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2 HAROLD R. PARKS

1. INTRODUCTION

Many of Stanisław Ulam’s early papers addressed topics in measure theory. Indeed his paper
[6] was the basis for Section 2.1.6 of Federer’s treatise on geometric measure theory [1]. In
this article, we address a more concrete and geometrical question in measure theory than the
foundational issues considered [6].

The structure theorem for sets of finite Hausdorff measure (the theorem referred to here is
3.3.13 of [1]) alerts us to the fact that unrectifiable sets typically have small projections in
most directions. But of course an unrectifiable set can have large projections in certain special
directions. The question then is how extreme this sort of large projection behavior can be. In this
article, we give a construction that yields a purely unrectifiable subset of Rn, n ≥ 2, that projects
orthogonally onto a set with positive (n−1)-dimensional Lebesgue measure. Additionally, this
subset has the property that the orthogonal projection onto any straight line in Rn is a set of
positive 1-dimensional Hausdorff measure.

Our terminology here differs slightly from that of Federer in that what we call a purely unrec-
tifiable set is called purely (H1, 1) unrectifiable in [1]. The precise definition is the following:

Definition 1.1. We say that a set E ⊆ Rn is purely unrectifiable if, for every Lipschitz function
f : R→ Rn, we have

H1 [f(R) ∩ E] = 0 ,

where H1 denotes the 1-dimensional Hausdorff measure. (We will always mean Lipschitz of
order 1 when we say a function is Lipschitz.)

It is immediate from the definition that a subset of R is purely unrectifiable if and only if it is
of Lebesgue measure zero, so purely unrectifiable subsets of R will not interest us. For n ≥ 2,
Fubini’s theorem gives us the following observation (which is also true for n = 1, as we have
noted):

Remark 1.1. If E ⊆ Rn is Lebesgue measurable and purely unrectifiable, then Ln[E] = 0.

It seems reasonable to make the following definition:

Definition 1.2. A purely unrectifiable set E ⊆ Rn has a large projection if there is an orthogo-
nal projection Π : Rn → Rn−1 such that Ln−1[ Π(E) ] > 0.

Next, we summarize our main result.

Theorem 1.1. For each integer n ≥ 2, there exists a purely unrectifiable set S ⊆ Rn with a
large projection. Additionally, we can require that

Π(S) = [0, 1]n−1 ,

where Π : Rn−1 × R → Rn−1 is projection onto the first factor, and we can require that the
orthogonal projection of S on any straight line contained in Rn has positive 1-dimensional
Hausdorff measure.

Another recent paper that also looks at sets with surprisingly large projections is [5]. The
goals, results, and constructions in that paper differ from those in this article.

2. A MOTIVATING EXAMPLE

One convenient way to construct purely unrectifiable sets is via a geometric iteration like
those used to construct Cantor sets or the Sierpinski gasket. We will illustrate this approach
with the following example from [2] that motivated the present article. The important feature
of this geometric iteration is that there are two special directions in which the subsets involved
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PURELY UNRECTIFIABLE SETS WITH LARGE PROJECTIONS 3

line up perfectly so that the orthogonal projections also form a nested sequence of diminishing
compact sets.

Consider four closed discs of radius 1/4 inside the unit circle as shown in Figure 1. Two of
the discs are centered on the horizontal diameter of the unit circle and are internally tangent to
the circle. The other two discs are tangent to the vertical diameter of the unit circle, on opposite
sides, and are also internally tangent to the circle. In fact, the centers of those four discs are at
q1 = (−3/4, 0), q2 = (−1/4,−1/

√
2), q3 = (1/4, 1/

√
2), and q4 = (3/4, 0).

Figure 1: The four discs of radius 1/4 that form the basic figure inside the unit circle.

If each disc is itself replaced by the four discs inside a scaled down circle, we obtain a
collection of sixteen discs, and if that replacement operation is iterated, we obtain a nested
sequence of compact sets Pj . To be precise, let us agree that P1, which we call the “basic
figure," is the union of the four discs of radius 1/4 illustrated in Figure 1. The basic figure and
two stages of the iteration are shown in Figure 2. The intersection of the full nested sequence
will be denoted by P .

To see that P is purely unrectifiable, we argue as follows: Let `+ be the line in R2 that passes
through q2 = (−1/4,−1/

√
2) and q4 = (3/4, 0), the centers of two of the discs in Figure 1. Let

`− be the line that passes through q4 = (3/4, 0) and q3 = (1/4, 1/
√

2), also the centers of two
of the discs in Figure 1. Note that the lines `+ and `− are orthogonal to each other (see Figure
3). Consider the orthogonal projection from R2 to `+. Because the discs are aligned with `− in
pairs, the orthogonal projections of the Pj on `+ form a nested sequence of compact sets with
lengths decreasing by a factor of 2 each time j is incremented. Thus we see that the orthogonal
projection of P on `+ is a set of Lebesgue measure zero. Similarly, we see that the orthogonal
projection of P on `− is also a set of Lebesgue measure zero. Now, suppose f : R → R2 is a
Lipschitz function and supposeA is a measurable set with f(A) ⊆ P . Then because f followed
by an orthogonal projection onto `+ maps A to a set of Lebesgue measure zero, f ′(t) must be
orthogonal to the direction of `+ for almost every t ∈ A. Similarly, f ′(t) must be orthogonal
to the direction of `− for almost every t ∈ A. Accordingly, f ′(t) = 0 holds for almost every
t ∈ A, and we haveH1[f(A)] = 0.

Figure 2: The basic figure and the next two stages of the construction of P .
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4 HAROLD R. PARKS

Figure 3: The lines `+ and `−.

What is interesting about P , in addition to its being purely unrectifiable, is that it has a large
projection. Observe that, for any j, the orthogonal projection of Pj on the horizontal axis is the
interval [−1, 1]. We conclude that the orthogonal projection of P on the horizontal axis is also
the interval [−1, 1].

We find the above example aesthetically pleasing, but it does not generalize readily to higher
dimensions. The difficulty is that spheres do not fit together well, so the higher dimensional
construction will use cubes instead of spheres.

3. A CRITERION FOR PURE UNRECTIFIABILITY

The next theorem generalizes the method used above to show that P is purely unrectifiable.
What the theorem tells us is that, for a subset E of Rn, if there are n linearly independent real-
valued functions each of which maps E to a set of Lebesgue measure zero, then E is purely
unrectifiable.

Theorem 3.1. Suppose E ⊆ Rn is a Borel set. If there exist linearly independent functions
gi : Rn → R, i = 1, 2, . . . , n, such that L1[gi(E)] = 0 holds for each i, then E is purely
unrectifiable.

Proof. Suppose f : R → Rn is Lipschitz. Set A = f−1(E). For i = 1, 2, . . . , n, we have
L1[gi ◦ f(A)] = 0, so we see that

0 = (gi ◦ f)′(t) = gi[f
′(t)]

holds for L1-almost every t ∈ A. The only vector in Rn that is mapped to 0 by all n of the
independent functions g1, g2, . . . , gn is the zero vector. Accordingly, we conclude that f ′(t) = 0
holds for L1-almost every t ∈ A and consequently we haveH1[f(R) ∩ E] = 0.

The next lemma allows us to build larger examples of purely unrectifiable sets from smaller
ones.

Lemma 3.2. The collection of purely unrectifiable sets is closed under countable unions.

Proof. Suppose each set Ei ⊆ Rn is purely unrectifiable. Set E = ∪iEi. If A ⊆ E is the
Lipschitz image of a subset of R, then we have

H1(A) = H1(A ∩ E) = H1

[⋃
i

(A ∩ Ei)

]
≤
∑

i

H1(A ∩ Ei) = 0 .
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4. NOTATION

We will use the following notation for the construction in Rn, n ≥ 2:
(1) Let p1, p2, p3, . . . denote the prime numbers in increasing order.
(2) Set

m =
n∏

i=1

pi .

(3) All sets we construct will be compact subsets of the closed unit n-cube S0 = [0, 1]n.
(4) The unit cube will be divided into mn congruent closed subcubes (m as above) denoted

by

C[i1, i2, . . . , in] = { (x1, x2, . . . , xn) : ij/m ≤ xj ≤ (ij + 1)/m , j = 1, 2, . . . , n } ,

where 0 ≤ ij ≤ m− 1 for j = 1, 2, . . . , n.
(5) For [i1, . . . , in] with 0 ≤ ij ≤ m − 1 for j = 1, 2, . . . , n, we let η[i1, . . . , in] denote

the composition of a translation and a homothety which maps [0, 1]n to C[i1, . . . , in].
Specifically, η[i1, . . . , in] is given by

(x1, x2, . . . , xn) 7−→
(

(x1 + i1)/m, (x2 + i2)/m, . . . , (xn + in)/m
)
.

Note that if [ıh] = [ih,1, ih,2, . . . , ih,n], for h = 1, 2, . . . , k, then

η[ı1] ◦ · · · ◦ η[ık]

is given by

(x1, x2, . . . , xn)

7−→

(
k∑

r=1

ir,1m
−r + x1m

−k,
k∑

r=1

ir,2m
−r + x2m

−k, . . . ,
k∑

r=1

ir,nm
−r + xnm

−k

)
.

(6) The basis of the geometric iteration is the set

S1 =
⋃

[i1,...,in]∈I

C[i1, . . . , in]

derived from the nonempty collection I of indices [i1, . . . , in] where 0 ≤ ij ≤ m − 1
for j = 1, 2, . . . , n.

(7) The kth stage of the geometric iteration is defined inductively by setting

Sk =
⋃

[i1,...,in]∈I

η[i1, . . . , in] (Sk−1) .

Of course, this amounts to replacing each cube in S1 by a scaled copy of Sk−1. Alter-
natively, we can look at each stage of the geometric iteration as being accomplished by
replacing each cube in Sk−1 by a scaled copy of S1. We can also write

Sk =
⋃

ı1,...,ık∈I

η[ı1] ◦ · · · ◦ η[ık](S0) .

(8) The set resulting from the geometric iteration is

S =
⋂
k

Sk .
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5. INDEPENDENT FUNCTIONS WITH IMAGES OF LENGTH ZERO

Definition 5.1. For H ∈ {1, 2, . . . , n − 1}, we let IH denote the set of indices of the form
[i1, i2, . . . , in−1, in], where 0 ≤ ij ≤ m− 1 for j = 1, 2, . . . , n, that satisfy

(5.1) in ≡ iH mod (pH+1) .

We also let gH : Rn → R denote the linear map given by

(5.2) gH(x) = (eH − en) · x .

Lemma 5.1. If S is the set resulting from the geometric iteration with basis S1 derived from
IH , then L1 [ gH(S) ] = 0.

Proof. If x ∈ C[i1, i2, . . . , in−1, in], with [i1, i2, . . . , in−1, in] ∈ IH , then
iH − in − 1

m
≤ gH(x) ≤ iH − in + 1

m
,

where
0 ≤ iH ≤ m− 1 , 0 ≤ in ≤ m− 1 , iH − in ≡ 0 mod (pH+1) .

Set
qH = m/pH+1 .

We see that gH(S1) consists of the 2qH − 1 disjoint intervals

[ (`− 1)/m, (`+ 1)/m ], ` = −qH + 1, . . . , 0, . . . , qH − 1

each of length 2/m.
The total length of gH(S1) is

(2qH − 1) (2/m) = 4/pH+1 − 2/m ≤ 4/pH+1 ≤ 4/3 .

Setting I0 = [−1, 1] = gH(S0) and I1 = gH(S1), we conclude that

(5.3)
L1(I1)

L1(I0)
≤ 2/3 .

Observe that γ[`] : R→ R given by

γ[`](x) = (`+ x)/m

is the composition of a translation and a homothety that maps [−1, 1] to [(`−1)/m, (`+ 1)/m].
So we have

I1 =

qH+1⋃
`=−qH+1

γ[`] (I0) .

For k = 2, 3, . . . , set

Ik =

qH+1⋃
`=−qH+1

γ[`] (Ik−1) =

qH+1⋃
`1=−qH+1

· · ·
qH+1⋃

`k=−qH+1

γ[`1] ◦ · · · ◦ γ[`k](I0) .

From (5.3), we conclude that L1 (
⋂∞

k=1 Ik) = 0.
It is immediate that

gH ◦ η[i1, i2, . . . , in−1, in] = γ[iH − in] ◦ gH

holds, so it follows that

gH ◦ η[ı1] ◦ · · · ◦ η[ık] = γ[i1,H − i1,n] ◦ · · · ◦ γ[ik,H − ik,n] ◦ gH ,

where [ıh] = [ih,1, ih,2, . . . , ih,n], for h = 1, 2, . . . , k.
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We have

gH(Sk) =
⋃

ı1,...,ık∈I

gH ◦ η[ı1] ◦ · · · ◦ η[ık](S0)

=

qH+1⋃
`1=−qH+1

· · ·
qH+1⋃

`k=−qH+1

γ[`1] ◦ · · · ◦ γ[`k] ◦ gH(S0)

=

qH+1⋃
`1=−qH+1

· · ·
qH+1⋃

`k=−qH+1

γ[`1] ◦ · · · ◦ γ[`k](I0) = Ik .

Notice that because gH is continuous and because S =
⋂∞

k=1 Sk is formed by the nested inter-
section of compact sets, the mapping and the intersection may be interchanged. (We emphasize
this point because of the history involved: It was by inappropriately interchanging a mapping
and an intersection that Lebesgue was led to falsely assert that the projection of a Borel set is a
Borel set (see [4, p. 191]).) Thus we have gH(S) =

⋂∞
k=1 gH(Sk) =

⋂∞
k=1 Ik, from which the

result follows.

The preceding lemma gives us n − 1 independent linear functions that map various sets to
sets of 1-dimensional Lebesgue measure zero. To apply Theorem 3.1, we will need an nth
independent linear function. The required function is provided by the next lemma.

Definition 5.2. Define In to be the set of indices of the form [i1, i2, . . . , in−1, in] where 0 ≤
ij ≤ m− 1 (j = 1, 2, . . . , n), that satisfy

in 6= m/2 ,

Also, let gn : Rn → R denote the linear function given by

gn(x) = en · x .

Lemma 5.2. If S is the set resulting from the geometric iteration with basis S1 derived from In,
then L1 [gn(S)] = 0.

Proof. We see that gn(S1) consists of the m− 1 disjoint intervals

[`/m, (`+ 1)/m], ` = 0, 1, . . . , (m/2)− 1, (m/2) + 1, (m/2) + 2, . . . ,m− 1,

each of length 1/m.
The total length of gn(S1) is (m − 1)/m. Setting I0 = [0, 1] = gn(S0) and I1 = gn(S1), we

conclude that
L1(I1)

L1(I0)
= (m− 1)/m .

The argument then proceeds as in the proof of Lemma 5.1.

6. MAIN RESULTS

Each basis for a geometric iteration, IH , H = 1, 2, . . . , n, defined in the preceding section is
designed so that the set resulting from the geometric iteration will map to a set of 1-dimensional
Lebesgue measure zero when a particular linear function is applied. To complete the construc-
tion, we need to show that if we use as our basis the intersection of all the IH , H = 1, 2, . . . , n,
then the resulting basis is large enough such that the set resulting from the geometric iteration
will have the desired large projection. To accomplish this goal we need the next theorem which
is an immediate application of the Chinese remainder theorem (see [3, p. 63]).
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8 HAROLD R. PARKS

Figure 4: The sets S1 and S2 for the construction in R2

Theorem 6.1. For i1, i2, . . . , in−1 with 0 ≤ ij ≤ m − 1 (j = 1, 2, . . . , n− 1), there exists a
unique

0 ≤ ı̂n < m/2

satisfying

ı̂n ≡ i1 mod (p2) ,

ı̂n ≡ i2 mod (p3) ,
...

ı̂n ≡ in−1 mod (pn) .

Theorem 6.2. Let I consist of the indices [i1, i2, . . . , in−1, in] such that

0 ≤ ij ≤ m− 1 , for j = 1, 2, . . . , n ,(6.1)

in ≡ ik mod (pk+1) , for k = 1, 2, . . . , n− 1 ,(6.2)

in 6= m/2 ,(6.3)

and let S be the set resulting from the geometric iteration with basis S1 derived from I. Then
(1) for i1, i2, . . . , in−1 with 0 ≤ ij ≤ m − 1 (j = 1, 2, . . . , n− 1), there exists an in such

that [i1, i2, . . . , in−1, in] ∈ I,
(2) Π(S) = [0, 1]n−1 where Π : Rn−1 × R→ Rn−1 is a projection onto the first factor,
(3) S is purely unrectifiable,
(4) in the topology of the unit sphere Sn−1 ⊆ Rn, there is an open neighborhood U of

(6.4) [(n− 1)/n]1/2 en +
n−1∑
i=1

[n(n− 1)]−1/2 ei

such that, for any straight line ` having its direction in U , the orthogonal projection of
S on ` has positive 1-dimensional Hausdorff measure.

Figures 4 and 5 illustrate the sets used in the geometric iteration when n = 2 and when n = 3.

Proof.
(a) Part (a) is an immediate consequence of Theorem 6.1.

(b) By part (a), we see that Π(S1) = [0, 1]n−1. The definition of Sk from Sk−1 guarantees that
Π(Sk) = [0, 1]n−1 holds for all k. Finally, because S1 ⊇ S2 ⊇ · · · and S = ∩∞k=1Sk, we
conclude that Π(S) = [0, 1]n−1.
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F

Figure 5: The set S1 for the construction in R3. The set has been projected onto the (x, z)-plane in the figure on
the left and onto the (y, z)-plane in the figure on the right.

(c) Because I ⊆ IH , for H = 1, 2, . . . , n, we see that L1[ gH(S) ] = 0, for H = 1, 2, . . . , n.
Since the linear functions gH , H = 1, 2, . . . , n, are linearly independent, we conclude from
Theorem 3.1 that S is purely unrectifiable.

(d) Consider v =
∑n

i=1 αiei where

(6.5)
2

m− 2
αn <

n−1∑
i=1

αi <
m− 2

2
αn .

Define the linear function hv : Rn → R by setting

hv(x) = v · x .
If v is a unit vector, then hv can be isometrically identified with orthogonal projection onto a
straight line having direction v.

We have

hv(S0) =

[
0,

n∑
i=1

αi

]
.

Also,

hv(C[i, i, . . . , i] ) =

[
i

m

n∑
i=1

αi,
i+ 1

m

n∑
i=1

αi

]
.

So

hv(D) =

[
0,

n∑
i=1

αi

]∖(
2−1

n∑
i=1

αi, (2−1 +m−1)
n∑

i=1

αi

)
,

where

D =

m/2−1⋃
i=0

C[i, i, . . . , i]

⋃ m−1⋃
i=m/2+1

C[i, i, . . . , i]


can be considered as the main diagonal in S1.

The secondary diagonal in S1 is the set

D′ =

m/2−1⋃
i=1

C[i, i, . . . , i,m/2 + i] .

We see that

hv(D′) =

[
2−1αn +m−1

n∑
i=1

αi, 2−1

n∑
i=1

αi + 2−1αn

]
.
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Observe that (6.5) implies

2−1αn +m−1

n∑
i=1

αi < 2−1

n∑
i=1

αi

and
(2−1 +m−1)

n∑
i=1

αi < 2−1

n∑
i=1

αi + 2−1αn ,

so we have
hv(D ∪D′) = hv(S0) .

Since D ∪D′ ⊆ S1, we conclude that hv(S1) = hv(S0).
When the compostion of a translation and a homothety is followed by a linear map, the

resulting composition can be rewritten as the same linear map followed by the composition of a
translation and a homothety. Thus hv ◦ η[ı] = γ[ı] ◦ hv holds, where γ[ı] is also a composition
of a translation and a homothety. Thus, we may make the following inductive argument: If
hv(Sk) = hv(Sk−1) holds, then we have

hv(Sk+1) = hv

(⋃
ı∈I

η[ı](Sk)

)
=
⋃
ı∈I

hv ◦ η[ı](Sk)

=
⋃
ı∈I

γ[ı] ◦ hv(Sk) =
⋃
ı∈I

γ[ı] ◦ hv(Sk−1)

=
⋃
ı∈I

hv ◦ η[ı](Sk−1) = hv

(⋃
ı∈I

η[ı](Sk−1)

)
= hv(Sk) .

Since hv(S1) = hv(S0) holds, we have

hv(S) =
∞⋂

k=1

hv(Sk) = hv(S0) ,

and so hv(S) has positive 1-dimensional Lebesgue measure.
Finally, observe that if we set

α1 = α2 = · · · = αn−1 = n−1/2 (n− 1)−1/2 , and αn = n−1/2 (n− 1)1/2 ,

then the condition (6.5) is satisfied and v =
∑n

i=1 αiei is the vector in (6.4). Consequently there
is an open set of unit vectors of the form v =

∑n
i=1 αiei for which condition (6.5) is satisfied.

Proof of Theorem 1.1. The set S in Theorem 6.2 satisfies the requirements that it be purely
unrectifiable and that it project onto [0, 1]n−1. Because Sn−1 is compact, part (d) of Theorem 6.2
tells us that the union of S and finitely many rotated copies of S will form a set whose orthogonal
projection on any line ` in Rn has positive 1-dimensional Hausdorff measure. Lemma 3.2 tells
us that the set is purely unrectifiable. Thus all the requirements of the main theorem have been
met.
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