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1. I NTRODUCTION

In this study we are concerned with the problem of approximating a locally unique solution
x of equation

(1.1) F (x) = 0,

whereF is a continuously Fréchet–differentiable operator defined on a convex subsetD of a
Banach spaceX with values in a Banach spaceY .

A large number of problems in applied mathematics and also in engineering are solved by
finding the solutions of certain equations. For example, dynamic systems are mathematically
modeled by difference or differential equations, and their solutions usually represent the states
of the systems. For the sake of simplicity, assume that a time–invariant system is driven by
the equatioṅx = Q(x), for some suitable operatorQ, wherex is the state. Then the equilib-
rium states are determined by solving equation (1.1). Similar equations are used in the case of
discrete systems. The unknowns of engineering equations can be functions (difference, differ-
ential, and integral equations), vectors (systems of linear or nonlinear algebraic equations), or
real or complex numbers (single algebraic equations with single unknowns). Except in special
cases, the most commonly used solution methods are iterative–when starting from one or several
initial approximations a sequence is constructed that converges to a solution of the equation. It-
eration methods are also applied for solving optimization problems. In such cases, the iteration
sequences converge to an optimal solution of the problem at hand. Since all of these methods
have the same recursive structure, they can be introduced and discussed in a general framework.

The most popular method for generating a sequence approximatingx is undoubtedly New-
ton’s method:

(1.2) xn+1 = xn − F ′(xn)−1 F (xn) (x0 ∈ D), (n ≥ 0),

whereF ′(x) ∈ (X, Y ) (x ∈ D), the space of bounded linear operators fromX into Y , denotes
the Fréchet–derivative of operatorF [4], [7].
Sufficient conditions for the local and the semilocal convergence of Newton’s method (1.2) have
been given by many authors under various Lipschitz–type conditions [2]–[8].
A survey of such results can be found in [4], and the references therein.
The iteratesxn (n ≥ 1) can rarely be found in infinite–dimensional spaces. That is why in
practice equation (1.1) is replaced by a family of discretized equations

(1.3) Ph(y) = 0

indexed by some real numberh > 0, wherePh is a nonlinear operator between finite di-
mensional spaceXh and Ŷh. Assume the discretization onX be given by the bounded lin-
ear operatorsLh : X −→ Xh. Under certain assumptions, equation (1.3) have solutions
y?

h = Lh(x) +O(hp), found as the limit of Newton’s method applied to (1.3) as follows:

(1.4) yh
0 = Lh(x0), yh

n+1 = yh
n − P ′h(yh

n)−1 Ph(y
h
n) (n ≥ 0).

The mesh independence principle shown in [1] state that, when Newton’s method (1.2) is ap-
plied to nonlinear equation (1.1) as well as to (1.3), then the behavior of the discretized process
(1.4) is asymptotically the same as that of (1.2), and consequently, the number of steps required
by the two processes to converge to within a given tolerance is essentially the same. The im-
portance of an efficient mesh size strategy base upon the mesh independence principle has been
explained in [1], [2], [6] (see also [4]).
Here, motivated by optimization considerations, we show how to improve on the size ofh (i.e.
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enlargeh) under the same hypotheses and computational cost as in [1].
Our main idea is to introduce and employ the center–Lipschitz condition for the computation
of the upper bounds of the inverses of the linear operators used in [1]. This idea has already
been used by us in [3]–[5], to provide weaker sufficient conditions than the usual Newton–
Kantorovich hypotheses [1], [2], [6]–[8] for the local as well as semilocal convergence of New-
ton’s method (1.2) (see Theorems 2.1 and 2.2).
Numerical examples are also provided.

2. CONVERGENCE ANALYSIS

We will need the following semilocal and local convergence theorems whose proofs can be
found in [4, p. 387, Case 3, forδ = δ0], and [3], respectively.

Theorem 2.1.LetF : D ⊆ X → Y be a Fréchet–differentiable operator. Assume:
there exist a pointx0 ∈ D, and parametersη ≥ 0, K0 > 0, K > 0, σ > 0, such that

F ′(x0)
−1 ∈ (Y, X), ‖F ′(x0)

−1‖ ≤ σ(2.1)

‖F ′(x0)
−1F (x0)‖ ≤ η,(2.2)

‖F ′(x)− F ′(x0)‖ ≤ K0 ‖x− x0‖,(2.3)

‖F ′(x)− F ′(y)‖ ≤ K ‖x− y‖ for all x, y ∈ D,(2.4)

M σ η ≤ 1,(2.5)

and

(2.6) U(x0, ) = {x ∈ X | ‖x− x0‖ ≤} ⊆ D,

where,

M =
1

4
(K + 4 K0 +

√
K2 + 8 K0 K),

a =
2

2− b
, b =

1

2

[
− K

K0

+

√(
K

K0

)2

+ 8
K

K0

]
σ,

(2.7) = lim
n→∞

tn ≤ a η,

(2.8) t0 = 0, t1 = η, tn+2 = tn+1 +
K σ (tn+1 − tn)2

2 (1−K0 σ tn+1)
(n ≥ 0).

Then, Newton’s sequence{xn} (n ≥ 0) generated by (1.2) is well defined, remains inU(x0, )
for all n ≥ 0, and converges to a unique solutionx ∈ U(x0, ) of equationF (x) = 0. Moreover
the following estimates hold for alln ≥ 0

(2.9) ‖xn+2 − xn+1‖ ≤
K σ ‖xn+1 − xn‖2

2 [1−K0 σ ‖xn+1 − x0‖]
≤ tn+2 − tn+1

and

(2.10) ‖xn − x‖ ≤ −tn.

Furthermore, if there existsR > such that

(2.11) U(x0, R) ⊆ D

and

(2.12) σ K0 (+R) ≤ 2,

then the solution is unique inU(x0, R).
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Theorem 2.2.LetF : D ⊆ X → Y be a Fréchet–differentiable operator. Assume:

there exist a simple zerox ∈ D of equationF (x) = 0, and parametersγ > 0, γ0 > 0,
σ > 0, such that:

‖F ′(x)−1‖ ≤ σ

‖F ′(x)− F ′(y)‖ ≤ γ ‖x− y‖ for all x, y ∈ D(2.13)

‖F ′(x)− F ′(x)‖ ≤ γ0 ‖x− x‖ for all x ∈ D,(2.14)

and

(2.15) U∗ = U(x, γ1) ⊆ D,

where

(2.16) γ1 =
2

(2γ0 + γ) σ
.

Then, Newton’s sequence{xn} (n ≥ 0) generated by (1.2) is well defined, remains inU(x, γ1)
for all n ≥ 0 and converges tox. Moreover the following estimates hold for alln ≥ 0:

(2.17) ‖xn+1 − x‖ ≤ γ σ ‖xn − ‖2

2 (1− γ0 σ ‖xn − x‖)
.

As in [1], [2], [4], let S ⊆ X such that

(2.18) x ∈ S∗, xn ∈ S∗, xn − x ∈ S∗, xn+1 − xn ∈ S∗ (n ≥ 0).

Consider the family

(2.19) {Ph, Lh, L̂h}, h > 0,

where,

Ph : Dh ⊂ Xh → Ŷh,(2.20)

Lh : X → Xh, L̂h : Y → Ŷh(2.21)

such that:

(2.22) Lh(S
∗ ∩ U∗) ⊆ Dh.

The discretization family (2.19) is called: Lipschitz–center Lipschitz uniform if there exist
ρ > 0, K0 > 0, K > 0 such that

U(Lh(x), ρ) ⊆ Dh,(2.23)

‖P ′h(u)− P ′h(Lh(x))‖ ≤ K0 ‖u− Lh(x)‖, u ∈ U(Lh(x), ρ)(2.24)

‖P ′h(u)− P ′h(v)‖ ≤ K ‖u− v‖, u, v ∈ U(Lh(x), ρ).(2.25)

Moreover (2.19) is called: bounded if there exists a constantq > 0 such that

(2.26) ‖Lh(u)‖ ≤ q ‖u‖, u ∈ S∗,

stable: if there exists aσ > 0 such that

(2.27) ‖P ′h(Lh(u))−1‖ ≤ σ, u ∈ S∗ ∩ U∗,

and consistent of orderp: if there existc0 > 0, c1 > 0, c2 > 0 such that

‖L̂h(F (x))− Ph(Lh(x))‖ ≤ c0 hp,(2.28)

‖L̂h(F (x))− Ph(Lh(x))‖ ≤ c1 hp, x ∈ S∗ ∩ U∗,(2.29)
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and

(2.30) ‖L̂h(F
′(x))(y)− P ′h(Lh(x))Lh(y)‖ ≤ c2 hp,

x ∈ S∗ ∩ U∗, y ∈ S∗.
We can show the following result relating (1.1), (1.2) with (1.3), (1.4) respectively.

Theorem 2.3. LetF : D ⊆ X → Y be an operator satisfying hypotheses of Theorem 2.2 such
that a Lipschitz, center–Lipschitz uniform discretization (2.19) exists which is bounded, stable
and consistent of orderp. Then,

(a) equation (1.3) has a locally unique solution

(2.31) y∗h = Lh(x) + O(hp),

for all h such that:

(2.32) 0 < h ≤ h0 = min

{(
ρ

a c0 σ

)1/p

,

(
1

c0 σ2 M

)1/p
}

;

(b) there existh1 ∈ (0, h0], r1 ∈ (0, r∗] such that Newton’s method (1.4) converges toy∗h; and
for all k ≥ 0

yh
k = Lh(xk) + O(hp),(2.33)

Ph(y
h
k ) = L̂h(F (xk)) + O(hp)(2.34)

yh
k − y∗h = Lh(xk − x) + O(hp)(2.35)

for all h ∈ (0, h1] andx0 ∈ U(x, r1).

Proof. We showed in Theorem 2.1 that when

α(h) = M σ‖P ′h(Lh(x))−1Ph(Lh(x))‖ ≤ 1,(2.36)

r(h) ≤ a ‖P ′h(Lh(x))−1Ph(Lh(x))‖ ≤ ρ,(2.37)

then equation (1.3) has a unique solutiony∗h in U(Lh(x), r(h)). Using (2.27), (2.28), (2.36), and
(2.37) we get in turn

α(h) = M σ2‖Ph(Lh(x))‖
= M σ2‖Ph(Lh(x))− L̂h(F (x))‖
≤ M σ2 c0 hp ≤ 1,(2.38)

and

(2.39) r(h) ≤ a σ c0 hp ≤ ρ,

which hold by the choice ofh given by (2.32). Hence (2.31) follows from

(2.40) ‖y∗h − Lh(x)‖ ≤ r(h) ≤ a σ c0 hp.

By Theorem 2.2, Newton’s method (1.4) converges toy∗h, if

(2.41) ‖Lh(x0)− y∗h‖ <
2

(2K0 + K) ‖P ′h(y∗h)−1‖
,

and

(2.42) U(y∗h, ‖Lh(x0)− y∗h‖) ⊆ U(Lh(x), ρ).

Estimate (2.42) holds, if

(2.43) ‖y∗h − Lh(x)‖+ ‖Lh(x0)− y∗h‖ ≤ ρ.
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By (2.26) and (2.40) we can have

‖Lh(x0)− y∗h‖ ≤ ‖Lh(x0)− Lh(x)‖+ ‖Lh(x)− y∗h‖
≤ q ‖x0 − x‖+ a σ c0 hp.(2.44)

Therefore (2.43) holds, if

(2.45) q ‖x0 − x‖+ 2 a σc0 hp ≤ ρ.

Using the identity and the Banach Lemma on invertible operators [4], [7]

(2.46) P ′h(y∗h) = P ′h(Lh(x))
[
I − P ′h(Lh(x))−1(P ′h(Lh(x))− P ′h(y∗h))

]
,

we get

‖P ′h(y∗h)−1‖ ≤ ‖P ′h(Lh())
−1‖

1−K0 ‖P ′h(Lh(x))−1‖ ‖Lh(x)− y∗h‖
(2.47)

≤ σ

1− a K0 σ2 c0 hp
.(2.48)

Hence (2.41) holds if

(2.49) q ‖x0 − x‖+ 2 a σ c0 hp <
2 (1− a K0 c0 σ2 hp)

(2 K0 + K) σ
.

Choose:

(2.50) h2 = min

{( ρ

4 a c σ

)1/p

,

[
1

2 (3 K0 + K) σ2 a c

]1/p
}

, c = max{c0, c1},

and

(2.51) r2 = min

{
ρ

2 q
,

1

(2 K0 + K) q σ

}
.

Then (2.41) and (2.42) hold for allh ∈ (0, h2] andx0 ∈ U(x, r2). That is for these choices ofh
andx0, Newton’s method (1.4) converges toy∗h. Define

h1 = min

{
h2,

[
1

8 σ2 (c1 + c2) (2 K0 + K)

]1/p
}

,(2.52)

r1 = min

{
r2,

1

4 K σ q

}
.(2.53)

With the above choices it can easily be seen that the small root of the quadratic equation inλ

(2.54)
σ

1−K0 σ λ

[
K

2
λ2 + 2 K q λ ‖x0 − x‖+ (c1 + c2) hp

]
= λ

denoted byd is positive, and satisfies

(2.55) d ≤ 4 σ (c1 + c2) hp.

We now show using induction onn that forh ∈ (0, h1), x0 ∈ U(x, r1), and alln ≥ 0

(2.56) ‖yh
n − Lh(xn)‖ ≤ d

holds.

AJMAA, Vol. 7, No. 1, Art. 2, pp. 1-11, 2010 AJMAA

http://ajmaa.org


IMPROVED MESH INDEPENDENCEPRINCIPLE FORSOLVING EQUATIONS 7

For n = 0 (2.56) holds. Assume (2.56) holds forn = 0, 1, . . . , k. Using (1.2) and (1.4) we
obtain the identity

yh
k+1 − Lh(xk+1) = P ′h(yh

k )−1
{
[P ′h(yh

k )(yh
k − Lh(xi))

− Ph(y
h
k ) + Ph(Lh(xk))]

+ [P ′h(yh
k )− P ′h(Lh(xk))Lh(F

′(xk)
−1F (xk))]

+ [P ′h(Lh(xk))Lh(F
′(xk)

−1F (xk))− L̂h(F (xk))]

+ [L̂h(F (xk))− Ph(Lh(xk))]
}
.(2.57)

As in (2.47) we get

(2.58) ‖P ′h(yh
k )−1‖ ≤ σ

1−K0 σ ‖yh
k − Lh(xk)‖

≤ σ

1−K0 σ d
.

We can get in turn using Taylor’s formula, (2.25) and definition ofd given in (2.54):

‖P ′h(yh
k )(yh

k − Lh(xk))− Ph(y
h
k ) + Ph(Lh(xk))‖

≤ ‖
∫ 1

0

[
P ′h(Lh(xk) + t (yh

k − Lk(xk))− P ′h(yh
k )

]
(yh

k − Lh(xk)) dt‖

≤ K

2
‖yh

k − Lh(xk)‖2 ≤ K

2
d2.(2.59)

Using (2.25), and (2.26) we obtain:

‖(P ′h(yh
k )− P ′h(Lh(xk))(Lh(F

′(xk)
−1F (xk)))‖

≤ K q ‖yh
k − Lh(xk)‖ ‖xk+1 − xk‖ ≤ 2 K q d ‖x0 − x‖,(2.60)

(since‖xk+1 − x‖ ≤ ‖xk − x‖)
(2.61) ‖P ′h(Lh(xk))Lh(F

′(xk)
−1F (xk))− L̂h(F (xk))‖ ≤ c2 hp,

and

(2.62) ‖L̂h(F (xi))− Ph(Lh(xk))‖ ≤ c1 hp.

By (2.55) and (2.57)–(2.61) we get

(2.63) ‖yh
k+1 − Lh(xk+1)‖ ≤ d ≤ 4 σ (c1 + c2) hp,

whered satisfies (2.54).
Moreover by the Lipschitz continuity ofP ′h there existsb such that

(2.64) ‖P ′h(x)‖ ≤ b, x ∈ U(Lh(x), ρ).

Therefore we can have

‖Ph(y
h
k )− L̂h(F (xk))‖ ≤ ‖Ph(y

h
k )− Ph(Lh(xk))‖

+ ‖Ph(Lh(xk))− L̂h(F (xk))‖ ≤ b‖yh
k − Lh(xk)‖+ c1h

p

≤ 4 σ b (c1 + c2) hp + c1 hp = c3 hp,(2.65)

where
c3 = 4 σ b (c1 + c2) + c.

Furthermore by (2.40), (2.56), and (2.62) we get

‖yh
k − y∗h − Lh(xk − x)‖ ≤ ‖yh

k − Lh(xk)‖+ ‖y∗h − Lh(x)‖
≤ 4 σ (c1 + c2) hp + a σ c0 hp = c hp,(2.66)

where
c = σ [4 (c1 + c2) + a c].
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That completes the proof of Theorem 2.3. �

The following result is the second part of the mesh independence principle.

Theorem 2.4.Assume:

(a) hypotheses of Theorem 2.3 hold;
(b) there existsδ > 0 such that

(2.67) lim inf
h>0

‖Lh(x)‖ ≥ δ ‖x‖ for x ∈ S∗.

Then for somer ∈ (0, r1] and any fixedε > 0, x0 ∈ U(x, r) there existsh = h(ε, x0) ∈
(0, h1] such that

(2.68) |min{n ≥ 0, ‖xn − x‖ < ε} −min{n ≥ 0, ‖yh
n − y∗h‖ < ε}| ≤ 1

for all h ∈ (0, h].

Proof. Let k be the unique integer satisfying

(2.69) ‖xk+1 − x‖ < ε ≤ ‖xk − x‖,
andh3 > 0 (depending onx0) such that

(2.70) ‖Lh(xk − x)‖ ≥ δ ‖xk − x‖ for all h ∈ (0, h3).

Define

(2.71) r = max

{
r1,

β

2 σ q (K + β K0)

}
, β = min{1

q
, δ, 2 q},

and

(2.72) h = min

{
h1, h3,

[
β

2 σ c (K + K0 β)

]1/p

,

(
δ ε

2 c

)1/p
}

.

By (2.65) and (2.71) we can get

(2.73) ‖yh
k+1 − y∗h‖ ≤ ‖Lh(xk+1 − x)‖+ c hp ≤ qε +

β ε

2
< 2 q ε.

Moreover from Theorem 2.2 we get

‖yh
k+2 − y∗h‖ ≤

Kσ‖yh
k+1 − y∗h‖2

2 [1−K0 σ ‖yh
k+1 − y∗h‖]

≤ K σ ‖yh
0 − y∗h‖

2 (1−K0 σ ‖yh
0 − y∗h‖)

‖yk+1 − y∗h‖

<
K σ (q r + c h

p
)

1−K0 σ (q r + c h
p
)

q ε ≤ b q ε < ε.(2.74)

By (2.65) and (2.69)

(2.75) ε ≤ ‖xk − x‖ ≤ 1

δ
‖Lh(xk − x)‖ ≤ 1

δ
(‖yh

k − y∗h‖+ ch
p
),

or

(2.76) ‖yh
k − y∗h‖ ≥ δ ε− c h

p ≥ δ ε− δ ε

2
=

δ ε

2
.

Furthermore if‖yh
k−1 − y∗h‖ < ε as in (2.73) we get

(2.77) ‖yh
k − y∗h‖ <

1

2
βε ≤ δ ε

2
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contradicting (2.75). Hence we get

(2.78) ‖yh
k−1 − y∗h‖ ≥ ε.

The result now follows from (2.68), (2.73) and (2.77).
That completes the proof of Theorem 2.4.

Remark 2.1. (a) Theorem 2.1 reduces to the famous semilocal Newton–Kantorovich theorem
[7], whenK = K0. In general

(2.79) K0 ≤ K

holds. If K0 < K, then our hypothesis (2.5) may be satisfied, but the Newton–Kantorovich
hypothesis

(2.80) 2 K η ≤ 1

may not. In this case the error bounds on the distances‖xn+1−xn‖, ‖xn−x‖ (n ≥ 0) are finer
and the information on the location of the solution more precise (see also [3]).

(b) Theorem 2.2 reduces to Theorem 1 in [1] whenγ = γ0. In general

(2.81) γ0 ≤ γ,

and in the case when strict inequality holds in (2.80), then our convergence radiusγ1 given by
(2.16) is larger than the corresponding one given in [1] by

(2.82) γ2 =
2

3γ
.

Hence we have a wider choice of initial guessesx0, and our error bounds on the distances
‖xn − x‖ (n ≥ 0) are finer.

(c) Theorems 2.3, 2.4 reduce to Theorem 2 and Corollary 1 in [1], when

(2.83) K = K0 and c0 = c1.

Note though that

(2.84) K0 ≤ K

and

(2.85) c0 ≤ c1.

In case (2.83) or (2.84) holds as strict inequalities then it is clear that our smallest integer
n1 satisfying‖xn − x‖ < ε is smaller than the corresponding integern2 given in references
mentioned above. Hence we require less computational steps to achieve the same error tolerance
ε than before. The ratios in relationships (2.33)–(2.35) are also finer.

Defineh0, h1, h2, h3, h used in [1] ash0, h1, h2, h3, h respectively by settingK = K0. Then,
we haveh0 ≤ h0, h1 ≤ h1, h2 ≤ h2, h3 ≤ h3, h0 ≤ h. If K0 < K, then strict inequality can
hold. Hence, the mesh sizeh has been enlarged.

Note that the improvements made through our Theorems 2.1–2.4 are achieved under the same
hypotheses as before, since in practice, the computation ofK requires that ofK0. Note also

that
K

K0

and
γ

γ0

can be arbitrarily large [3]–[5].

Remark 2.2. If (2.66) is replaced by the stronger but standard in most discretization studies
condition

(2.86) lim
h→0

‖Lh(x)‖ = ‖x‖ uniformly for x ∈ S∗,
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then Theorem 2.4 still holds buth1 does not depend onx0. Note also that (2.66) follows from
(2.85).

Remark 2.3. As noted in [1]–[8] the local results obtained here can be used for projection meth-
ods such as Arnoldi’s, the generalized minimum residual method (GMRES), the generalized
conjugate residual method (GCR), for combined Newton/finite-difference projection methods
and in connection with the mesh independence problems where the trapezoidal rule, the box
scheme and allocation methods for boundary value problems are involved.

Remark 2.4. The local results obtained here can also be used to solve equations of the form
F (x) = 0, whereF ′ satisfies the autonomous differential equation (see Argyros [5], Kan-
torovich et al. [7]):

(2.87) F ′(x) = T (F (x)),

where,T : Y → X is a known continuous operator. SinceF ′(x) = T (F (x)) = T (0), we can
apply the results obtained here without actually knowing the solutionx of equation (1.1).

We complete our study with two numerical examples. In Example 2.5 we show that under the
same hypotheses as in Theorem 1 of [1] we can obtain a larger radius of convergence. Whereas
in Example 2.6 we show thatK

K0
can be arbitrarily large.

Example 2.5.Let X = Y =, D = U(0, 1), and define functionF onD by

(2.88) F (x) = ex − 1.

Then it can easily be seen that we can setT (x) = x + 1 in (2.86). Using (2.87) we getγ = e
andγ0 = e− 1. Hence (2.16), (2.81) give

(2.89) γ2 = .245252961 < .324947231 = γ1.

(See also Remark 2.1 (b), (c).) Hence Theorem 1 in [1] cannot guarantee the convergence of
(1.2) tox = 0 whenx0 ∈ [γ2, γ1) but our Theorem 2.2 can.

Example 2.6.Let X = Y = and define functionF on by

(2.90) F (x) = θ0x + θ1 + θ2 sin eθ3x,

whereθi, i = 0, 1, 2, 3 are given parameters. Using (2.89) it can easily be seen that forθ3 large
andθ2 sufficiently small K

K0
may be arbitrarily large. That is (2.5) may be satisfied but not

(2.79), in which case Theorem 2.2 cannot apply.
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