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ABSTRACT. Let X be a complex Banach space and (&t p) be a positive measure space.
The Birkhoff-James orthogonality is a generalization of Hilbert space orthogonality to Banach
spaces. We use this notion of orthogonality to establish a new characterization of Birkhoff-James
orthogonality of bounded linear operatorslih(X, p) also implies best approximation has been
proved.
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1. INTRODUCTION

The problem of best approximation has a long history and gives rise to a lot of notions and
techniques useful in functional analysis. The usual framework of this theory consists in Banach
or Hilbert spaces because the geometry of these spaces, via Birkhoff-James orthogonality or
orthogonality with respect to the inner product, yields the support for results of existence and
uniqueness for elements of best approximation, seele.g. [15].

The notion of orthogonality is an arbitrary normed space, with the norm not necessarily com-
ing from an inner product, may be introduced in various ways. One of the possibilities is the
definition introduced by Birkhoff([3], in order to generalize the concept of orthogonality in
inner product spaces. Over the years, Birkhoff-James orthogonality has been undoubtedly es-
tablished as an important concept in the study of geometry of normed linear spaces by virtue of
its rich connection with several geometric properties of the space, like strict convexity, uniform
convexity, smoothness etc.

Let X be a complex Banach space and(l&t p) be a positive measure spac¥. denote a
closed subspace of. Let f € L*(X)\ M. Then there exists a unique best approximatat f
from M if and only if

If—gll <I|lf —h| forallhe M.
We recall thatf is said to be orthogonal td/, written f L M, if and only if

VAEC: |[fI|<IIf +Ag| forallg € M.

In this paper, our aim is to establish a new characterization of Birkhoff-James orthogonality
of bounded linear operators itt (X, p) also implies best approximation has been proved.

Definition 1.1. Let LP(X), 1 < p < oo, andL4(X) the Dual space. Le¥/ be a closed subspace
of LP(X), we recall thatf € L?(X) is orthogonal ta\/, written f L M, if and only if

If1l, < If +gll, forallge M.

Theorem 1.1.Let M be a closed subspace bf(2),1 < p < oo, f € LP(X) is orthogonal to
M if and only if

/ g|fIP" sign(f)dz = 0 forall g € M.
X

Proof. Seel[6].n

Definition 1.2. Let (X, ||.||) be an arbitrary Banach space. TheGateaux derivative of the
norm atf in the directiong is defined as

lim If + tet?g|| — HfH‘

t—0t t

Dsovf(g) =

2. MAIN RESULT

Proposition 2.1. If the functionH ,(t) = || f + te'?g|| is convex, then the following statements
are hold:

i) D, ¢(g)is subadditive and positively homogeneous functionakon
i) Dey(g) < lgll-
iii) Dy r(e”g) = Dyro,(9).
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Proof. i)We have

I+ et ] < |+ 1e

4|4 reon

Taking the limit ag — 0", we obtain

te?(g+ h)| — 2te’? 2teh|| — 2
Duflgt+h) = tim MHEAGEDIZIIL oy I+ 20l + 1] + 2ehl] = 2] /]
% t—0* t t—0+ 21

= D%f(g) + Dw,f<h)~

Positive homogeneity is obvious.
ii) It is easy to see that

|+ teg|| = IFII| < ||f +teg = f]| = tlgll-
Taking the limitag — 0", we get

i _
Do s(g) = lim 1 H 1 (tg)H 171

t—0t

< lgll -

iif) The proof is obviousa

Theorem 2.2.Let (X, ||.|| ) be an arbitrary Banach space. If the functigre X is orthogonal
tog € X, then

inf D, ¢(g) > 0.
%)

Proof. Let f be orthogonal tg, i.e.

YAEC |f]l <|If+ Mgl forallge M.
Then
>0 forallt >0,

1 + te*gll — [ £
t

and passing to the limit as— 0", we obtain
inf D%f(g> Z 0.
[}

Theorem 2.3.Let M be linear subspace df'(X) and f € L*(X)\ M, theng is a bestL!(X)
approximant tof from M if and only if

/ e 0@ p(2)dp(z)| < / |h(x)| dp(z) forall h € M,
(z)=g(x) f(@)#9(z)
where
(f = h)(@) =|f = hle .
Proof. See([12].x

Definition 2.1. Let M be alinear closed subspace/df X') and letS(X) = {y € X/ ||¢| < 1}.
f € LY(X) is orthogonal taV/ if and only if, there exists a functiop € S(X), such that

) [ fede= [|f]de.
X X

i) [ phdz =0, forallh € M.
X
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Remark 2.1. In the particular case, far € Ker f has measure zero. The functigne L!(X)
is orthogonal taV/ if and only if

/(signf)h(a:)dp(x) =0, forallh € M.

Theorem 2.4.Let M be linear closed subspace bf(X). The functionf € L!(X) is orthog-
onaltog € M if and only if

[ i@ < [ 1f@ldsta

970} {g=0}
where

) = |f(2)] .
Proof. We have, inL'(X)

D,y(f) = Re / 60 f(2)dp(z) b + / (@) dp(z)

{970} {g=0}
Since
L lg(@) + pe ()] = g(@)|
p—0 p
_ { cos(p — 0(z)) + ¥ () [f(2)] g(z) #0,
|f(@)], g(x) =0,
and also

P < .

Thus, we gelf L g if and only if

inf Re {/ ei“’ew(x)f(x)dp(x)} + / |f(z)] dx > 0.
=0

#0
©

However, the infimum will be attained for that for which

e [ e pwydpta) =~ | [ e fadpta)].
f#0 #0
and the result followsy

Corollary 2.5. Let M be a linear closed subspace of(X), then the following assertions are
equivalent

i) The functionf € L'(X) is orthogonal tgy € M if and only if

[ e p@ipo)| < [ 17l dota)

970} {g=0}
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i) gis abestL!(X) approximant tof from A if and only if

/ e_ie(x)h(x)dp(a:) < / |h(z)| dp(x) for all h € M,
(z)=g(=) f(z)#g(z)
where ‘
(f = h)(@) = [f = h[e®
iii) The function f € L'(X) is orthogonal tgy € M if and only if

e [ p@)dpta) == | [ e fadpta).
10 #0
Proof. i)= i)
Let f € L'(X) is orthogonal tgy € M, then

| @i < [ 1@l

970} {g=0}
Taking
9(z) = fi(z) — ().
Thenf; is a bestL!(X) approximant tdy;, from M.
i) =)
The functionf € L'(X) is orthogonal tg; € M implies

e [ p@)ipta) == | [ e f(adpta)].

f#0 #0
Takingp = 0, then
[ i@ < [ 1f@ldsta
g7#0} {g=0}

i) =i = i)
i) = iii), using Theoreni 2}4a
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