byS(x) = 2x
3

for all x = (x1, x2)
T ∈ R2. For this example,

we choose the following parameters,λ0 = 0.5, αn = n+1
4n+17

, βn = 1
13n+5

, µ = 0.5. Also,α = 5,

ε = 1
n1.2 . We make a comparison of our method with Algorithm 1[26], with the following extra

conditionswn ∈ [w̄, w] = [ 209
2380

, 209
2390

] andλn = n+1
16n+18

. Let‖xn+1 − xn‖2 = 10−5, we consider
the following cases of initial values ofx0 andx1;

Case 1x0 = (2, 3, 9, 8)T andx1 = (10, 3, 4, 5)T ;
Case 2x0 = (0.10, 0.20, 0.30, 0.40)T andx1 = (0.15, 0.60, 0.50, 0.70)T ;
Case 3x0 = (10, 20, 35, 20)T andx1 = (15, 60,−35, 40)T .

The results of this experiment are reported in Figure 1.

Example 5.2.LetH1 = H2 = `2 be the linear space whose elements consist of all 2-summable
sequences(x1, x2, · · · , xi, · · · ) scalars, that is

`2 =

{
x : x = (x1, x2, · · · , xi, · · · ) and

∞∑
i=1

|xi|2 < ∞

}
,

with an inner product〈·, ·〉 : `2 × `2 → R defined by〈x, y〉 =
∞∑
i=1

xiyi wherex = {xi}∞i=1 and

y = {yi}∞i=1 and a norm‖ ·‖ : `2 → R defined by‖x‖2 =

√ ∞∑
i=1

|xi|2 wherex = {xi}∞i=1. Define

the feasible setC by C := {x ∈ `2 : ‖x‖ ≤ 1} wherex = {xi}∞i=1. Consider the mapping
F1 : `2 → `2 defined byF1(x) = (sin ‖x‖ + 2)b, whereb = (1, 0, · · · , 0, · · · )T for all x ∈ `2.
It is easy to verify thatF1 is pseudomonotone (see[26]). Also, let the mappingF2 : `2 → `2

be defined byF2(x) = x for all x = {xi}∞i=1. It is obvious thatF2 is 1-strongly monotone with
a Lipschitz constant 1. Now, define the operatorA : `2 → `2 by A(x) = (x1, x2, · · · , xi, · · · ),
thenA is a bounded linear operator with‖A‖ = 3. Let the mappingS : `2 → `2 be defined by
S(x) = 2x

3
for all x = {xi}∞i=1 ∈ `2. For this example, we choose parameters as in Example 5.1

with λ0 = 2.

I x0 = (1, 0, · · · , 3, · · · )T andx1 = (2, 0, · · · , 3, · · · )T ;
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Figure 1: Example 5.1. Top left: Case 1, Top right: Case 2, Bottom: Case 3.

II x0 = (0.876, 0.567, 0, · · · , 0, · · · )T andx1 = (0.576, 0.333, 0, · · · , 0, · · · )T ;
III x0 = (10, 20, · · · , 0, · · · )T andx1 = (15, 10, · · · , 0, · · · )T .

The results of this experiment are reported in Figure 2.

6. CONCLUSION

A modified inertial extrapolation projection and contraction iterative method is introduced and
studied for solving the SBVIP (1.8) in two real Hilbert spaces in which one of the cost oper-
ators is pseudomonotone and Lipschitz continuous. As seen from our convergence analysis,
we prove that the proposed algorithm converges strongly to the unique solution of the SBVIP
(1.8). Lastly, we considered some numerical examples of our proposed method in comparison
with the iterative method proposed by Minh et al. The numerical experiments validate that our
iterative method converges faster and its more applicable to real life situation.
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Figure 2: Example 5.2. Top left: I, Top right: II, Bottom: III.
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