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ABSTRACT. We improve the mesh independence principle [1] which states that when Newton'’s
method is applied to an equation on a Banach space as well as to their finite—dimensional dis-
cretization there is a difference of at most one between the number of steps required by the two
processes to converge to within a given error tolerance. Here using a combination of Lipschitz
and center Lipschitz continuity assumptions instead of just Lipschitz conditions we show that the
minimum number of steps required can be at least as small as in earlier works. Some numerical
examples are provided whereas our results compare favorably with earlier ones.
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2 IOANNIS K. ARGYROS

1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique solution
x of equation

(1.1) F(z) =0,

where F' is a continuously Fréchet—differentiable operator defined on a convex shibsea
Banach spac& with values in a Banach spagée

A large number of problems in applied mathematics and also in engineering are solved by
finding the solutions of certain equations. For example, dynamic systems are mathematically
modeled by difference or differential equations, and their solutions usually represent the states
of the systems. For the sake of simplicity, assume that a time—invariant system is driven by
the equation: = Q(x), for some suitable operatdy, wherez is the state. Then the equilib-
rium states are determined by solving equatjon|(1.1). Similar equations are used in the case of
discrete systems. The unknowns of engineering equations can be functions (difference, differ-
ential, and integral equations), vectors (systems of linear or nonlinear algebraic equations), or
real or complex numbers (single algebraic equations with single unknowns). Except in special
cases, the most commonly used solution methods are iterative—when starting from one or several
initial approximations a sequence is constructed that converges to a solution of the equation. It-
eration methods are also applied for solving optimization problems. In such cases, the iteration
sequences converge to an optimal solution of the problem at hand. Since all of these methods
have the same recursive structure, they can be introduced and discussed in a general framework.

The most popular method for generating a sequence approximatsigndoubtedly New-
ton’s method:

(12) Tp41 = Ty — Fl(“fﬁn)il F(xn) (33'0 € D)v (n Z 0)7

whereF'(z) € (X,Y) (x € D), the space of bounded linear operators frt&nnto Y, denotes

the Fréchet—derivative of operatar[4], [7].

Sufficient conditions for the local and the semilocal convergence of Newton’s méthpd (1.2) have
been given by many authors under various Lipschitz—type conditions [2]—[8].

A survey of such results can be found|in [4], and the references therein.

The iteratesr,, (n > 1) can rarely be found in infinite—dimensional spaces. That is why in
practice equatiorn (I.1) is replaced by a family of discretized equations

(1.3) Pr(y) =0

indexed by some real numbér > 0, whereP,, is a nonlinear operator between finite di-
mensional space), and Y. Assume the discretization o be given by the bounded lin-
ear operatord, : X — Aj,. Under certain assumptions, equatipn|(1.3) have solutions
yr = Lip(z) + O(h?), found as the limit of Newton’s method applied o (1.3) as follows:

(1.4) o = Lu(@o),  Ynir = U0 — Phlyn) ™ Palyn) (n>0).

The mesh independence principle shown_in [1] state that, when Newton’s methiod (1.2) is ap-
plied to nonlinear equatiof (1.1) as well as[to [1.3), then the behavior of the discretized process
(1.4) is asymptotically the same as that[of|1.2), and consequently, the number of steps required
by the two processes to converge to within a given tolerance is essentially the same. The im-
portance of an efficient mesh size strategy base upon the mesh independence principle has been
explained in[[1], 2], [6] (see alsd [4]).

Here, motivated by optimization considerations, we show how to improve on the Sizg.ef

AJMAA Vol. 7, No. 1, Art. 2, pp. 1-11, 2010 AJMAA


http://ajmaa.org

IMPROVED MESH INDEPENDENCEPRINCIPLE FORSOLVING EQUATIONS 3

enlargeh) under the same hypotheses and computational costlas in [1].

Our main idea is to introduce and employ the center—Lipschitz condition for the computation
of the upper bounds of the inverses of the linear operators uséd in [1]. This idea has already
been used by us in|[3]H[5], to provide weaker sufficient conditions than the usual Newton—
Kantorovich hypotheses|[1],1[2],[6]=[8] for the local as well as semilocal convergence of New-

ton’s method[(1]2) (see Theorems|2.1 2.2).

Numerical examples are also provided.

2. CONVERGENCE ANALYSIS

We will need the following semilocal and local convergence theorems whose proofs can be
found in [4, p. 387, Case 3, for= §,], and [3], respectively.

Theorem 2.1.Let F': D C X — Y be a Fréchet—differentiable operator. Assume:
there exist a point, € D, and parameterg > 0, K, > 0, K > 0, 0 > 0, such that

(2.1) Fl(zo) ™t e (Y, X), [[F'(zo) ' <o
(2.2) |1 F'(20) " F(20)]] <,
(2.3) | F'(2) — F'(zo)|| < Ko [l2 — ol
(2.4) |F'(z) — F'(y)|| < K ||z —y|| forall z,y € D,
(2.5) M on<l,
and
(2.6) Ulzo,) ={x € X | |lz — x0l| <} € D,
where, )

M:Z (K+4 KU+ \/K2+8 Kg K),

2 po L[ K, (K 2+8 K
Ty “ 92T K, K, K|

(2.7) = lim t, < amn,

n—oo

K o (thy1 — tn)?
2.8 to=0, t1 =1, tyio =ty > 0).
(2.8) 0 y L1 =1, lny2 +1+2(1—K00tn+1)(n_ )
Then, Newton’s sequenge, } (n > 0) generated by (1]2) is well defined, remaindifw,, )
for all n > 0, and converges to a unique solutiore U(z,, ) of equationF'(z) = 0. Moreover
the following estimates hold for all > 0

Ko Hxn-&-l - anQ

(2.9) [Znio — Tppa|l < 31— Ko o |l — 2ol <tpt2 — oy
and
(2.10) |7 — 2| < —tp.
Furthermore, if there exist® > such that
(2.11) U(xg,R) C D
and
(2.12) o Ky (+R) <2,

then the solution is unique i (zo, R).
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Theorem 2.2.LetF': D C X — Y be a Fréchet—differentiable operator. Assume:

there exist a simple zero € D of equationF'(z) = 0, and parametersy > 0, v, > 0,
o > 0, such that:

[F'(z)7 | <o
(2.13) |F(2)~ F)| < 7 llz—yl forallz,ye D
(2.14) |F'(x) — F'(z)|]] < 7 |lt—=x| forallxz € D,
and
(2.15) U*=U(z,m) C D,
where
(2.16) N

(27 +7) o

Then, Newton’s sequenée,, } (n > 0) generated b2) is well defined, remaindiitr, v,)
for all n > 0 and converges to. Moreover the following estimates hold for all> 0:

v o o — |

217 v =2l = 5 T o Taw —al)

As in [1], [2], [4], let S C X such that
(2.18) reS, x, €8, v, —x €S, vy —1r, €5 (n>0).
Consider the family
(2.19) {Pn, Ly, Ly}, h>0,
where,
(2.20) Py: Dy C Xy — Yy,
(2.21) Lin: X = Xy, Lp: Y =Y,
such that:
(2.22) Ly(S*NU*) C Dy,

The discretization family[ (2.19) is called: Lipschitz—center Lipschitz uniform if there exist
p >0, Ky>0, K> 0such that

(2.23) U(Ln(x),p) C D,

(2.24) 1P (w) = Pr(Lu(@)]| < Ko [lu— Lu(@)ll, v € U(Ln(2),p)
(2.25) 1Py () = Ph)| < K |Ju—v, uveT(Lalx),p).
Moreover [2.1D) is called: bounded if there exists a constan such that
(2.26) ILa()l < g flull,  we ST,

stable: if there exists a > 0 such that

(2.27) IPh(La(u) ! <o, ue S AU,

and consistent of order. if there existcy > 0, ¢; > 0, ¢o > 0 such that

(2.28) ILn(F () = Pu(Ln(2))|| < co b,

(2.29) | La(F(2)) — Pu(Ln(2)|| < e h?, x € S NU,
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and

(2.30) L4 (F'(2))(y) = Ph(Ln(x) L) < ez B,
re S NU*ye s
We can show the following result relatiffg (L. 1), (1.2) w(th {1.8),](1.4) respectively.

Theorem 2.3.Let F': D C X — Y be an operator satisfying hypotheses of Thedrefn 2.2 such
that a Lipschitz, center—Lipschitz uniform discretization (R.19) exists which is bounded, stable
and consistent of order. Then,

(a) equation[(1.8) has a locally unique solution

(2.31) yp = Ln(z) + O(R?),
for all h such that:

p 1/p 1 1/p
(2.32) 0 < h < hyg=min (a o 0) , (Co p= M) ;

(b) there exist; € (0, ho), 71 € (0,*] such that Newton’s methdd (IL.4) convergeg;toand
forall k >0

(2.33) yr = Lp(zr) + O(hP),
(2.34) Pu(yt) = Lp(F(zx)) + O(h)
(2.35) yr —yr = Lp(zr —x) + O(hP)

forall h € (0, h] andxy € U(x,rq).
Proof. We showed in Theorem 2.1 that when

(2.36) a(h) = M o||Py(Ly(x)) " Pa(La(x))]l < 1,
(2.37) r(h) < a |Ph(Lu(x)) " PulLa(@))] < p,
then equatior] (1]3) has a unique solutigin T (L, (), (h)). Using [2.27),[(2.28)[ (2.36), and

(2.37) we getin turn
alh) = M o*[Pu(Lu(x)]
= M o?||Pu(Ln(2)) — Li(F(2))]|

(2.38) < Mo?cy h? <1,
and
(2.39) r(h) <a o cy h? <p,
which hold by the choice df given by [2.32). Henc¢ (2.81) follows from
(2.40) lyp — Li(2)|| <7r(h) <aocyhP.
By Theorem 2.2, Newton’s methdd (L.4) convergeg;taf
. 2
(2.41) | Ln(z0) — ypll < Ko+ K) [PLy) 1
and
(2.42) Ty |1 Ln(x0) — i) € T(Ln(2), p).
Estimate[(2.422) holds, if
(2.43) I = @) + | Za(xo) — will < p.
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By (2.26) and[(2.40) we can have

ILn(z0) =yl < [|Ln(zo) — Lu(z)|| + [[La(z) — y3
(2.44) < q||lwo—x|| +a o co AP
Therefore[(2.43) holds, if
(2.45) q ||lxo — || +2 a ocy K < p.
Using the identity and the Banach Lemma on invertible operators 4], [7]
(2.46) Pr(yn) = Pr(Ln(2))[1 = Ph(La(2)) " (Ph(La(x)) — Pr(yi)],
we get

= [P (Le ()"

(2.47) Pry)7 | < y "

1P = R TR L) — il
(2.48) 7

1—CLK00'2 Co hp'

Hence[(2.411) holds if

2 (1—a Ky cy o® hP)
(2 K0+K)0 .

(2.49) qllxzo—x|| +2a0 ¢ h? <

Choose:

L P\ ! R
(250)  f1z = min { (4 ac a) ’ {2 3K+ K)o2a c] »e=maxic, al,

and

) p 1
251 = — .
( ) "2 mm{?q’(Q[ﬁﬁ—K)qa}

Then (2.4]1) and (2.42) hold for all € (0, he] andz, € U(x,72). That is for these choices of
andx,, Newton’s method (1]4) convergesyp. Define

1 1/p
2.52 hi = min<h
i 1
(253) M = 1min {Tg,m}.
With the above choices it can easily be seen that the small root of the quadratic equation in
o K
2.54 — | = N 42K - Pl =
(2.54) 1—Koa>\[2)\+ q A lzo :c\|+(cl—|—02)h} A
denoted byl is positive, and satisfies
(2.55) d<40 (c;+c2) R
We now show using induction amthat forh € (0, hy), 29 € U(z,71), and alln > 0
(2.56) lyn — La(an)|| < d
holds.
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Forn = 0 (2.56) holds. Assumé (2.56) holds for= 0,1, ..., k. Using [1.2) and[(1]4) we
obtain the identity

i1 — Ln(xp) = 7’12(2/2)71{[7’2(1/2)@2 — Lp(z;))
n(Uk) + Pu(Ln(zx))]
+ [Pr(yg) — Pr(Ln(wr) Ln(F' ()~ F ()]
+ [7’2(Lh(l’k))Lh(F'(mk)le(xk)) — Li(F(x))]
+ [Ln(

As in (2.47) we get
(2.5 P g o T = Taan]l = T= Koo d

We can get in turn using Taylor’s formulg, (2125) and definition given in (2.54):
1P (wi) (Wi — L)) = Pulyi) + Pa(La(zr)|

< / [Ph L) + (4 — Luen)) — Poul) | (6 — L)) dt]

K
@59) <5l - Ll < 5

Using (2.25), and (2.26) we obtain:
1(Pr (i) = Pr(La (i) (Lo (F (24) 7" F (i) |

(2.60) < K q |y — La(ao)|| |ores — 2]l <2 K g d ||zo — ],
(since||zxs1 — | < ||z — z|)

(2.61) 1P7 (L () L (F () " F (1)) = Ln(F ()| < ez WP,

and

(2.62) 1L (F(2:)) = Pu(Ln(w))|| < 1 b2,

By (2.58) and[(2.57){(2.61) we get

(2.63) g4 — Lu(zer) | S d <4 o (e + ) B,

whered satisfies[(2.54).

Moreover by the Lipschitz continuity d?; there exist$ such that

(2.64) [PL(@) <b, 2 € U(Ln(z),p).

Therefore we can have
1Pw(yr) — L (F (@)l < 1Pa(yr) — PalLn(ze)|l
+ | Pr(La(ar)) — Lu(F(zx))l < bllyg — La(ze) || + e
(265) S 40’b<Cl+Cg) hp+01 hp:Cg, hp,

where
cs=40b(c1+c)+e

Furthermore by (2.40)| (2.56), arjd (2.62) we get

i — un — Lu(ze — )| < llyg — Lu(ze) || + llys — La(2)|]
(2.66) < 4o (eg+e) P +aocy h?=ch?,

where
c=0 4 (c1+c)+acd.
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That completes the proof of Theor¢m]2.3. O
The following result is the second part of the mesh independence principle.

Theorem 2.4. Assume:

(a) hypotheses of Theor¢ém 2.3 hold;
(b) there exist$ > 0 such that

(2.67) lir}]lnionf |Ln(x)|| >0 ||z|| forz e S*.
>

Then for some& < (0,7,] and any fixed > 0, zo € U(z,7) there existsh = h(e, z¢) €
(0, hy] such that

(2.68) |min{n >0, [z, — || <e} —min{n >0, |lys -yl <} <1
forall h € (0, hl.
Proof. Let k be the unique integer satisfying
(2.69) [2h1 — 2]l <& < Jlag — ],
andhs > 0 (depending o) such that
(2.70) |Lp(zp — x)|| > 0 ||xx — x| forall h € (0, hs).
Define
(2.71) T = max {rl, b } , B= min{l, 3,2 q},
20q(K+ B Ko) q

and

_ ‘ Up r5 o\ VP
(2.72) h:mln{h1,h3, |:206(K6+K0 m} ’(2_c> }
By (2.65) and[(2.71) we can get
(2.73) s~ il < I LnCier — )| e b <ge 4 05 <2 g e

Moreover from Theorern 2.2 we get
Kollyi = vil?
21— Koo llyg = uill

Ko |yb— vl
< " |lyrser — vl
2(1—Kyollyk—y)" "

Ko(qF+ch)

Yese = yill <

2.74 = e<bqge<e.
( ) 1—K00(qF—|—chp)q =1
By (Z.65) and[[Z59)
1 1 .

(2.75) e < [low — 2l < 5 1 La(2 — )] < g(HyZ —yill + k),
or
(2.76) ot —vill 20— cR 2522 = 0%
Furthermore if|y}_, — y;|| < e as in [2.78) we get

. 1 de
(2.77) g — yill < 3 Be < >
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contradicting|(2.75). Hence we get
(2.78) ks = will > e.

The result now follows fron{ (2.68), (2.V3) and (2.77).
That completes the proof of Theor¢m|2.#.

Remark 2.1. (a) Theoreni 2]1 reduces to the famous semilocal Newton—Kantorovich theorem
[7], when K = K. In general

(2.79) Ko< K

holds. If K, < K, then our hypothesi$ (2.5) may be satisfied, but the Newton—-Kantorovich
hypothesis

(2.80) 2K n<1

may not. In this case the error bounds on the distajiegs, — x,||, ||z, — x| (n > 0) are finer
and the information on the location of the solution more precise (se€ also [3]).
(b) Theorenj 22 reduces to Theorem 1.in [1] whe# ~,. In general

(2.81) Yo <7,
and in the case when strict inequality holds[in (2.80), then our convergence fadjien by
(2.18) is larger than the corresponding one givenin [1] by
_2
=3
Hence we have a wider choice of initial guessgs and our error bounds on the distances
|z, — x| (n > 0) are finer,
(c) Theorem§ 2|3, 2.4 reduce to Theorem 2 and Corollary(1 in [1], when

(2.82) Vo

(2.83) K=K, and ¢y =c¢.
Note though that

(2.84) Ko< K

and

(2.85) co < 1.

In case [(2.83) or[ (2.84) holds as strict inequalities then it is clear that our smallest integer
ny satisfying||xz,, — z|| < ¢ is smaller than the corresponding integgrgiven in references
mentioned above. Hence we require less computational steps to achieve the same error tolerance
e than before. The ratios in relationships (2.38)—(R.35) are also finer.

we havehy < hg, hi < hi, hy < ha, hs < hs, ho < h. If Ky < K, then strict inequality can
hold. Hence, the mesh sizehas been enlarged.

Note that the improvements made through our Theofem§ 2]1-2.4 are achieved under the same
hypotheses as before, since in practice, the computatidn kfquires that of;. Note also

K . -
that — and— can be arbitrarily large [3]=[5].
Ky Yo

Remark 2.2. If (2.66)) is replaced by the stronger but standard in most discretization studies
condition

(2.86) Illir% | Ln(x)|| = ||=| uniformly forz € S*,
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then Theorerh 2]4 still holds bii does not depend ar,. Note also thaf (2.66) follows from
(2.89).

Remark 2.3. As noted in[1]-[8] the local results obtained here can be used for projection meth-
ods such as Arnoldi’s, the generalized minimum residual method (GMRES), the generalized
conjugate residual method (GCR), for combined Newton/finite-difference projection methods
and in connection with the mesh independence problems where the trapezoidal rule, the box
scheme and allocation methods for boundary value problems are involved.

Remark 2.4. The local results obtained here can also be used to solve equations of the form
F(z) = 0, where F’ satisfies the autonomous differential equation (see Argyros [5], Kan-
torovich et al.[[7]):

(2.87) F'(z) =T(F(x)),
where,T: Y — X is a known continuous operator. SinE&z) = T'(F(z)) = 7'(0), we can
apply the results obtained here without actually knowing the solutiohequation[(T.]L).

We complete our study with two numerical examples. In Exaimnple 2.5 we show that under the
same hypotheses as in Theorem 1_0f [1] we can obtain a larger radius of convergence. Whereas
in Exampl we show thgk- can be arbitrarily large.

Example 2.5.Let X =Y =, D = U(0, 1), and define functiod’ on D by

(2.88) F(z)=¢€"—1.

Then it can easily be seen that we canBet) = x + 1 in (2.86). Using|(2.87) we get = e
and~y, = e — 1. Hence[(2.16)](2.81) give

(2.89) vy = 245252961 < .324947231 = ,.

(See also Remaik 2.1 (b), (c).) Hence Theorem 1lin [1] cannot guarantee the convergence of
(1.2) tox = 0 whenz, € [v,,7,) but our Theorerp 2]2 can.

Example 2.6.Let X =Y = and define functior¥’ on by

(2.90) F(z) = Oz + 0 + 05 sin e,

whered;, i = 0, 1,2, 3 are given parameters. Usirjg (2.89) it can easily be seen thé farge
andd, sufficiently smallKﬁO may be arbitrarily large. That i.5) may be satisfied but not

(2.79), in which case Theorgm 2.2 cannot apply.
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