Aust. J. Math. Anal. Appl.
Vol. 20(2023), No. 1, Art. 4, 20 pp.
AIJMAA

A SELF ADAPTIVE METHOD FOR SOLVING SPLIT BILEVEL VARIATIONAL
INEQUALITIES PROBLEM IN HILBERT SPACES

FRANCIS AKUTSAH!, OJEN KUMAR NARAIN?, FUNMILAYO ABIBAT KASALI 3 OLAWALE KAZEEM
OYEWOLE* AND AKINDELE ADEBAYO MEBAWONDU °

Received 30 June, 2022; accepted 30 November, 2022; published 28 February, 2023.

1SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE, UNIVERSITY OF KWAZULU-NATAL ,
DURBAN, SOUTH AFRICA.
216040405@stu.ukzn.ac.za, akutsah@gmail.com

2ScHooL OFMATHEMATICS, STATISTICS AND COMPUTER SCIENCE, UNIVERSITY OF KWAZULU-NATAL,
DURBAN, SOUTH AFRICA.
naraino@ukzn.ac.za

3SMOUNTAIN TOP UNIVERSITY, PRAYER CITY, OGUN STATE, NIGERIA.
fkasall@mtu.edu.ng

4TECHNION-1SRAEL INSTITUTE OF TECHNOLOGY.
217079141 @stu.ukzn.ac.za, oy=woleolawalekazeem@gmail.com

5SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE, UNIVERSITY OF KWAZULU-NATAL ,
DURBAN, SOUTH AFRICA.

DST-NRF GENTRE OFEXCELLENCE IN MATHEMATICAL AND STATISTICAL SCIENCES(COE-MASS),
JOHANNESBURG, SOUTH AFRICA.

MOUNTAIN TOP UNIVERSITY, PRAYER CITY, OGUN STATE, NIGERIA.
dele@aims.ac.za

ABSTRACT. In this work, we study the split bilevel variational inequality problem in two real
Hilbert spaces. We propose a new modified inertial projection and contraction method for solv-
ing the aforementioned problem when one of the operators is pseudomonotone and Lipschitz
continuous while the other operatordsstrongly monotone. The use of the weakly sequential
continuity condition on the Pseudomonotone operator is removed in this work. A Strong conver-
gence theorem of the proposed method is proved under some mild conditions. In addition, some
numerical experiments are presented to show the efficiency and implementation of our method in
comparison with other methods in the literature in the framework of infinite dimensional Hilbert
spaces. The results obtained in this paper extend, generalize and improve several.

Key words and phrasesBilevel variational inequality; Split variational inequality problem; Split feasibility problem; inertial
iterative scheme; Fixed point problem.

2010Mathematics Subject Classificat/orPrimary 47H06, 47HQ9, 47J05, 47J25.

ISSN (electronic): 1449-5910
(© 2023 Austral Internet Publishing. All rights reserved.


https://ajmaa.org/
mailto:<216040405@stu.ukzn.ac.za>
mailto:<akutsah@gmail.com>
mailto:<naraino@ukzn.ac.za>
mailto:<fkasali@mtu.edu.ng>
mailto:<217079141@stu.ukzn.ac.za>
mailto:<oyewoleolawalekazeem@gmail.com>
mailto:<dele@aims.ac.za>
https://www.ams.org/msc/

2 F. AKUTSAH, O. K. NARAIN, F. A. KAsALI, O. K. OrfEwWOLE AND A. A. MEBAWONDU

1. INTRODUCTION

Let H be a real Hilbert space with the inner prodyct) and induced norn - ||, C' be a
nonempty closed convex subsetdfandF; : H — H be an operator. The classical Variational
Inequality Problem (VIP) is formulated as: Find= C' such that

(1.2) (Fiz,y—x) >0VyeC.

The notion of VIP was introduced independently by Stampacchia [30] and Fichera [12, 13]
for modeling problems arising from mechanics and for solving Signorini problems. It is well-
known that many problems in economics, mathematical sciences, and mathematical physics can
be formulated as VIP. Censor et al. in[10] extended the concept ofVIP (1.1) to the following
Split Variational Inequality Problem (SVIP): Find

(1.2) xz* € Cthatsolves Fiz*,x —z*) > 0Vz e C
such that)* = Axz* € @ solves

whereC and @ are nonempty, closed and convex subsets of real Hilbert sgacesd H,
respectivelyf; : H, — Hy, F; : Hy — H, are two operators and : H; — H, is a bounded
linear operator.

Remark 1.1. WhenF; = F; = 0, the SVIP reduces to the Split Feasibility Problem (SFP).

The concept of SFP was introduced by Censor and Elfviihg [8] in the framework of finite-
dimensional Hilbert spaces. The SFP has found applications in many real-life problems such as
image recovery, signal processing, control theory, data compression, computer tomography and
so on (see [11,/9] and the references therein). The fixed point problem finds application in prov-
ing the existence of solutions of many nonlinear problems arising in many real life problems.
From the existence of solutions of differential, partial differential, integral, random differential
and random integral equations, and evolutionary equations. For details about fixed point prob-
lems (seel[14, 15, 17]). Furthermore, a common solution of a VIP and a fixed point problem
find applications in real life problems like network resource allocation, image recovery, signal
processing, for further details, (séel[2, 6,132,131, 33] and the references therein).

Mainge in [21] proposed and studied a new type of optimization problem. Find

(1.4) z*eVI(F,C)NnF(T)suchthat(Fer*,x —z*) >0, Ve e VI(F,,C)N F(T),

whereF; : H — H is monotone and.-Lipschitz continuousf, : H — H is n-strongly
monotone and:-Lispchitz continuous and’ : H — H is a~y-demicontractive mapping and
demiclosed at zero. He proposed the following iterative algorithm

(z9 = H;
Yn = PC(xn - Anlen)
(15) Zn = PC’(:Bn - )\nFlyn)

tn = Zn — anFQ(Zn)
(Zny1 = (1 — w)t, + T (t,),

where),, C [a,b] C (0,1), {a,} C (0,1), lim a,, = 0,5 2% o, = 0o andw € (0, £52). He
established that the sequence generated by algorithin (1.5) converges strongly to the solution
set.
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Remark 1.2. However, in Algorithm [(1.p), the projectioR. onto feasible set’ is evaluated

two times in each iteration and this have adverse effect on the performance of the algorithm.
In addition, the Lipschitz constant is required which is very difficult or impossible to estimate.
Thus, the above iterative scheme is not easily applicable.

xo, vy = Hy
Wy = Ty, + en($n - xn—1)7
Yn = PC(wn - AnAwn)a

(1.6) T, =4z € H: (w, — MAw, — yn,x — yn) < 0}
zn = Pr, P(w, — A\, Ay,),
(Tn+1l = Zn — anYF (zn),
and

T, vy = Hy
Wy = Ty + Op (T — Tp1),
1.7) Yn = Po(w, — A\, Aw,),
Zn = Yn — M(Ayn, — Awy,),
\Ln+1 = Zn — O‘nPYF(Zn)a
Minh, Van and Anh in[[26], also studied the following Split Bilevel Variational Inequality Prob-
lem (SBVIP): Find
(1.8) z* € I'such that Fox™, x — 2*) > 0,
foranyz € I', where

I'={z" e VI(F,C): Az* € F(S)}.
Using the following iterative method, they established a strong convergence theorem.

Algorithm 1.1. Initialization: Letzy, € H;. Setn := 0.
Step 1.Computeu,, = A(x,) and

(1.9 Yn = Ty + W A" (S (up) — uy).
Step 2.Compute

(2.10) z2n = Po(Yn — M F1yn),
(1.112) tn = Pr,(Yn — M F12n),

Step 3.Compute

(112) Tp+1 = tn — O./nFQtn,

whereA : Hy — H,, Fy : Hi — H; is n-strongly monotone and-Lipschitz continuous on
Hy,with L > 0, F} : Hy — H; is pseudomonotone afl and L-Lipschitz continuous o,
with lim sup,, . (F1z,,y — y») < (F1Z,y — 3). They prove that the sequen{e, } generated
by Algorithm[I.] converges weakly to a unique solution of|(1.8).

Remark 1.3. It is well-known that stepsizes play essential roles in the convergence properties

of iterative methods, since the efficiency of the methods depends heavily on it. When the step
size depends on the knowledge of either the operator norm or the coefficient of an operator, it
usually slows down the convergence rate of the method. Moreover, in many practical cases, the
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operator norm or the coefficient of a given operator may not be known or may be difficult to
estimate, thus, making the applicability of such method to be questionable. Therefore, iterative
methods that do not depend on any of these, are more applicable in practice. From Algorithm

[1.7, we have that
_ 1—7)
wnt Clw,w| C (0, —— |,
tun} € l.e) (||A||+1

which require computing the norm ¢f4|| and makes the algorithm difficult to compute and
apply to real-life problems.

The inertial extrapolation method has proven to be an effective way for accelerating the rate
of convergence of many iterative algorithms. The technique is based on a discrete version
of a second order dissipative dynamical system [4, 3]. The inertial type algorithms use its
two previous iterates to obtain its next iterdte([1], 20]. For details on inertia extrapolation, see
[5], 127, 28] and the references therein.

Based on Remaik 1.2, Remark]1.3, the research works described above and the recent research
interests in this direction, we propose a new self adaptive iterative method for solving SBVIP
(1.8) that is free of the setbacks highlighted in Renjark 1.2 and Rgmark 1.3. Furthermore, we
prove that the proposed method converges strongly to a minimum norm solution of the BSVIP
(1.8) in real Hilbert spaces. More so, some examples and numerical experiments were given
to show the efficiency and implementation of our method in comparison with other methods
in the literature in the framework of infinite dimensional Hilbert spaces. We emphasize that
one of the novelties of this work is the introduction of a modified inertial technique and the
removal of the weakly sequential continuity condition used by some authors to obtain strong
convergence. The rest of this paper is organized as follows: In S¢¢tion 2, we shall recall some
useful definitions and Lemmas. In Sect{gn 3, we present our proposed method and highlight
some of its features. Strong convergence analysis of our method is investigated in Section
[4. Moreover, some numerical experiments to show the efficiency and implementation of our
method (in comparison with other methods in the literature) are also discussed in the framework
of infinite dimensional Hilbert spaces in Sectjgn 5. Lastly, in Segtjon 6 we give a conclusion of
the paper.

2. PRELIMINARIES

In this section, we begin by recalling some known and useful results which are needed in the
sequel.

Let H be a real Hilbert space. The set of fixed points of a nonlinear magping? — H

will be denoted byF'(T"), that isF'(T') = {z € H : Tx = z}. We denotes strong and weak
convergence by-" and "—", respectively. For any,y € H anda € [0, 1], it is well-known

that

(2.1) lz = ylI* = ll2]* = 2(z, ) + lyl*
(2.2) Iz +yll* = ll2]* + 2(z, ) + lyl*
(2.3) lz = ylI* < llzl* + 2(y, = — ).
(2.4) laz + (1 = a)yl* = aflz]* + 1 = a)[ylI* — a(l — a)|lz — y]*.

Definition 2.1. Let T : H — H be an operator. Then the operaiors called
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(a) L-Lipschitz continuous if there exisis > 0 such that
[Tz —Ty|| < Lilz -yl

forall z,y € H,
(b) monotone if

(Tx —Ty,x —y) >0, Va,y € H;
(c) a- strongly monotone o/ if there existsy > 0, such that
(Tx — Ty,x —y) > a|lr —y||*, Yo,y € H.
(d) pseudomonotone if
(Ty,x —y) > 0= Tz, —y) >0, Va,y € H.
Definition 2.2. A mapping? : H — H is said to be
(a) 6-demicontrative ifF'(T") # 0 and there exists € (0, 1) such that
T2 — 2*|)* < ||Jx — 2*||* + ||z — Tz||* Vo € H, 2* € F(T);
(b) directed if
1Tz —2*|* < llo — 27|* = [l — Tz,
equivalently
(" —=Tx,x —Tzx) <OVzx e H, 2" € F(T);
(c) nonexpansive it
[Tz =Tyl < |lz =yl V2y e H;

(d) sequentially weakly continuous if for each sequefieg} we have{z,} converges
weakly tox implies that{ 7'z, } converges td x;
(e) demiclosed at zero if for every sequerag } contained inH, the following implica-
tions holds
z, —zand(l —T)x, — 0

implies thatr € F/(T).

Lemma 2.1.[16]. LetC be a nonempty, closed and convex subset of a real Hilbert sface
Givenz € H andz € K. Then

z2=Porx < (x—2z,2—y)>0,VyeC.
Lemma 2.2.[16,18] LetC be a nonempty, closed and convex subset of a real Hilbert space
H. Givenx € H, then
@) ||[Pex — Pey| < (Pex — Pey,x —y), Vy € C;
(0) ||z —yll — [z = Pox|| = [ Pex — y;
© I = Pe)z — (I — Po)y|? < (I — Po)x — (I — Pe)y,x —y), Vy € C.

Lemma 2.3. [18]. ConsiderVI(Fy,C) (1.7) with C being a nonempty, closed and convex
subset of a real Hilbert spacH and F; : K — H being a pseudomonotone and continuous
operator. Thenx* € VI(Fy, C) if and only if

(Fiz,x — 2"y >0, Va e C.

Lemma 2.4.[2] LetT : H — H be an operator. Then the following statements are equivalent:
(1) T is directed,;
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(2) there holds the relation

(2.5) |z —Tz|* < (x —p,x —Tx)Vp e F(T), x € H;
(3) there holds the relation
(2.6) 1Tz —p||* < llz = pl* — [l = Tz|* Vp € F(T), x € H.

Lemma 2.5. [29] Let{a, } be a sequence of positive real numbétrs, } be a sequence of real
numbers in(0, 1) such thaty " >° | o, = oo and{d, } be a sequence of real numbers. Suppose
that

any1 < (1 —ap)a, + ayd,,n > 1.
If lim sup,,_, . d,, < 0 for all subsequenceg,, } of {a,} satisfying the condition

liminf{an, 1 — an, } >0,
k—o0

then, lim a,, = 0.

n—oo
3. PROPOSEDALGORITHM

In this section, we present our proposed method for solving a class of bi-level split variational
inequality and composed fixed point problem and highlight some of its important features.

Assumption 3.1. Condition A.Suppose

(1) H, and H, are two real Hilbert spaces.

(2) The feasible set’ is a nonempty closed and convex subséi pf

(3) {S.} is a sequence of nonexpansive mapping.

(4) A: Hy — H,is abounded linear operator with the adjoint operatdét and7 : H, —
H, be a directed mapping, such thatis demiclosed at zero.

(5) F, : Hi — H, is pseudomonotond,;- Lipschitz continuous operator (Lipschitz con-
stant need not to be known) afdl : H; — H, is a-strongly monotone and;-Lipschitz
continuous operator, wherg;, L, > 0 anda > 0.

(6) The mapping+; satisfies the following; whenever

(3.2) {z,} C C,x, — " we get|| Fiz*|| < li]gn inf || Fix,||.

(7) The solution set of probleifi.§)is denoted by2 and(2 is not empty.
Condition B. Suppose thafa,,} and{,} are real sequences such that
(1) 5, € (0,1), lim B, =0and} >, [, = occ.

(2) ¢, is a positive integer such tha{3,) = ¢,, u € (0,1), {a,} C (a,1 — a) for some
a>0,a>3.

We present the following iterative algorithm.

Algorithm 3.2. Tterative steps: Chooser,, 71 € Hi, given the iterates,,_; and z,, for all
n € N, choosd),, such that) < 6, < 6,,, where

: n—1 €n H
i min {n+a_1, e if 2, # x, 1
(3.2) 0, =
n—1 H
— otherwise
Step 1.Set

Wy = Tp + 0,(SpTn — Spn_1).
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Then, compute
(3.3) Yn = Wy, + 7, A (T(Aw,) — Aw,),

where~, be chosen in such a way that for some 0,

T (Aw,) — Aw,|| )
3. = (e e
(3.4) Tn < AT (Aw,) — Awy,)]

for T'(Aw,) # Aw,, otherwisey,, =~
Step 2.Compute

(3.6) Un "= Yn — Vpbn,
whereb, = v, — 2z, — A\ (Flyn — Fi2,),
n - “ny bn .

(3.7) Ny = % if b, # 0, elsey, = 0.
and

: .U“yn_zn” H
(3.8) Anp1 = min { ey, Auf, i Fign # Fia

A otherwise

Step 3.Compute
(3.9) Tpt1 = aplYn + (1 — a)v, — B, Fu,.

Remark 3.1. (1) The sequentially weakly continuous assumption usually used in the liter-
ature is replaced with a weaker assumption.

(2) The extra projection onto the convex set and the projection into the half space tech-
nieques used in literature are dispensed with our new approach. In addition, compar-
ing our algorithm with [[26] 21], the implementation of our method does not require
the knowledge of norm of the bounded linear oper#té}i. We emphasize that this at-
tribute is very important, because iterative algorithms that depends on the operator norm
require the computation of the norm of the bounded linear operator, which in general is
impossible or very difficult to compute.

(3) In Algorithm[3.2, it is easy to compute Step 1 since the valulgref— z,,_ || is known
before choosing,,. It is also easy to see frorh (3.2) thnlih;o Z—ZH% — || = 0.

Since {¢, } is a positive sequence such that= o(5,,), which means thatim & =
Also 0, ||z, — z,-1]] < €, ¥V n € N, and with lim < = 0, yields

n—oo B
0
lim = ||z, — 2, 1] < lim )
n—oo /Bn n—oo n

In addition, our numerical experiment (that is Secfipn 5), we shall consider the sensi-
tivity of #,, in order to find numerically the optimum choice féy with respect to the
convergence speed of our proposed iterative method.

(4) Step 4 of our algorithm guarantee the strong convergence to the minimum norm solution
of the problem.
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4. CONVERGENCE ANALYSIS

In this section, we establish strong convergence result of our proposed method.
Lemma 4.1. [33] The sequencg)\, } generated by Algorithin 3.2 is nonincreasing and

(4.1) lim A, = A > {200
n—oo Ll
Lemma 4.2. The setepsize sequengedefined by(3.4)is well defined.

Proof. Letp € Q, thenAp € F(T), sinceT is a directed mapping anBl(T) # 0, using [2.5),
we obtain

[A™(T" = 1) Aw, || |w, — pl| = (A™(T" = I) Aw,, w, — p)
= <<T - I)Awna Awn - Ap)
4.2) > (T — I)Aw,|]*.

SinceT (Aw,) # Aw,, then|(T — I)Aw,|| > 0, then||w,, — p||||A*(T — I)Aw,]|| > 0, hence,
|A*(T — I) Aw,|| # 0. Therefore;y,, is well defined.a

Lemma 4.3. Let{z, } be a sequence generated by Algorithm 3.2. Then, under Assufnpiion 3.1,
we have tha{z, } is bounded.

Proof. Letp €  and sincelim ||z, — 2, | = 0, there existsV, > 0 such thatj*|z, —
Tn_1]| < Ny, foralln € N. Then fromStep2, we have

|wn = pll = |20 + 0n(Snwn — Spn_1) — pll
< Hxn - pH + enHSnmn - Snxn—lu

n

(4.3) < ||lzn — p|| + B,,N1.
Also, using the fact thdf is directed mapping| (2.2F(T') # 0, (2.3) and the stepsize of, in
(3.4), we have
[y = pII* = llwn + 7, A*(T = I) Aw,p|)?
= [lwn = plI* + 2 T*(J3" = DTwn | + 27, (wn — p, AT — 1) Awy,)
= llwy = plI* + V[ AT = 1) Aw, ||* + 2y, (A(wy, — p), (T — I) Aw,)
< Nwy = pl* + AT = D) Awy [|* = 7, [[(T = ) Aw, ||*
= llwy = plI* = 7, (IT = 1) Awn[|* = 7, | A(T = ) Aw, [|*)
< lwn = plI* = 1| AT — 1) Aw,||?

|20 — @n-1]]

(4.4) < JJw, — pl|*.
Sincez,, = Po(y, — AF1y,), then by the characteristics of tlie,, we obtain
(45) <yn — Zn — >\F1yn7 Zn — p) Z 0.

Also, sincep € VI(F,,C) andz, € C, we obtain

(Fip, 20 —p) 20,
thus using the pseudomonotonicity 6f, we obtain
(4.6) (Fizp,zn —p) > 0.
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From (4.5) and[(416), we obtain
4.7) (Zn = Dy Yn — 20 — M (Fryn — Fi2,,)) > 0.
Thus, we have

(Un = P, bn) = (Yn = 2, b) + (20 — P, bn)

- <yn — Zn, bn) + <Zn —PyYn — 2n — An(Flyn - Flzn»

From Step 3 of Algorithm 3]2 anfl (4.8), we have
[on = pII* = [lyn — ¥ubn — pII?
= lyn — pII> + Y2ll0ulI* = 27, (Y0 — p, bn)
< lyn =PI + 72 l0ul® = 27, (Y0 — 20, ba)
= [lyn — pII* + 72ll0all® — 27210l
= [lyn — 2lI* = l17nball®
= [lyn — 21> = llva — ynll?
(4.9) < lyn — 2l
which implies
(4.10) lvn =2l < llyn — pl|-
Now, observe
11 = an)vn = BpFove] — [(1 = an)p — B, Fopl|
(4.11) < (1 — Qp — 6n)||vn - p” + ﬁn”(vn - p) - (F2Un - F2p)||a
using the fact thafs; is L,-Lipschitz continuous and-strongly monotone o/, we have that
[(vn = p) — (Fovy, — Fap)|I” = |lva — plI” = 2{vn — p, Fov, — Fop) + || Fav, — Fop|)?
< |lvn, — plI* = 2a|v, = plI* + L3||v. — p|*
(4.12) = (1 —2a+ L3)|v. — p|)?,

which implies that

(0 — ) — (Favn — Fap) || < /(1 — 200 + L)l — pll.
Thus, we havg (4.11) become
(1 = aw)on — B Fova] = [(1 = an)p — B, Fapl|

< (1 =an—=F)l[on = pll + B,/ (1 = 200+ L) [lvn — p|

= (1= an =, + B,0/1 = (2a = L3))[vn — pl|

= (1= an = 0,(1=/1 = 2a—L3))|vn —pl
(4.13) = (1 —an = B,7)llvn —pl,

wherer =1 — /1 — (2a — L3) € (0,1).
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Now, using Step 4 of Algorithrn 312 and (4]113), we have
[2n41 = Pl = llanyn + (1 = an)on — B, Fon — pl|
= llan(yn —p) + (1 — an)vn — B Fv, — (1 — aw)p + B, Fp — B8, Fp||
< (1= an)on = B, Fvn] = [(1 = aw)p = BuFP| + anllyn — pll + B, [ Fpl]
< (L= an = B,7)[vn = pll + anllyn — pll + B[ F'pll

< (1= an =B, 7)Yyn — pll + wllyn — 2l + B, || Fp|
< (1- ﬁ )yn = pll + B, Fp|
< (1= B,1)||wn — pl| + B I Fpl|
< (1 =B, )llzn —pll + B,Ny + B, Fpl
N, + || F
@18) < (=g, = pl + 75, L)

It follows by induction

Ny +v||Fp
(4.15) lan — pll < max{lleo — pf, 2Pl

Thus, we havdx, } is boundeds

Lemma 4.4. Let Assumptio 3|1 hold and Iét,,} be a sequence generated by Algorithr 3.2.
Assume that the subsequer{ag, } of {x,} converges weakly to a point, and klim 1Y, —

wnk” = khm Hynk - an” =0, then,z* € T.
Proof. Let {z,, } be a subsequence ¢f,,} which converges weakly to* € H. It is easy to

see that
0,

(4.16) 1y, = @yl = Qo = 0, — 20,1 ]| — 0 aSE — o.
Qn,

It follows that

(417) ”ynk o xnk” < Hynk - wnkH + Hwnk - xnk“ — 0 ask — oo.

SinceA is a bounded linear operator, it follows from (4.16) thaltw,, } converges weakly to
Ax* € H,. Also, by (4.17), we obtain that, converges weakly to*. In addition, we have

(418) Hznk - m”k” < H’an - ynkH + Hynk - m”k” — 0ask — oo.
From [4.4), we have that
1y — 2l < llwn = pII* = Y€ A(T(Awy) — Aw,)||*
(4.19) < llwn = pl* = € A(T(Awn) — Aw,)||*
which implies that
AT (Awy,) — Awn ) II* < [lwn, = pII* = [|yn, — pII*

(420) < Hwnk _ynk||2+2|’ynk _pHHwnk _ynkH7
thus, we have that
(4.21) Tim || 4°(T(Aw,,) — Aw,, )| = 0.

Also from (4.4), we have
g = plI* < llwn = plI* + R llA (T (Awn) = Awn)|* = 7,17 (Aw,) — Aw, |
< llwn = plI* + €[ AT (Awn) — Aw,)||* — €| T(Aw,) — Aw, %,
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which implies that
e|T(Aw,, ) — Aw,, ||
< Ny = Pl = 9 = pIP + ENA (T (Awn,) — Awy,)|)
< Ny = Yo I + 209 — Pl = Yy | + AT (Awn,) — Aw,,)|2,
thus, using[(4.21), we have that
(4.22) ]}erolo |T(Aw,, ) — Aw,, || = 0.
Thus, using demicloseness property gnd (4.22), we have
(4.23) Az* € F(T).
In addition, by the definition of z,} and Lemma 211, that
Yn; — Ay F1Yn; — 2,0 — 2ny) <0, Vo € C,
which implies

Un; = 2nys 0 = Zn;) < Ay (F1Yn;, 0 — 2ny)
= )\n

(424) j< 1ynja ynk - an> + )\nj <F1ynj7v - an>-
As such, we have
1
(425) )\_<yn] — Zn;, U — an> + <F1ynj72nj - ynj) < <F1ynj7v - ynj>7 Voved.

Since{y,, } is converges weakly to a point € H,, thus, it is bounded. Then, sindg is

Lipschitz continuous{ F1y,, } is bounded. In addition, we have thgt, } is bounded since
1Y, — Zn,|| — 0a@sj — oo and),, € min{A;, £} . Taking limit asj — oo in @.23) we
obtain

(4.26) lim inf (F1yp,, v — Yn,) > 0.

Jj—00 -
Now, note that
<F1,Zn].,U - an> = <F12nj,v - yn]> + <F1an,ynj - an>
(427) = <F12nj - Flynja v — yn]> + <Fly’nj7v - yn]> + <F12nj>ynk. - ZTLj)'
Using the fact thafim |/, — 2,,|| = 0 and the continuity of", we have
J—0

(4.28) lim || Py, — Fiz,, || = 0.
J—00

Thus, using[(4.26),(4.27) and (4]28), we have

(4.29) lim inf (Flyg;, v — y;) > 0.
Jj—00

We choose a subsequenge} of positive number decreasing {0, 1), such that; — 0 as
Jj — oo. For eacly, let N; be the smallest nonnegative integer such that

(4.30) (F12p;,0 — 2p;) +€; >0, Vi > Nj.

Since{¢;} is decreasing, it is obvious th&{; is increasing. Further, for each € N, the
subsequencézy, } C C we obtainFzy, # 0 so thatzy, is not a solution of thé’ I P(C, Fy).
Now, we set

y o FlzNj
R TP B
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such that Fzy,, v,) = 1 for eachy. It follows from this and[(4.30), thatFzx,, v + €;vn; —
zn,) > 0. SinceF; is pseudomonotone, we ha{l (v +¢;vy, ), v+ €;vn, — 2n,) > 0 and thus

(4.31) (Fiv,v — 2n;) > (Fiv — Fi(v + €jvn,), v + €vn, — 2n;) — €(F1v,vy;).

Next, we show that;v;, — 0asj — oo. To see this, using our hypothesis, thatis;, . ||z, —
yn,|| = 0, we have{z,, } converges weakly ta*. Since{z, } C C andC is closed, then
x* € C. We suppose that;z* # 0, if not, we obtain that* is a solution. Now, using condition
(3.7), we obtain

(4.32) 0 < [[Fiz”|| < liminf ||Fizy,|.
j—00

More so, using the fact thdty, } C {z,,} ande; — 0 asj — oo, we get

€; 0
0 < limsup ||¢;vn; || = limsup ( - ) < =0,
oo T meen Pzl T 1P|

that is

lim [|e;v, || = 0.
J—00

Thus from [4.3]L), we have

lim inf(Flv,v — zy,) > 0.

j—00
Therefore, for alb € C, we have

(Fiv,v — %) = lim (Flv,v — zy;) = liminf(Flv,v — zx;) > 0.

Jj—o0 Jj—o0
Hence, by Lemma 2|3 we have € VI(F;, C). The proof is thus completa.

Theorem 4.5.Let{z,} be the sequence generated by Algorithn 3.2. Then, under the Assump-
tion , if lim 3, = 0,>.>°, 3, = oo. Then,{z,} converges strongly tp < 2, where

[pll = min{[|z*|| : 2* € Q}.
Proof. Letp € €2, observe that
|y, _pH2 = ||y + 05 (SnTn — SnTn1) _pH2
= Hxn - pHQ + 29n<$n - D, Snmn - Snxn—1> + einn - xn—lHQ

< lwn = plI? + 20015020 — Snwn |20 — pll + 05 |2 — 201 ||?
<z, — pH2 + Onllzn — Toa 2|20 — Pl + OnllTn — T[]

0,
= ”mn - p||2 + eonn - xn—IH[QHxn —pll + ﬁnﬁ_Hxn - l’n—1||]
< ||lzn — p”2 + Onllzn — 2pa||[2]|70 — Pl + V1]

(4.33) < llzn = plI* + Onllwn — 2o [ No,
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for someN, > 0. Furthermore, we have that

Hxn-&-l - p||2 = Hanyn + (1 = an)vy — B, Fov, — p||2
- ||an(yn - p) + (1 - an)”n - ﬁann - (1 - an)p + ﬁan - ﬁnPWpH2
= [(1 = am)vn — B, Fvn] = [(1 = a)p — B, Fp] + an(yn — p) + B, Fpl|?

2
_ (m(l ~ n)on — B Fun] — (1= au)p — By Pl + alln —p||)
+ 25n<Fpap - xa?n+1>

2
< ({1 — an = 3,7 l[vm = pll + anln —pu) 28, (Fpp - 2a,.)

<[1 = = B7lllvn = plI* + anllyn — pII* + 28, (Fp,p — 20,.,,)

<1 = = Bylyn — plI* + anllyn — pII* + 28, (Fp,p — 24,.,,)

<1 = B,7yn — plI* +28,(Fp,p — 2a,,,,)

< [1 BnT]Hwn _p‘|2+2ﬁn<vap_xa:n+1>

<1 =B,7llzn = plI* + [1 = BuTlOnllzn — 20| N2 + 26, (Fp,p — )
<1 =B,7llzn = plI* + Onllzn — 21| No + 28,(Fp,p — 22,

== Burllen = oI + 87 ( 5l = sl + 2Fapp = 22,0}
(4.34) = [1 =B, 7|0 — pl* + B, 7T,

where¥,, = %Hxn — Zp_1||N1 + 2(Fp,p— 1,,,). According to Lemm5, to conclude our

proof, it is sufficient to establish théin sup,_, ¥, < 0 for every subsequendg|z,, — p||}
of {||x,, — p||} satisfying the condition:

(4.35) liminf{|[zn, 1 = pll = [[4n, —pll} = 0.
From (4.34) and (4]9), we have

201 = pII® < [lon = plI* + Onllzn — 201 [[N2 = [L = an = B,7][[vn — yn
+ 2ﬁn<Fpap - xxn+1>;

I

(4.36)
this implies that
(4.37) [1 = an = Bu7lllvn = yall® < llwn — plI* + Onllzn — 21| No

- ”xn-i-l _pH2 + 25n<Fp>p - xxn+1>‘

Thus, we have

(4.38)

. . On

hinsup ([1 — Qny — 5nk7_]||vnk - ynng) S hinsup |:||xnk _pH2 + ﬁnk_k”xnk - xnk—luNQ
—00 —00 Nk

(4.39) + 28, (Fop,p — Tnys1) — |1 — ol

(4.40) < —timinf[y,p1 — pl ~ 2, ~ ] <0
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as such, we have that
From Step 3 of Algorithm 3]2, we obtain that

HkaH - Hynk — Rnp T )‘H(Flynk - Flan)H
< [y = 20 | + Al Fryng, — Fizn, ||

An
(4.42) < (14 ) gy = 20l
n+1

also, we have
> (Y, = 201> = Aallyng = 2ng 1 F2 Y, — Frzng |

A
(4.43) > (1= ) g, — 2o
n+1

In addition, from the definition of,,, we have that

<yn — Zn 7bn > /\n 1 ﬂAn
19 = Oni || = Yo 1y || = "ol > S -
0] A1+ Ang

An An
(4.4 = Ny, — 2 | < ST

Hynk Zny, ||7
v — .
From Lemmd 411, we obtain

An An 1
(4.45) lim inf 2t A SR

thus,{i”’ﬁ“ﬂ} is bounded and (4.41), we have

ng+1—HAny,

(4.46) lim ||y, — 2n, ]| = 0.

k—o0

It is easy to see fronj (4.84) that

|Zns1 = pII?

< lyn = 01> + 28, (Fp,p — Tny1)

< llwn = pl* = E|A(T = I) Awn||* + 28,(Fp, p — Tn11)
4.47) < llan = pl* + Oullwn — 201 [ N2 — €[ AT = D) Aw, ||* + 26, (Fp. p — 241),
which implies

limsup || A*(T — 1) Aw, ||

k—o0
. en
(4.48) < limsup | [l — Pl + B 72, — 1[N
—00 ngk

+ 26, (Fp,p — Tnp1) — |Tngs1 — 2l

< —ligninf[HxnkH —plI* = l|lzn, — plI*] <O0.
—00
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We obtain
(4.49) klim |AY(T — I) Aw,, || = 0.
Thus, using[(4]2)[ (4.49) and and the boundedne$sf, we obtain
(4.50) klim (T — I)Aw,,|| = 0.
Using (4.49), we have that
(4.51) [, = tn, || = 1| A* (T (Aw,, ) — Aw,, )[| — 0 ask — oo.
It is easy to see that, &s— oo, we have
0y,
(452) Hwnk - 'rnkH = anHInk - xnk—lH = Oy, - _kank - xnk—1|| — 0.
Nk
It is easy to see that, &s— oo, we have
On
(4.53)  |lwn, — @nll = Onpl|n, — Tl = By, - ﬁ—kl\wnk — Tny—1|[ = 0.
Nk

In addition, we have that

9ne = Zog | < Ny — W || + Wy, — T, || — 0 @Sk — 0.
12n, — T |l < l20p — Ynill + 1Yne — @0, || — 0 @Sk — oo.
Vn, — T || < Oy, = Yni |l + [|Yny, — T || — 0 @Sk — 0.
Nvne = Ynill < N0ny = Tl + |20, — Yn, || — 0 @Sk — cc.
1Tt = Ynill < (1 = ) [ony, = Yy | + B, [ Fatn, || — 0 @Sk — 0.

||xnk+1 - x”k“ < |’Ink+1 - ynkH + Hynk - I”k” — 0 ask — oo.

Since{z,, } is bounded, it follows that there exists a subseque{nggj} of {z,,} converges
weakly toz*. In addition, from [(4.5B), we obtain thg7'w,, } converges weakly t@z* and
with (4.50) and the demiclosedness principle, we have

Az" € F(T).
More so, we have

lim sup(Fop, p = 2, ) = lim (Fop, p — @y, ) = (Fop,p — 7).

k—o0

Also, we obtain from[(4.46)[ (4.51) and Lemmal4.4 that (2. Sincep is a unique solution of
2, we have obtain fronf (4) that

lim sup(Fop, p — xp,) = (Fop,p — 2¥) <0,

k—o0

which implies that

lim sup(Fop, p — 1) <0,

k—o00

Using using our assumption, (4]41) and the above inequality, we haviithaitp, ¥, =

lim sup,,_, o <%Hxnk — Tp1 || N1+ 2(Fp,p — anw)) < 0. Thus, the last part of Lemma
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is achieved. Hence, we have that ||z, — p|| = 0. Thus,{xz,} converges strongly to
pEQ. 1

5. NUMERICAL EXAMPLES

In this section, we give some numerical examples in both finite and infinite dimensional Hilbert
spaces.

Example 5.1. Let H; = R* be the four-dimensional Euclidean space of the real number with

4
a norm defined byjz|| = /> ||lz;[|> wherez = {z;};_, € R* and H, = R” be the two-
=1

2
dimensional Euclidean space of the real number with a norm defingd:bpy= /> ||z

=1
wherez = {x;}2 , € R? Define the feasible s&t by C' := {z € R* : ||z|| < 1} where
r = {x;}22,. Consider the mappind’ : R* — R* defined byF;(z) = (sin|z| + 2)b,
whereb = (12,—4,4,—4)T for all x € R*. It is easy to verify that"; is pseudomonotone
with 8v/3 Lipschitz constant (sef26]). Also, let the mapping? : R> — R? be defined by
Fy(z) = (21,79, 23, 24)7 for all x = {z;}2_,. It is obvious thatF;, is 1-strongly monotone
with a Lipschitz constant 1. Now, define the operator R* — R? by A(z) = (221 + 22 +
x3 + 3wy, 11 + 22 + 23 + 224), then A is a bounded linear operator withA|| = %f; Let the
mappings : R? — R? be defined by (x) = 2 for all 2 = (x,z,)" € R?. For this example,

we choose the following parameteis,= 0.5, «,, = 42117, G = Wl-g-sv = 0.5. Also,a = 5,

¢ = —=. We make a comparison of our method with Algorith{@é], with the following extra
conditionsw, € [0, w] = [&5, 255] and\, = ;&= Let||z, 1 — z,[|> = 107°, we consider

the following cases of initial values of andz;

Case 1zy = (2,3,9,8)" andx; = (10, 3,4,5)7T;

Case 2z, = (0.10,0.20,0.30,0.40)" andx; = (0.15,0.60, 0.50,0.70)7;
Case 3z = (10,20, 35,20)" andx; = (15,60, —35,40)T.

The results of this experiment are reported in Figure 1.

Example 5.2.Let H; = H, = /, be the linear space whose elements consist of all 2-summable
sequencesry, xo, - - - , 1y, - - - ) Scalars, that is

o0
fgz{x:x:(xl,:cg,-~ ,xi,-~-)and2\xi|2<oo},

i=1

with an inner product-, ) : ¢y x ¢, — R defined by(z,y) = > z;y; wherex = {z;}°, and
=1

y = {y:}52, and anorm||- || : {; — Rdefined byj|z||2 = 1/ >_ |z;|? wherez = {x;}32,. Define
=1

the feasible se€ by C' := {z € ¢y : ||z|| < 1} wherexz = {z;}:°,. Consider the mapping

Fy : by — {5 defined byF; (z) = (sin||z|| + 2)b, whereb = (1,0,---,0,---)" for all z € £,.

It is easy to verify that} is pseudomonotone (s§&5]). Also, let the mapping : ¢, — /5

be defined by, (z) = « for all z = {x;}$2,. It is obvious thatF; is 1-strongly monotone with

a Lipschitz constant 1. Now, define the operator (o — ¢ by A(x) = (z1, 29, , x4, ),
then A is a bounded linear operator withA|| = 3. Let the mapping : /2 — ¢, be defined by
S(x) = 2 forall 2 = {x;}32, € (,. For this example, we choose parameters as in Exa@e 5.1

| 2o =(1,0,---,3,---)T andx; = (2,0,---,3,---)7T;
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—<&— our Algorithm —<&— our Algorithm
—&O— Algorithm 1 Minh et al. —&O— Algorithm 1 Minh et al.
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—<— Our Algorithm

—O— Algorithm 1 Minh et al
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Number of iterations

Figure 1: Exampl¢ 5]1. Top left: Case 1, Top right: Case 2, Bottom: Case 3.

Il zo = (0.876,0.567,0,--- ,0,---)" andz; = (0.576,0.333,0,--- ,0,---)7;
Il 2o = (10,20,---,0,---)T andzy = (15,10, ,0,---)7.
The results of this experiment are reported in Figure 2.

6. CONCLUSION

A modified inertial extrapolation projection and contraction iterative method is introduced and
studied for solving the SBVIR (1].8) in two real Hilbert spaces in which one of the cost oper-
ators is pseudomonotone and Lipschitz continuous. As seen from our convergence analysis,
we prove that the proposed algorithm converges strongly to the unique solution of the SBVIP
(1.8). Lastly, we considered some numerical examples of our proposed method in comparison
with the iterative method proposed by Minh et al. The numerical experiments validate that our
iterative method converges faster and its more applicable to real life situation.
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